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Abstract—This paper proposes an improved time domain finite
element-boundary integral scheme for 3-D scattering from arbitrary-
shaped objects. The proposed scheme, which uses only one auxiliary
boundary, is more efficient than the one reported in the literature that
uses two auxiliary boundaries. While preserving the sparseness and
symmetry of the finite element matrices, the proposed scheme reduces
the computational domain for the finite elements. A major difficulty,
here, is the treatment of the singularity of Green’s function arising
from this scheme. To overcome this problem, the contribution of
singular point is computed analytically, and equivalent transformation
technique is also included to reduce the integrals’ singularity. And, a
remedy is presented for the numerical error encountered in the course
of the equivalent transformation, which essentially may be attributed
to the inherent routine with the time domain finite element-boundary
integral method. The validity and accuracy of the hybrid scheme are
verified by numerical tests.

1. INTRODUCTION

Finite element-boundary integral (FE-BI) method is a powerful
numerical technique for electromagnetic scattering problems, especially
for those involving inhomogeneous objects. The hybrid method
remains the advantages both of the finite element method and the
boundary integral method, and has been widely used and well
developed in frequency domain [1–6].

In recent years, as more interests have been focused on time
domain method [7–9], the FE-BI method in time domain also has
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received increasing attention [10–12]. In [10, 11], a time domain FE-BI
scheme is presented for 2-D scattering, and has also been applied to
3-D scattering problems [12]. In this scheme, two auxiliary boundaries
are used, one serving as the truncation boundary, and the other serving
as the source boundary. Compared to the FE-BI method in frequency
domain, this scheme has advantages that the sparseness and symmetry
of the finite element matrices are preserved, and that the singularity
of Green’s function is circumvented.

However, as is well known, the FE-BI hybrid method is exact,
and the truncation boundary may be arbitrarily close to the scatter,
which in turn leads to minimal computational domain for the finite
elements. But, the FE-BI method in time domain with the scheme
that uses two auxiliary boundaries will lead to larger computational
domain compared with its frequency domain counterpart. For example,
if a conducting scatter is considered by time domain FE-BI method
using this scheme, usually a two-layer element has to be set between
the truncation boundary and the PEC surface. And if the scattering
problem of a dielectric one is considered, as another example, with
the frequency domain FE-BI method, we may directly choose the
scatter’s surface as the truncation boundary. However, for the time
domain FE-BI method with the above scheme, we have to employ an
artificial surface outside the scatter as the truncation boundary, by
which additional computational region is introduced. So, in this sense,
it is less efficient compared with its frequency domain counterpart.

This paper proposes to remove the inefficiency with the time
domain FE-BI method by using only one auxiliary boundary, which
may be viewed as the extension of the familiar frequency domain
scheme to the time domain. Compared to the scheme that uses two
auxiliary boundaries, while preserving the sparseness and symmetry
of finite element matrices, the proposed scheme allows the truncation
boundary to take on any shape and to be placed arbitrarily close to
the scatter.

However, a major difficulty is with this scheme, i.e., the numerical
treatment of the singularity of Green’s function. To overcome this
problem, we calculate the contribution of singular point analytically.
Yet, it is still difficult to calculate some of the integrals accurately
as source point close to field point, whose singularity being of higher
order. We alleviate the difficulty by applying equivalent transformation
technique to these integrals to reduce their singularity. Unfortunately,
here, another problem comes up with the equivalent transformation,
which essentially may be attributed to the routine of the time domain
FE-BI method. To give a remedy for this problem, in contrast to
the usual boundary integral method where the equivalent electric and
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magnetic currents (i.e., the tangential components of magnetic and
electric fields on source boundary) are used, the normal component of
the electric field is considered.

The rest of this paper is organized as follows. First, the
formulation for the proposed scheme is developed, where a boundary
condition similar to the case of combined field integral equation used
in frequency domain has been adopted so as to be free of interior
resonance. Then, the treatment of the singularity of Green’s function
with this scheme is addressed. Finally, we demonstrate the validity
and accuracy of the proposed scheme by numerical tests, where, for
comparison, the scheme that uses two auxiliary boundaries is also
considered.

2. FORMULATION

Let us consider a typical problem of EM scattering by an arbitrary-
shaped and inhomogeneous object. We introduce an artificial surface S
to terminate the computational domain for finite elements, and assume
that the region outside S is free space. Inside S, the field E satisfies

∇× [µ−1
r ∇× E(r, t)] + µ0ε∂

2
t E(r, t) + σµ0∂tE(r, t) = 0 r ∈ V

(1)

where V denotes the volume enclosed by S. For a unique solution, it is
necessary to impose a boundary condition on S. To be free of interior
resonance, we choose a boundary condition similar to the combined
field integral equation (CFIE) [13] used in frequency domain

n × [µ−1
r ∇× E(r, t)] + c−1n × ∂t[n × E(r, t)]|S−

= −n × µ0∂tH(r, t) + c−1n × ∂t[n × E(r, t)]|S+ (2)

where n denotes the outward unit vector normal to S, S− denotes the
surface just interior to S, and S+ denotes the surface just exterior to
S.

