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Abstract—This work investigates the unique numerical dispersion
behavior of the Compact-FDTD method for waveguide analysis,
especially when the waveguide dimensions are much larger than the
operating wavelength as in high-frequency EMC analysis or radio-wave
propagation in tunnels. The divergence of this dispersion behavior
from the standard FDTD algorithm is quantified and a major source
of dispersion error is isolated and effectively eliminated. Optimized
modeling parameters in terms of appropriate spatial and temporal
resolutions are generated for computationally efficient and error-free
numerical simulations of electrically large waveguiding structures.

1. INTRODUCTION

The Compact-FDTD algorithm which was first proposed by Xiao,
Vahldieck and Jin [1] as a borrowed technique from their work on
the Transmission-Line-Method [2] allows full wave analysis of general
waveguiding structures using a two-dimensional FDTD grid. In
this algorithm the spatial derivative along the propagation direction
(assumed along the z-axis in the present work) is evaluated analytically
after restricting the entire EM fields’ z-dependence to an exp[−βzz]
term, where  =

√
−1. A careful substitution of this z-derivative

will result in real-valued FDTD update equations—the format the
algorithm settled with in its final incarnation [3, 4] for modeling lossless
or weakly lossy waveguides. This idea of benefiting from analytically
predictable modal field variations to compact the FDTD cell has been
recently extended by Luo and Chen [5] to design one-dimensional
FDTD modal absorbing boundary conditions for waveguide analysis
where numerical simulation is executed along the waveguide axis and
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the field variations across the transverse plane are analytically imposed.
Frequency domain versions of the Compact-FDTD algorithm have
also appeared in the literature. Of special mention among them is
the efficient, though mathematically intensive, multiresolution-based
MRFD algorithm by Gokten, Elsherbeni and Arvas [6].

The advantages of the Compact-FDTD algorithm in terms of
computing resources savings—though quite obvious—still fall short
when the cross-sectional area of the waveguiding structure becomes
large compared to the shortest wavelength of interest. Examples
of such situations are high-frequency EMC analysis of microwave
circuits and radiowave propagation in mine-shafts and railway tunnels
[7, 8]. To illustrate the motivation of this work consider wave
propagation through a lossless hollow metallic rectangular waveguide
at a frequency high enough such that its cross-sectional dimensions
are 4λo × 2λo. Fig. 1 shows this waveguide’s dispersion curves for
the first 8 TEm0-only modes for simplicity. If the Compact-FDTD
algorithm is used with the choice βz = 0.2βo, corresponding results
will only correctly produce the group of modes just under the TE80

mode. To properly highlight the dominant TE10 mode behavior around
the fo operating frequency, the propagation constant must be chosen
around βz = 0.99βo. Another class of waveguide applications where
the propagation constant βz approaches the unbounded wavenumber β
includes metamaterial-inspired open dielectric waveguides which could
support modes with βz = β as demonstrated by Lu, Wu and Kong [9].
As will be shown later in this work, such high βz values present serious
challenges to the Compact-FDTD algorithm in terms of excessive
numerical dispersion errors.

In this work a condensed review of the Compact-FDTD algorithm
will be presented, including the necessary modifications required to
model lossy waveguides and anisotropic fill materials. Rigorous
dispersion analysis will follow which will highlight the increasing modal
solutions errors introduced as βz → βo. The source of these increasing
errors will be highlighted and a simple solution will be discussed and
validated numerically through solutions of the dispersion relation and
later through practical Compact-FDTD simulations.

2. REVIEW OF THE COMPACT-FDTD ALGORITHM

Replacing the z-derivative in Maxwell’s equations with the −βz term
will render the complex-valued time-domain equations

ε
∂Ex

∂t
=

∂Hz

∂y
+ βzHy (1)
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Figure 1. Effect of βz choices on modal frequencies: Dispersion curves
for a rectangular waveguide with dimensions 4λ×2λ at fo. Only TEm0

modes are shown. The normalizing wavenumber is βo = 2πfo/c.

