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Abstract—In this paper, we propose an optimization method based
on real-coded genetic algorithm (GA) with elitist strategy for thinning
a large linear array of uniformly excited isotropic antennas to yield the
maximum relative sidelobe level (SLL) equal to or below a fixed level.
The percentage of thinning is always kept equal to or above a fixed
value. Two examples have been proposed and solved with different
objectives and with different value of percentage of thinning that will
produce nearly the same sidelobe level. Directivities of the thinned
arrays are found out and simulation results of different problems are
also compared with published results to illustrate the effectiveness of
the proposed method.

1. INTRODUCTION

Uniformly excited and equally spaced linear antenna arrays [1] have
high directivity but they usually suffer from high sidelobe level. To
reduce the sidelobe level, the array is made aperiodic by altering the
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positions of the antenna elements nonuniformly with all excitation
amplitudes being uniform. Another possibility is to use an equally
spaced array with tapered amplitude distribution [1]. However,
uniform excitation is desired to minimize the complexity in designing
a feed network.

It is not possible to design a thinned array using analytical
methods as the synthesis problem is complex. Therefore, global
optimization tools are a good option to solve these problems. Among
the different global optimization methods such as genetic algorithms
(GA) [2, 3], particle swarm optimization (PSO) [4], simulated annealing
(SA) [5] etc. have already been utilized in array antenna synthesis for
various applications.

There are many published articles [6–8] dealing with the synthesis
of thinned array. Element behavior in a thinned array is described in
[9]. Some of the other applications of soft computing tools are discussed
in [10, 11].

Real-coded GA is nicely described in the book [12] and the
applications of genetic algorithms in the field of electromagnetics are
discussed in [13, 14].

Lee et al. [15] described optimization of unequally spaced antenna
arrays using particle swarm algorithm. Applications of real-coded
genetic algorithms for the design of reconfigurable array antennas are
discussed in [16, 17].

Some of the latest soft computing tools such as clonal selection
algorithm [18] and bees algorithm [19] have been successfully used in
array antenna synthesis for different applications.

In this paper, we have presented two examples one without the
end element of the array being switched off and another with the
end element being intentionally switched off. The objective is to
shorten the length of the thinned array by removing the switched off
end elements from either side of the array when there is no coupling
between the elements. This is in addition to fulfillment of other
requirements of designing the thinned array.

2. THINNED ARRAY SYNTHESIS

Thinning an array means turning off some elements in a uniformly
spaced or periodic array to generate a pattern with low sidelobe level.
In our proposed method, the positions of the elements are fixed and
all the elements have two states either “on” or “off”, depending on
whether the element is connected to the feed network or not. In the
“off” state, the element is passively terminated to a matched load. If
there is no coupling between the elements, it is equivalent to removing
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them from the array.
Thinning an array [7] to produce low sidelobes is much simpler

than unequally spacing the elements for generating pattern with low
sidelobe level. There are infinite numbers of possibilities for placement
of the elements nonuniformly. However, thinning has 2P possible
combinations, where P is the number of array elements. If the array
is symmetric, then the number of possibilities is substantially smaller.

We consider a linear array of 2N isotropic antennas, which are
assumed uncoupled, symmetrically and equally spaced a distance d
apart along the x-axis with its center at the origin. It is shown in
Fig. 1.

Figure 1. Geometry of a 2N -element symmetric linear array along
the x-axis.

The free space far-field pattern F (φ) in azimuth plane (x-y plane)
with symmetric amplitude distributions [1] is given by eqn. (1):

F (φ) =
N∑

n=1

2In cos[(n − 0.5)kd cos φ] (1)

Here the elements are numbered from the array center and array center
is at the origin.

Where n = element number, d = interelement spacing =0.5λ, k =
2π/λ, being wave number, λ = wavelength, φ being azimuth angle of
the far-field point measured from x-axis, In = excitation amplitude of
the n-th element (In = I−n). In our case, In is 1 if the n-th element is
turned “on” and 0 if it is “off”. All the elements have same excitation
phase.

