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Abstract—A detailed study of surface TM modes at the interface
between an isotropic medium and a uniaxial plasma is presented.
Four cases for the isotropic medium, including normal, Left-handed,
magnetic, and metallic media, are considered. The conditions for the
existence of surface modes in each case are analyzed, showing that the
existence is determined by the parameters of media, working frequency,
and the direction of the principle axis. The Poynting vector along
the propagating direction is also calculated. Depending on the media
parameters and the frequency, the surface mode can have time-average
Poynting vector in the opposite direction of the mode phase velocity.
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1. INTRODUCTION

Surface waves (SWs) have attracted the attention of many scientists
since the work of Jonathan Zenneck in 1907 [1] and Lord Rayleigh on
elastic solids [2]. They can exist under certain conditions on an entirely
free surface bounded by air, or at the interface separating two semi-
infinite half-spaces. They propagate along the interface and decay in
the transverse direction exponentially while having the field maximum
on the interface [3–8]. They are useful for studying of the physical
properties of the surfaces [9, 10]. Thus the investigations of SWs are
important from both a scientific point of view and a practical one.

The general case of surface waves at the interface between a
uniaxial crystal and isotropic medium were analyzed in detail in
previous publications [11–13]. They concluded that surface wave
propagation is possible only for positive uniaxial materials and that too
for a narrow angular range of propagation directions about the bisector
of the angle between the optical axes. The case between a uniaxial
crystal and a magnetic isotropic medium has also been studied [14].
Furthermore, Walker et al. analyzed surface wave propagation at the
interface of an isotropic material and an arbitrarily oriented uniaxial
or biaxial material [4]. They showed that if both optical axes of the
biaxial material are tangential to the interface, surface wave can occur
over a large range of propagation directions and will confine wave more
tightly than biaxial materials with optical axes in other orientations or
uniaxial materials. And more extended cases of the interface between
isotropic media and biaxial by Alshits et al. [15] and between two
uniaxial crystals by Darinskii and Furs et al. respectively [16, 17] were
also studied. And quite recently, Sudarshan et al. investigated surface
wave at the interface of identical biaxial crystals with a relative twist
about the axis normal to the interface [18]. They showed that the
selected type of surface wave is possible only for a restricted range of
the twist angle, which depends on the ratio of the maximum and the
minimum of the principal refractive indexes and the angle between the
optical axes.

Characteristics of surface modes at the interface between an
isotropic medium and an indefinite medium that has a dispersion
relation of hyperbolic form are studied by Yan et al. [19]. They
considered four cases for the isotropic medium, and gave the conditions
for the existence of surface modes in each case, indicating that the
existence of surface modes is determined by the nature of the indefinite
medium as well as the orientation of the boundary surface of this
anisotropic medium.

To our knowledge, however, no detailed analysis about surface
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modes at boundary of uniaxial medium, which has dispersion
characteristics, has yet been given. In this paper, we consider the
uniaxial medium as an anisotropic plasma externally applied with
an infinitely strong DC magnetic field B̄0. We study four kinds of
isotropic media: normal, Left-handed (with negative permeability and
permittivity), magnetic (with negative permeability), and metallic
medium (with negative permittivity), and obtain the existence
conditions of surface modes. Moreover, to get deeper insight into the
physics of such waves, we also calculate their Poynting vector and the
energy flow along the propagating direction.
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Figure 1. Diagram for an interface between a semi-infinite isotropic
medium and a uniaxial plasma. The ξ axis indicates principle axis, also
the direction of the external magnetic field which is infinitely strong
in the uniaxial plasma.

2. SURFACE MODE DISPERSION LAWS

We consider a special case of uniaxial medium: an electron plasma
applied with an external infinitely strong magnetic filed. In this case,
ωc → ∞ and the medium becomes a uniaxial plasma which has
dispersion characteristics, and the permittivity tensor ε2, takes the
following form in the principal coordinate system: [20]

ε2ξζη =

[
ε(ω) 0 0

0 ε0 0
0 0 ε0

]
, (1)
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where ε = ε0(1− ω2
p

ω2 ) and ξ axis is in the same direction of the external
magnetic filed B̄0. Furthermore, we consider electromagnetic waves
propagating along the interface between an isotropic medium and the
uniaxial plasma, as shown in Fig. 1. The ξζη coordinate system is
defined according to the principle axis of the uniaxial plasma, also the
direction of the external magnetic field B̄0. Region 1 is the isotropic
medium, with permittivity ε1 and permeability µ1; region 2 is the
uniaxial plasma, with permeability µ2 and permittivity tensor ε2.