ε
∂Ey

∂t
= −∂Hz

∂x
− βzHx (2)

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
(3)

µ
∂Hx

∂t
= −∂Ez

∂y
− βzEy (4)

µ
∂Hy

∂t
=

∂Ez

∂x
+ βzEx (5)

µ
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
(6)

These equations when adapted directly by the FDTD method will
produce complex-valued update equations. We should note however
that the two field groups {Ex, Ey, Hz} and {Ez, Hx, Hy} will always be
phase-shifted off each other by π/2. When the waveguide is composed
of lossless or weakly lossy materials and when the fill dielectrics are
isotropic, this phase shift could be prevented from producing complex
update equations by replacing one of the two groups, say the first one,
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with {Ex, Ey, Hz} [4] to produce†

ε
∂Ex

∂t
=

∂Hz

∂y
+ βzHy (7)

ε
∂Ey

∂t
= −∂Hz

∂x
− βzHx (8)

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
(9)

µ
∂Hx

∂t
= −∂Ez

∂y
+ βzEy (10)

µ
∂Hy

∂t
=

∂Ez

∂x
− βzEx (11)

µ
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
(12)

Zhao, Juntunen and Raisanen [12] have demonstrated mathemat-
ically that expanding the complex-valued equations (1)–(6) will pro-
duce two decoupled and redundant sets of real-valued equations, one
of which is represented by equations (7)–(12). They also verified that
if the fill-dielectric is anisotropic, decoupling is still maintained as long
as anisotropy is limited to one axis only. If dielectric anisotropy ex-
tends to more than one axis then decoupling is unattainable and the
complex-valued equations need to be used for numerical simulations.

To accurately model loss-induced fast-attenuating waveguide
modes, the z-derivative in Maxwell’s equations must accommodate
the attenuation factor as in exp[−(αz + βz)z]. This modification will
result in a similar set of equations to (1)–(6), except that every βz

occurrence is replaced with αz + βz, and σE terms are injected in
their usual places

ε
∂Ex

∂t
=

∂Hz

∂y
+ (αz + βz)Hy − σEx (13)

ε
∂Ey

∂t
= −∂Hz

∂x
− (αz + βz)Hx − σEy (14)

ε
∂Ez

∂t
=

∂Hy

∂x
− ∂Hx

∂y
− σEz (15)

µ
∂Hx

∂t
= −∂Ez

∂y
− (αz + βz)Ey (16)

† There seems to be some confusion in the literature regarding the re-mapped Maxwell’s
equations. The signs of the βz terms are reversed in [4] for (8) and (10), and in [10] for (8)
and (11). References [11] and [12] on the other hand contain the correct equations.
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µ
∂Hy

∂t
=

∂Ez

∂x
+ (αz + βz)Ex (17)

µ
∂Hz

∂t
=

∂Ex

∂y
− ∂Ey

∂x
(18)

Wang, Shao and Wang [13] used these equations in an iterative
technique that based input αz choices on the decay (or growth)
behavior of the simulated solutions with time. An overestimated αz

choice will cause solutions to decay while an underestimated choice will
cause them to grow over time. Steady solutions over time on the other
hand will signify an accurate αz estimate.

For weakly lossy waveguides, αz in (13)–(18) can be neglected
and the resulting equations can be decoupled back to (7)–(12), with
the added σE terms as in (13)–(15). The advantage being a reduction
of simulation complexity and time at the expense of minimal errors as
demonstrated later in the numerical experiments.