Normalized power pattern, P (φ) in dB can be expressed as follows:

P (φ) = 10 log 10
[ |F (φ)
|F (φ)|max

]2

= 20 log 10
[ |F (φ)
|F (φ)|max

]
(2)

The fitness function to be minimized with real-coded GA for optimal
synthesis of thinned array is given in eqn. (3).

Fitness = c1(SLLo − SLLd)2H(X) + c2(THo − THd)2H(Y ) (3)
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Where SLLo, SLLd are obtained and desired value of sidelobe level in
dB, THo, THd are obtained and desired value of percentage of thinning,
c1, c2 are weighting coefficients to control the relative importance given
to each term of eqn. (3).

H(X) and H(Y ) are Heaviside step functions defined as follows:

X = (SLLo − SLLd), Y = (THo − THd) (4)

[H(X), H(Y )] =

{
[1, 0], if X ≥ 0, Y > 0
[0, 1], if X < 0, Y ≤ 0

(5)

3. REAL-CODED GA OPTIMIZATION OVERVIEW

Genetic Algorithm [12] is an iterative stochastic optimizer that works
on the concept of survival of the fittest, motivated by Darwin, and
uses methods based on the principle of natural genetics and natural
selection to construct search and optimization procedures that best
satisfies a predefined goal.

Real-coded GA [12] uses floating-point number representation for
the real variables and thus is free from binary encoding and decoding.
In floating-point representation, each chromosome or individual vector
is coded as a vector of floating-point numbers of the same length as
the solution vector. The precision of such an approach depends on the
underlying machine. It takes less memory space than binary GA.

The flow chart diagram of real-coded GA is shown in Fig. 2 below.
A population is a collection of individuals or solutions and an

individual is a group of variables. The three genetic operators [12] are
selection, crossover and mutation. They are the cores of the algorithm.
Elitist strategy has been applied in real-coded GA. It is summarized
as follows:

Step 1: Randomly generate an initial population of P individuals
within the variable constraint range.

Step 2: Evaluate the fitness of the individuals from the fitness
function.

Step 3: Select the superior individuals using nonlinear ranking
[12] and place them in the mating pool. Numbers of individuals in
the mating pool are same as P in order to accommodate more copies
of superior individuals in the new population. Highly fit individuals
get more copies in the mating pool, whereas the less fit ones get fewer
copies.

Step 4: Individuals so called parents placed in the mating pool
are now allowed to mate followed by mutate using heuristic crossover
and uniform mutation [12] respectively. In the crossover process,
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Figure 2. Flow chart diagram of real-coded GA.

two parents mate each other to produce two children. Subsequent
mutations of the parents add diversity to the population and explore
new areas of parameter search space. Select C pairs of parents at
random from the mating pool to participate in crossover to produce C
pairs of offspring and replace the chosen C pairs of parents from the
mating pool with these new C pairs of crossover offspring.

Select M number of parents at random from the mating pool to
take part in mutation to produce M number of offspring and replace
the chosen M number of parents from the mating pool with these new
M number of mutation offspring. Mutation only changes one variable
of a parent.
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Step 5: The postprocessor is the elitist model. The worst
individual in the newly generated population is replaced by the best
individual in the old population. It is adopted to ensure the algorithm’s
convergence. This step has been introduced to prevent loosing the best-
found individuals by chance because of crossover and mutation. It will
always preserve the best individual from one generation to the next.

Step 6: Repeat steps 2–5 until a stopping criterion, such as a
sufficiently good solution being discovered or a maximum number of
generations being completed, is satisfied. The best scoring individual
in the population is taken as the final answer.