To get the solution of the fields in the two media, we establish
a xyz coordinate system so that the interface is in the y-z plane and
the x axis is perpendicular to it. For the xyz coordinate system, the
permittivity tensor can be transformed to

ε2 =

[
εxx 0 εxz

0 εy 0
εzx 0 εzz

]
, (2)

with

εxx = ε cos2 θ + ε0 sin2 θ, (3.1)
εxz = (ε − ε0) sin θ cos θ, (3.2)
εxz = εzx, (3.3)
εzz = ε sin2 θ + ε0 cos2 θ, (3.4)
εy = ε0, (3.5)

where θ is the angle made by the magnetic field and the normal of the
interface (see Fig. 1) and −π/2 ≤ θ ≤ π/2.

The surface waves propagate along the z-axis with a wave number
kz, and the attenuation of the waves in the x-direction are defined by
the quantities α1, α2. The wave vector and electrical field in the two
regions can be written as

k̄1 = x̂(−iα1) + ẑkz

Ē1 = (x̂E1x + ŷE1y + ẑE1z)eikzz+α1x

}
(x < 0) (4)

k̄2 = x̂(iα2) + ẑkz

Ē2 = (x̂E2x + ŷE2y + ẑE2z)eikzz−α2x

}
(x > 0) (5)

For the uniaxial plasma, notice that the off-diagonal permittivity
tensor, shown in Eq. (2), is symmetrical and there is only one element
in y-direction. According to the Maxwell Equations, the electrical field
components depend upon each other in the following way(

−k2
z + ω2µ2εxx iα2kz + ω2µ2εxz

iα2kz + ω2µ2εzx α2
2 + ω2µ2εzz

) (
E2x

E2z

)
= 0 (6.1)

(α2
2 − k2

z + ω2µ2εy)E2y = 0 (6.2)
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Equations (6.1) and (6.2) show that the TE mode (Ey, Hx, Hz) is not
coupled to the TM mode (Hy, Ex, Ez) and it is the TM mode that is
affected by the dispersion. That is why we focus on the TM wave in
this paper.

Furthermore, by setting the determinant of the matrix in Eq. (6.1)
equal to zero, we obtain the dispersion relation of the TM wave in the
uniaxial plasma, which is

ω2µ2 =
(iα2 cos θ + kz sin θ)2

ε0
+

(−iα2 sin θ + kz cos θ)2

ε
. (7)

And it is known that the dispersion relation of the isotropic medium
is

k2
z − α2

1 = ω2µ1ε1. (8)

For TM wave, the magnetic field in the two regions can be written
as

H̄1 = ŷAeikzz+α1x (x < 0), (9)

H̄2 = ŷAeikzz−α2x (x > 0). (10)

So, substituting Eqs. (9) and (10) into Maxwell Equations, the
electrical fields can be obtained as

Ē1 =
1

ωε1
(x̂kz + ẑiα1)Aeikzz+α1x (x < 0), (11)

Ē2 =
A

ω

(
x̂
−εzzkz− iεxzα2

ε2
xz− εxxεzz

+ ẑ
εxzkz+ iεxxα2

ε2
xz− εxxεzz

)
eikzz−α2x (x>0). (12)

By matching the boundary conditions at interface of x = 0, i.e.,
E1z = E2z, we obtain the relation of propagation constant kz and
α1, α2, which is

iα1

ε1
=

εxzkz + iεxxα2

ε2
xz − εxxεzz

=
εxzkz + iεxxα2

−εε0
. (13)

Finally, solutions of equations (7), (8) and (13) are [19]

k2
z = ω2 ε1(ε1εxxµ2 − εε0µ1)

ε2
1 − εε0

, (14)

α1 = ω |ε1|
√

(εxxµ2 − ε1µ1)
ε2
1 − εε0

, (15)

α2 = α2r + iα2i =
−α1εε0

ε1εxx
+ i

εxzkz

εxx
, (16)

where both α2r, α2i are real.
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3. CONDITIONS FOR EXISTENCE OF TM SURFACE
MODES

The necessary condition of surface mode existence is k2
z , α1 and α2r

must be positive. We will discuss the condition of surface TM mode
existence for four cases of isotropic medium: (i) ε1 > 0, µ1 > 0;
(ii) ε1 < 0, µ1 < 0; (iii) ε1 > 0, µ1 < 0; (iv) ε1 < 0, µ1 > 0,
which correspond to normal, left-handed, magnetic, and metallic media
respectively. Without losing any generality, we assume that the
permeability of the uniaxial plasma is positive, i.e., µ2 > 0.