Fundamental to all Compact-FDTD variants is the z-compacted
FDTD grid shown in Fig. 2 [3]. When second-order finite-differences
are introduced, say, in equations (7)–(12) the Compact-FDTD update
equations are produced, of which the following is an example

Ex|
n+ 1

2
i,j = Ex|

n− 1
2

i,j +
βz∆t
ε
Hy|ni,j

+
∆t
ε∆y

(
Hz|ni,j+ 1

2
−Hz|ni,j− 1

2

)
(19)

where ∆t is the time step and ∆y is the Compact-FDTD cell size
along y. (In the remainder of this work ∆x = ∆y = h will
be assumed). A typical Compact-FDTD simulation would start by
specifying a propagation constant βz (and αz when present) as an
input with an appropriate initial field distribution that mimics the
expected waveguide mode of interest.‡ The frequency response of
the collected time series from the simulation will exhibit the guided
modes pertaining to the chosen propagation constant. If βz = 0 is
chosen instead, the algorithm will produce the cutoff frequencies of
the waveguide modes [2].

The dispersion relation and stability criterion for the Compact-
FDTD algorithm were derived early in the literature by Cangellaris
[14] (

h
√
µε

∆t

)2

sin2 ω∆t
2

= sin2 β̃xh

2
+ sin2 β̃yh

2
+

(
βzh

2

)2

(20)

‡ Introducing a time function excitation here will simulate a line source extending
along the axis of the waveguide which would complicate deriving the modal attenuation
characteristics from the collected data.
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Figure 2. The Compact-FDTD grid. Bold and thin icons represent
the E and H field nodes, respectively. Like-field components are
equispaced by ∆x = ∆y = h.

∆t ≤ h
√
µε√

2 +
(

βzh
2

)2
(21)

where
√
β̃2

x + β̃2
y = β̃T is the numerically rendered transverse

wavenumber by the Compact-FDTD algorithm.

3. NUMERICAL DISPERSION ANALYSIS

In his numerical dispersion analysis [14], Cangellaris used a rectangular
hollow waveguide as an example and replaced β̃x and β̃y in the
dispersion relation (20) with the theoretical βx = mπ/a and βy = nπ/b
values, respectively, in an effort to predict the resonance frequencies
and consequently the numerically rendered modal guide wavelengths.
In reality, however, the main value of the FDTD dispersion relations
in general is their accurate prediction of the errors in the numerically
rendered wavenumbers. In the case of the Compact-FDTD algorithm
for example, it is the β̃T deviation from βT =

√
β2

o − β2
z that can be

predicted by (20). The resonance frequencies on the other hand can
only be produced from actual Compact-FDTD simulations.
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In the following analysis the figure of merit of choice for numerical
dispersion will be the Global Phase Error

Φ =
1
2π

∫ 2π

0

∣∣∣β̃T − βT

∣∣∣2 dφ (22)

which is a square-error function averaged over all propagation angles φ
within the Compact-FDTD grid. This error function will be evaluated
and compared at several resolution factors among other variables.
The resolution factor in the present context, however, requires some
clarification. In normal, non-compact FDTD algorithms the resolution
factor is conventionally defined as the number of FDTD cells per
wavelength. Adopting such a definition for the Compact-FDTD
algorithm is acceptable so long as the frequency range of interest is at
the vicinity of the cutoff frequencies. When attempting to investigate
modal solutions at higher frequencies with this resolution definition,
the unbounded wavelength shrinks and the h = λ/R values will become
unnecessarily small and numerically costly.

The fact is, in modal analysis, the waveguide’s transverse
wavelength for any given mode is a function of the waveguide’s
dimensions and constituent parameters of its fill-materials and is
independent of the frequency’s proximity to the cutoff frequency; The
entire Hz variation for the TE10 mode of a rectangular waveguide for
example constitute a single half-cycle along the x-axis and no variation
at all along the y-axis. Indeed, a single cell along the y-axis is all that
is needed if only TEm0 modes are of interest. Given this fact, the
Compact-FDTD grid discretization level should be referenced not to
the unbounded wavelength λ but rather to the transverse wavelength
λT = 2π/βT and βT in turn is independent of frequency. More
importantly, if one discretization level is good enough for one frequency
to accurately analyze the mode’s behavior then it is good enough for
all higher operating frequencies for the same mode. This feature of
the Compact-FDTD algorithm could allow simple and computationally
efficient frequency dispersion analysis of elaborate waveguides in the
Tera-Hertz [15] and optical [16] frequency ranges.