4. RESULTS

We consider a linear array of 100 isotropic antennas symmetrically
spaced 0.5λ apart along x-axis with its center at the origin in order
to generate a broadside symmetric pattern in azimuth plane (x-y
plane) with desired sidelobe level of −20 dB or below and percentage of
thinning equal to 22 or above. The excitation amplitude distribution
is symmetric with respect to the center of the array.

Because of symmetry, only 50 amplitudes are to be optimized. In
this paper, two examples have been presented one without the end
element being switched off and another with the end element being
intentionally switched off. This part is done to reduce the length of
the thinned array when there is no coupling between the elements. The
proposed fitness function is different from [6, 7].

For the two cases, GA is run independently twice with fixed
number of generations, each time with different set of initial population
of size 200 by setting the seed of random number. Selection operator
used in GA is nonlinear ranking with probability of 0.15 for selecting
the best individual. Number of retries in heuristic crossover is taken
to be three and GA is run for 300 generations for both the cases.

Crossover and mutation operators are called 100 times every
generation in order to ensure that only 100 pairs of parents take part
in crossover and 100 numbers of parents take part in mutation in stead
of all. This will reduce the overall computational time in optimization
considerably.

4.1. Case 1

In this case, no restriction is imposed on the optimization algorithm
to switch on or off the end element of the array. Fitness function is
minimized using real-coded GA as usual.
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The sidelobe level obtained is −20.56 dB and thinning is 22%.
The percentage of thinning obtained is more than that of [6], where
it is 20% and that too without sacrificing sidelobe level. Fig. 3 shows
the normalized power pattern in dB for case 1. Table 1 shows the
element numbers which are switched off. Different results are displayed
in Table 2.

Table 1. Switched off element numbers for both the cases.

 Switched off element numbers 

Case 1 ±28, ±33, ±34, ±38, ±40, ±41, ±42, ±43, ±45, ±48, ±49 

Case 2 ±29, ±31, ±35, ±36, ±39, ±40, ±42, ±43, ±44, ±45, ±48, ±50

Table 2. Comparative results.

Our proposed design 

Design parameters Case 1 Case 2 

Óscar Quevedo-Teruel et .al  [6]

Percentage of thinning 22.00 24.00 20.00 

Sidelobe level(dB) -20.56 -20.53 -20.50 

Directivities(dB) 18.92 18.80 19.03 

4.2. Case 2

In this case, the end element of the array is forcefully switched off
in order to reduce the length of the thinned array. In an array
environment if there is no coupling between the elements, switching
off an element is equivalent to removing it from the array. In this
respect, our proposed method is different from [6].

The sidelobe level obtained is −20.53 dB and thinning is 24%.
Fig. 4 shows the normalized power pattern in dB for case 2.

Table 1 shows the element numbers which are switched off.
Details of comparative studies such as percentage of thinning,

sidelobe level and directivities of our proposed thinned array are carried
out with respect to the article [6] and shown in Table 2.

From the comparison as shown in Table 2, it has been found that
our optimally designed thinned arrays are better in terms of percentage
of thinning than [6] without sacrificing the sidelobe level but with little
sacrifice in directivities. Additionally while considering the size of the
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Figure 3. Normalized power pattern in dB for 22% thinned array
(Case 1).
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Figure 4. Normalized power pattern in dB for 24% thinned array
(Case 2).
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array, our proposed case 2 design takes less space than [6] as its end
element on either side of the array is switched off.

5. CONCLUSION

The paper presents a new technique for designing a thinned linear
antenna array with fixed sidelobe level and fixed percentage of thinning
using global optimization tool such as real-coded genetic algorithm
with elitist strategy. Two examples have been presented in the paper
with different objectives. One of the objectives is to reduce the length
of the thinned array by removing the switched off end element from
either side of the array when there is no coupling between the elements.
Results clearly show a very good agreement between the desired and
synthesized specifications for both the cases.

Results for a thinned linear isotropic antenna array have
illustrated the performance of this proposed technique. This method is
very simple and can be used in practice to synthesize a thinned planar
array.
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