The conditions of surface TM mode existence for the four cases
are shown in Table 1. And the critical angle θc1 and θc2 are defined as

cos2 θc1 =
(

1 − ε1µ1

ε0µ2

) (
ω2

ω2
p

)
(17)

cos2 θc2 =

[
1 − ε0µ1

ε1µ2

(
1 −

ω2
p

ω2

)] (
ω2

ω2
p

)
(18)

Table 1. Conditions for the existence of the surface TM mode.

Case Parameter Condition ω θ

(i)

ε1 > 0,

µ1 > 0

ε1µ1/(ε0µ2) < 1 ω < ωp π/2 > |θ| > θc1

(ii)

ε1 < 0,

µ1 < 0

|ε1| > ε0, ε1µ1/(ε0µ2) < 1 ω > ωp π/2 > |θ| > θc1

|ε1| < ε0

ε1µ1/(ε0µ2)<1 ω∈(ωp,ωpε0/
√

ε2
0−ε2

1) π/2 > |θ| > θc1

ε1µ1/(ε0µ2) >
1/[1 − (ω2

p/ω2)]
ω > ωpε0/

√
ε2
0 − ε2

1 |θ| < θc1

(iii)

ε1 > 0,

µ1 < 0

ε0µ1/(ε1µ2)>1/[1−(ω2
p/ω2)] ω < ωp π/2 > |θ| > θc2

(iv)

ε1 < 0,

µ1 > 0

|ε1| > ε0 ω > ωp π/2 > |θ| > 0

|ε1| < ε0 ω∈(ωp,ωpε0/
√

ε2
0−ε2

1) π/2 > |θ| > 0
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A. Case (i): ε1 > 0, µ1 > 0 (normal medium)
First, we consider the case of ε1 > ε0. As (ε2

1 − εε0) =
[ε2

1 − ε2
0(1 − ω2

p/ω2)] > 0, according to Eq. (14), the positiveness of
k2

z requires εxx > εε0µ1/(ε1µ2). According to Eqs. (15) and (16),
the positiveness of α1 and α2r requires εxx > ε1µ1/µ2, εxxε < 0
respectively. Because ε is the function of the working frequency ω,
the existence condition is based on the frequency. When ω > ωp, then
ε > 0, positiveness of α2r requires εxx < 0, while positiveness of α1

requires εxx > ε1µ1/µ2 > 0, thus there is no surface wave under this
condition, no matter what the angle θ is. When ω < ωp, ε < 0, the
solution of these inequalities is εxx > ε1µ1/µ2. According to Eq. (3.1),
the solution can be transformed as (ε cos2 θ + ε0 sin2 θ) > ε1µ1/µ2, i.e.,
(ε − ε0) cos2 θ > (ε1µ1/µ2 − ε0). Hence, the condition for existence
can be expressed as cos2 θ <

(
1 − ε1µ1

ε0µ2

) (
ω2

ω2
p

)
. Since 0 ≤ cos2 θ ≤ 1,

there is a necessary condition for the surface wave existence, which
is

(
1 − ε1µ1

ε0µ2

) (
ω2

ω2
p

)
> 0, i.e., ε1µ1/(ε0µ2) < 1. It means that if

ε1µ1/(ε0µ2) > 1, there is no surface wave at all, no matter what the
angle θ is.

Second, we consider the other case, i.e., 0 < ε1 < ε0. When
ω < ωp, then ε < 0 and (ε2

1 − εε0) > 0, the condition for existence is
the same as ω < ωp in case of ε1 > ε0. When ωp < ω < ωpε0/

√
ε2
0 − ε2

1,
we find ε > 0 and (ε2

1−εε0) > 0 , the same as ω > ωp in case of ε1 > ε0,
so there is no surface wave either. When ω > ωpε0/

√
ε2
0 − ε2

1, we get
ε > 0 and (ε2

1 − εε0) < 0. Based on the Eq. (14), (15) and (16),
the condition is εxx < 0, i.e., (ε cos2 θ + ε0 sin2 θ) < 0, which can not
be satisfied because ε > 0. So, there is no surface wave under this
condition.