To generalize the discussion away from any specific waveguide
example as befitting the general dispersion relation let us define βz =
κβ where β is the unbounded wavelength and κ→ 1 as the frequency
increases or equivalently, as the waveguide becomes electrically large.
Using β2 = β2

T + β2
z we can write

λT =
2π
βT

=
2π√

1 − κ2β
=

λ√
1 − κ2

(23)

and henceforth define the Compact-FDTD resolution factor as R cells
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per λT or h = λT /R.
Fig. 3 demonstrates the Global phase error deterioration as the

normalized propagation constant κ approaches unity and the time step
is kept at the maximum limit allowed by the stability criterion (21) for
each κ value. This figure clearly shows that excessively high resolution
factors are needed near the limiting value of κ = 1. The data in
this figure and those in the following section were calculated assuming
a 1 GHz operating frequency in an air-filled general waveguide (β =
20.96 rad/m).

4. ALGORITHM OPTIMIZATION

Further analysis of the dispersion relation (and subsequent numerical
simulations) have revealed that the time step ∆t has a critical role to
play in minimizing numerical dispersion errors. Whereas the maximum
time step provides the least errors in the standard FDTD algorithm
when modeling lossless media, for the compact-FDTD algorithm this is
not the case as illustrated in Fig. 4. This figure demonstrates a rapid
drop in error levels as the time step is reduced providing optimum
choices for the courant number ν = ∆tmax/∆t. The error levels
reach optimum values at certain ν values that change with βz choices.
These optimum values invariably approach unity for all R values as
κ → 0 approaching at the limit the standard 2-D FDTD algorithm
(See Table 1). Varying the dielectric constant produced identical data
as in Fig. 4 and Table 1 which validates using the derived optimum
ν values for inhomogeneously filled waveguides, provided that h and
consequently ∆tmax are based on the densest dielectric (or λT,min) in
the waveguide.

Table 1. Optimum Courant Numbers for the Compact-FDTD
Algorithm, ν = ∆tmax/∆t

κ = βz/βo R = 10 R = 20 R = 30
0 1 1 1

0.80 2.2 2.2 2.3
0.90 3.9 4.2 4.2
0.95 6.9 7.9 8.2
0.97 10.3 12.6 13.2
0.99 22.2 32.3 36.4
0.995 33.7 54.8 65.7
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Figure 3. Effect of βz choice on the Global Phase Error at the
resolution factors (from top to bottom) R = 10, 15, 20, 25, 30, 35
cells per transverse wavelength at corresponding maximum allowable
time steps. Operating frequency is 1 GHz or βo = 20.96 rad/m.
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Figure 4. Sensitivity of the Global Phase Error to ∆t choices. The
six curves (from top to bottom at ν = 40) correspond to βz/βo =
0.8, 0.9, 0.95, 0.97, 0.99, 0.995 with R = 10 at 1 GHz.
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Figure 5. Sensitivity of the (βz,Φ) dispersion curves to the time step
choice (compare to Fig. 3). The three sets of curves were optimized
for κ = 0.8 (dotted), 0.9 (dashed), and 0.99 (solid), and in each set the
curves correspond (from top to bottom) to R = 10, 20, 30 cells per
transverse wavelength λT .

To verify the time step optimization the numerical dispersion
curves of Fig. 3 are recalculated using the optimum time steps and
presented in Fig. 5, clearly demonstrating the advantage of time step
optimization, especially as κ→ 1. For example, at κ = 0.99, the Global
Phase Error has been reduced from near infinite value at R = 10 to
roughly 10−4.

An optimization that is based on reducing the time step
independently from the spatial step has added advantages compared
to reducing both in lock step as is usually done. If h is halved for
example as a means of reducing numerical dispersion then the total
simulation time steps required must be increased by at least 23 = 8
times for the same total simulated time, N∆t, to accommodate the
increased resolutions in all three pertinent axes, x, y and t. On the
other hand halving ∆t alone would only require doubling the number
of time steps for the same total simulated time.
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Figure 6. Effective temporal resolutions at different time step choices,
demonstrating the Compact-FDTD’s need for lower time steps (as
κ→ 1) compared to the standard FDTD method. Plots are for the Ey

field component.