To sum up, the condition of surface TM wave existence for case
(i) is found as

cos2 θ <

(
1 − ε1µ1

ε0µ2

) (
ω2

ω2
p

)
, (19)

with the necessary condition of ω < ωp, ε1µ1/(ε0µ2) < 1.
Figure 2 is the plot of critical angle θc for the existence of the

surface TM mode in case (i). Fig. 3 is the dispersion characteristics
for the surface TM modes in case (i). In Fig. 2(a), we can see that
the line θc = 45◦ has intersections with lines ε1µ1/(ε0µ2) = 0.1, 0.2, 0.3
and 0.4. That means that when ε1µ1/(ε0µ2) equals to those values,
there must exist surface mode, and the frequency of the intersection
in Fig. 2 is the cut-off frequency under such situation. Those can be
verified clearly by Fig. 3(a).
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Figure 2. Contour plot of critical angle θc for the existence of the
surface TM mode in case (i). The surface mode can exist when
ε1µ1/(ε0µ2) < 1 and π/2 > |θ| > θc for (a) different parameter ratio
ε1µ1/(ε0µ2); (b) different external magnetic field direction (θ is the
angle between the magnetic field and the normal of the interface).
Shaded area in each figure indicates the frequency domain where the
surface waves are forbidden.
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Figure 3. Dispersion characteristics for the surface TM modes in
case (i): (a) when the direction of the external magnetic field is fixed
(θ = 45◦); (b) when the parameter ratio is fixed (ε1µ1/(ε0µ2) = 0.8).
Each case has a cut-off frequency except θ = 90◦. Shaded area in
each figure indicates the frequency domain where the surface waves
are forbidden.
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Similarly, in Fig. 2(b), the line ε1µ1/(ε0µ2) = 0.8 has intersections
with curves θ = 80◦, θ = 70◦. According to the existence conditions,
i.e., θ > θc, we can see that when ε1µ1/(ε0µ2) = 0.8, if θ = 70◦ or 80◦,
there must exist SW with the cut-off frequency equals to that of the
intersection. When θ = 90◦, there is SW without cut-off frequency.
Also, those can be verified by Fig. 3(b).

B. Case (ii): ε1 < 0, µ1 < 0 (left-handed medium)
Taking the procedure similar to that in case (i), we can find that

the condition for the existence of surface wave, shown in Table 1. The
condition depends on the comparison of absolute value of ε1 with ε0.
For different situation, there is different frequency domain and angle
range needed.

C. Case (iii): ε1 > 0, µ1 < 0 (magnetic medium)
When the region 1 is a magnetic medium, (see Table 1) the

frequency must be lower than ωp, and there is also further restraint
to the medium parameter and angle, similar to case (i), except the
expression of critical angle and medium parameter condition.

D. Case (iv): ε1 < 0, µ1 > 0 (metallic medium)
In this case, the existence of the surface wave is independent of the

direction of the magnetic field, i.e., there is no restraint to the angle θ,
shown in Table 1. That means that once the parameter and frequency
conditions are satisfied, there will be a surface mode, no matter what
the direction of the principle axis of the uniaxial plasma is.

4. POYNTING VECTOR AND ENERGY

In order to get deeper insight into the physics of wave process, we
proceed with calculation of energy flow along the surface. Without
losing any generality, the propagating direction of the wave is assumed
to be z-direction, i.e., kz > 0 in the following.

The time-averaged Poynting vectors of surface wave are

< S̄1 > = ẑ < S̄1z >= ẑ
kz |A|2
2ωε1

e2α1x (x < 0), (20)

< S̄2 > = ẑ < S̄2z >= ẑ
kz |A|2
2ωεxx

e−2α2rx (x > 0). (21)

Furthermore, the corresponding total energy flow associated with
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the whole mode is determined by integration over the x-coordinate

< S̄ > =
∫ 0

−∞
< S̄1 > dx +

∫ ∞

0
< S̄2 > dx

= ẑ
kz|A|2

4ω

(
1

ε1α1
+

1
εxxα2r

)

= ẑ
kz|A|2
4ωα1

εε0 − ε2
1

ε1εε0
(22)

According to Eq. (16), if there exists surface wave, both α1 and
α2r are positive, then ε1εxxε < 0.

Notice that in both case (i) and (iii), ε1 > 0 and ω < ωp, which
causes ε < 0. So we can get εxx > 0. Hence, from Eqs. (20) and
(21), we can see that the Poynting vectors in both media are in the
same direction, i.e., the propagating direction. They are both forward
waves, and the guided energy flows in both regions are always in the
same direction, which can be seen obviously in Eq. (22).

For case (ii) and case (iv), ε1 < 0 and ω > ωp (see Table 2),
so ε > 0. Then we have εxx > 0. So S1z < 0 corresponding to
ε1 < 0, and S2z > 0 corresponding to εxx > 0. That means that in the
isotropic medium of region 1, the Poynting vector is in the opposite
direction of propagation, and the surface wave is a backward wave;
while in the uniaxial plasma of region 2, the directions of Poynting

Table 2. Direction of the poynting vector and energy flow of the
surface TM mode (The direction of the wave propagating is assumed
to be z-direction.)

Case Parameter and Frequency Condition <S̄1> <S̄2> <S̄>

(i)

1>0, ε1µ1/(ε0µ2) < 1, ω < ωp ẑ ẑ ẑ
µ1>0

(ii) | 1| > 0, ε1µ1/(ε0µ2) < 1, > p −ẑ ẑ ẑ

1<0, ε1µ1/(ε0µ2) < 1, ω ∈ (ωp, ωpε0/
√

ε2
0 − ε2

1) −ẑ ẑ ẑ

µ1<0
|ε1|<ε0

ε1µ1/(ε0µ2)<1/[1−(ω2
p/ω2)], ω>ωpε0/

√
ε2
0−ε2

1) −ẑ ẑ −ẑ

(iii)

ε1 0, ε0µ1/(ε1µ2) > 1/[1 − (ω2
p/ω2)], ω < ωp ẑ ẑ ẑ

µ1<0

(iv) |ε1| > ε0, ω > ωp −ẑ ẑ ẑ

ε1<0, |ε1| ε0, ω ∈ (ωp, ωpε0/
√

ε2
0 − ε2

1) −ẑ ẑ ẑ
µ1>0

ε

ε ε

>

ε

<

ωω
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vector and propagation are the same, and the surface wave is a forward
wave. Based on Eq. (22), we can see that if ε1ε(εε0 − ε2

1) < 0, i.e.,
(εε0 − ε2

1) > 0, the total energy flow is in the opposite direction of
propagation. If |ε1| > ε0, there must be (εε0 − ε2

1) < 0 no matter
what the frequency is. That means the total energy flow is in the same
direction of propagation. If |ε1| < ε0, only when ω > ωpε0/

√
ε2
0 − ε2

1,
is (εε0 − ε2

1) positive, otherwise it is negative. So, we can see from
Table 2 that in most cases of (ii) and (iv), the total energy flow is
in the propagation direction, but it is opposite to that of propagation
when region 1 is a Left-Handed Material, which has the parameter
|ε1| < ε0, and the frequency larger than ωpε0/

√
ε2
0 − ε2

1 is needed.

5. CONCLUSION

This paper gives an investigation on how surface TM modes response
in different frequency domains at the interface between an isotropic
medium and a uniaxial plasma which has dispersion characteristics.
We consider a special case of uniaxial medium: an electron plasma
applied with an external infinitely strong magnetic filed. Four cases
for the isotropic medium, including normal, LHM, magnetic, and
metallic media, are considered. The conditions for the existence of
surface modes in each case are analyzed, showing that the existence
is determined by the parameter of media, working frequency, and the
direction of the external magnetic field. The Poynting vector in the
propagating direction is also calculated and we have found that if region
1 is normal or magnetic medium, i.e., ε1 > 0, the surface waves in both
regions are forward waves and the power flow along the propagation
direction; if region 1 is metallic medium or LHM, the surface mode
in region 1 is backward wave but forward in region 2, and the power
mostly flow in the propagation direction except the case when region 1
is a Left-Handed Material which has the parameter |ε1| < ε0, and the
frequency larger than ωpε0/

√
ε2
0 − ε2

1 is needed.
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