5. NUMERICAL VALIDATION

A simple waveguide example is used here to validate the need for the
proposed time step optimization. The waveguide has a rectangular
cross section of 4λ × 2λ at 1 GHz where it is assumed to operate;
namely, a = 1.199 m and b = 0.5995 m. The walls are assumed perfect
conductors and the dielectric fill is homogeneous with εr = 1 and σ
is assumed finite to observe the effect of dielectric losses on solutions
convergence. The waveguide cross-section is divided into a coarse 10×5
FDTD cells and βz is chosen as 0.99βo to closely observe the TE10

mode at the 1 GHz operating frequency. Initial field distribution is
introduced for the Hz component with Hz = −1 for x < a/2 and +1
for x > a/2 which will excite the odd TEm0 modes.

Fig. 6 is presented to demonstrate first hand the need for moving
away from the maximum time step as the condition κ ≈ 1 generates
an effective temporal resolution of under 4 steps per wave period at
∆tmax even though spatial resolution is effectively 17.7 cells per λT

(defined earlier) at 1 GHz. Fig. 7 tracks the convergence of TE10

resonance as the time step decreases for two dielectric loss choices
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Figure 7. Homogeneously filled rectangular waveguide: Convergence
of the TE10 mode resonance with time step reduction at two dielectric
loss values. Good convergence is achieved at Courant numbers as small
as ν = 10.

(σ = 0.001, 0.002 S/m). It is clear that resonance frequencies converge
to their steady solutions with only a relatively moderate time step
reduction, ν ≈ 10 or a time step that is one-tenth of the maximum
allowable time step by the stability criterion.

Fig. 8 on the other hand which tracks the quality factor
convergence, confirms the need for larger time step reductions (ν > 22)
to reach steady solutions. The attained quality factor values differ from
the analytical values (Q = ωε/σ for homogeneously filled waveguides
[17]) by 1.8% and 2.4% at σ = 0.001, 0.002 S/m, respectively. This
is due to the coupling effect of the dielectric losses on the closely
spaced resonance modes at the high 1 GHz operating frequency as
demonstrated in the spectral power density plots of Fig. 9.

To investigate the effect of both waveguide inhomogeneity and
losses the previous rectangular waveguide was allowed to be only
partially filled as in (εr = 2, σ = 0.0005) for 0 < x < a/2 and (εo, σ = 0)
for a/2 < x < a. This is a well-known test problem of numerical
techniques for waveguide structures [18, 19] and its theoretical analysis
can be found in Harrington’s classic EM book (Section 4.6) for the
lossless case [20]. Again, it took a time step reduction of ν > 10 to
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in the homogeneously filled rectangular waveguide. Mode coupling
increases with dielectric losses causing a slight deviation when
graphically determining the quality factors.
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Figure 10. Convergence of the partially filled waveguide’s TE10 mode
resonance frequency and quality factor with time step reduction. To
obtain the 1 GHz resonance frequency, βz was chosen as 0.985

√
εrβo.

obtain resonance frequency convergence for the TE10 mode and ν > 20
to obtain quality factor convergence as summarized in Fig. 10. The
converged quality factor value deviated from the analytical value by
only 0.7% due to the reduced dielectric loss compared to the previous
example, and consequently, reduced cross-modal coupling.

To appreciate the level of accuracy obtained in both examples of
this section as well as the efficiency of the proposed optimization, it
should be reiterated here that the spatial resolution used was only 10×5
FDTD cells for the entire cross-section of the electrically large 4λo×2λo

waveguide (at 1 GHz). Simulations were allowed to run for as high as
221 time steps to achieve frequency resolutions high enough to collect
data directly from the FFT plots. Even then run times were no longer
than a couple of minutes each on an old portable PC. From the authors’
previous experiences with Pade rational function approximation [21],
post-FFT processing could have been used to drastically reduce FDTD
run times while maintaining excellent articulation of closely spaced
resonance frequencies. Conducted experiments, however, have shown
that the quality factors in the above examples were unpredictably
sensitive to the chosen Pade approximation model order.



Progress In Electromagnetics Research, PIER 75, 2007 267

6. CONCLUSION

When the frequency of interest is much higher than the modal
cutoff frequencies of the investigated waveguide, the Compact-FDTD
algorithm requires an input βz value that is very close to the unbounded
wavenumebr, β. This close proximity in turn causes a serious deviation
of the numerical dispersion behavior of the Compact-FDTD algorithm
from the well known behavior of the standard FDTD algorithm.
This paper investigated in depth this unique dispersion behavior and
demonstrated, in particular, the impossibility of getting any valid
simulation results if the chosen time step is kept at or near the
maximum value allowed by the stability criterion as favored by the
standard FDTD algorithm.

Specific optimum ∆t values were derived which allowed effective
numerical dispersion reduction while keeping the spatial resolution
coarse enough to track the modal distribution at the wavequide’s
cross-section. These optimum values are functions of the ratio βz/β
which approaches unity as the electrical size of the waveguide becomes
large. They are however relatively insensitive to the spatial resolution
except for extremely large waveguides which allows their general use in
various cross-sectional geometries without the need for problem-specific
optimization.

Numerical simulations were carried out that validated the positive
effect of reducing the time step away from the maximum limits
that include both inhomogeneities and dielectric losses within the
waveguide’s structure. Typical problems that could benefit from this
algorithm optimization include EMC analysis of high-frequency signals
coupling to waveguides and high frequency wave propagation in mine
shafts and road and rail-way tunnels.

REFERENCES

1. Xiao, S., R. Vahldieck, and H. Jin, “Full-wave analysis of guided
wave structures using a novel 2-D FDTD,” IEEE Microwave
Guided Wave Lett., Vol. 2, No. 5, 165–167, May 1992.

2. Jin, H., R. Vahkdieck, and S. Xiao, “An improved TLM full-
wave analysis using a two dimensional mesh,” IEEE MTT-S Int.
Microwave Symp., 675–677, Boston, MA, June 1991.

3. Asi, A. and L. Shafai, “Dispersion analysis of anisotropic
inhomogeneous waveguides using compact 2D-FDTD,” Electron.
Lett., Vol. 28, No. 15, 1451–1452, July 1992.



268 Hadi and Mahmoud

4. Xiao, S. and R. Vahldieck, “An efficient 2-D FDTD algorithm
using real variables,” IEEE Microwave Guided Wave Lett., Vol. 3,
No. 5, 127–129, May 1993.

5. Luo, S. and Z. Chen, “An efficient modal FDTD for absorbing
boundary conditions and incident wave generator in waveguide
structures,” Progress In Electromagnetics Research, PIER 68,
229–246, 2007.

6. Gokten, M., A. Z. Elsherbeni, and E. Arvas, “The multiresolution
frequency domain method for general guided wave structures,”
Progress In Electromagnetics Research, PIER 69, 55–66, 2007.

7. Mahmoud, S. F., “Modal propagation of high frequency
electromagnetic waves in straight and curved tunnels within
the earth,” Journal of Electromagnetic Waves and Applications,
Vol. 19, No. 12, 1611–1627, 2005.

8. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley,
“Full wave analysis of RF signal attenuation in a lossy rough
surface cave using a high order time domain vector finite element
method,” Journal of Electromagnetic Waves and Applications,
Vol. 20, No. 12, 1695–1705, 2006.

9. Lu, J., B.-I. Wu, and J. A. Kong, “Guided Modes with a linearly
varying transverse field inside a left-handed dielectric slab,”
Journal of Electromagnetic Waves and Applications, Vol. 20, No.
5, 689–697, 2006.
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