The solution to the boundary-value problem defined by equation
(1) and (2) can be obtained by seeking the stationary point of the
functional

F [E(r, t)] =
1
2

∫∫∫
V

{
µ−1

r [∇× E(r, t)] · [∇× E(r, t)]

+µ0ε∂
2
t E(r, t) · E(r, t) + σµ0∂tE(r, t) · E(r, t)

}
dV

+
1
2

∫∫
S

{
c−1∂t[n × E(r, t)] · [n × E(r, t)]

+2E(r, t) · Vs(r, t)
}
dS (3)
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where Vs(r, t) represents the right side of (2). That is,

Vs(r, t) = −n × µ0∂tH(r, t) + c−1n × ∂t[n × E(r, t)] (4)

To compute Vs(r, t), usually another artificial surface is
introduced as the source boundary. However, as pointed out earlier,
this would lead to larger computational domain for finite elements,
and render the time domain FE-BI method less efficient. So, here,
we directly choose the truncation boundary S as the source boundary.
The electric and magnetic field in (4) are given as

E(r, t) = Ei(r, t)+
∫ t

−∞
c2∇∇ · A(r, τ)dτ−∂tA(r, t)−ε−1∇×F(r, t)

(5)

and

H(r, t) = Hi(r, t)+
∫ t

−∞
c2∇∇ · F(r, τ)dτ−∂tF(r, t)+µ−1∇×A(r, t)

(6)

where

A(r, t) = µ0

∫∫
S
J(r′, t) ∗ g(|r − r′|, t)dS′ (7)

and

F(r, t) = ε0

∫∫
S
M(r′, t) ∗ g(|r − r′|, t)dS′ (8)

In the above equations, “∗” stands for the convolution, g(|r − r′|, t)
denotes the 3D free-space Green’s function, and J and M are the
equivalent electric and magnetic currents, defined on surface S,
respectively as

M(r′, t) = E(r′, t) × n r′ ∈ S (9)

and

J(r′, t) = −n × {µ−1∂−1
t [∇′ × E(r′, t)]} r′ ∈ S (10)

The notation ∂−1
t in (10) denotes temporal integration.
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3. TREATMENT OF SINGULAR INTEGRALS

We discretize volume V by tetrahedra, and use Whitney 1-form basis
functions [14] to approximate the electric field in (3)

E(r, t) =
N∑

i=1

ei(t)Wi(r) (11)

where N denotes the total number of edges, and Wi denotes Whitney
1-form basis function. According to the finite element’s procedure, the
space discretization of (3) results in a second-order differential system

T
d2e(t)
dt2

+ (R + Q)
de(t)
dt

+ Se(t) + v(t) = 0 (12)

The calculation of matrices T, R, Q, and S is straightforward, and is
not presented here.

Now, let us consider the calculation of column vector v(t). Its
elements are given by

vm
i (t) =

∫∫
Sm

dS Wm
i (r) · {c−1n × n × [∂tEi(r, t)

+c2∇∇ · A(r, t) − ∂2
t A(r, t) − ε−1∂t∇× F(r, t)]

−µ0n × [∂tHi(r, t) + c2∇∇ · F(r, t) − ∂2
t F(r, t)

+µ−1∂t∇× A(r, t)]} (13)

By the expressions of magnetic and electric vector potentials F and A,
it is obvious that the integrands in (13) are singular at r′ = r.

First, we consider the following two integrals involved in vm
i (t)

Im
h3 =

∫∫
Sm

Wm
i (r) · [n ×∇∇ · F(r, t)] dS (14)

and

Im
e3 =

∫∫
Sm

Wm
i (r) · [n × n ×∇∇ · A(r, t)] dS (15)

We may note that, there are two “∇” operators acting on the Green’s
function in (14) and (15). So, the above two integrals have an
order 1/R3 singularity, and their numerical calculation turns to be
impossible. To reduce their singularity, by applying Gauss divergence
theorem, we can get

∇ · F(r, t) = ε0

∫∫
S
∇′

s · M(r′, t) ∗ g(|r − r′|, t)dS′ (16)



124 Qiu et al.

and

∇ · A(r, t) = µ0

∫∫
S
∇′

s · J(r′, t) ∗ g(|r − r′|, t)dS′ (17)

where one of the two “∇” operators has been removed from the Green’s
function. However, even so, it is still difficult to calculate vm

i (t) directly
by numerical method, for some of the singular integrals with it are of
order 1/R2.

So, next, we consider evaluating the contribution of singular point
analytically before vm

i (t) is calculated by numerical method. It can be
verified that∫ t

−∞
c2∇∇ · A(r, τ)dτ − ∂tA(r, t) − ε−1∇× F(r, t)

=
∫∫
©

S
dS′{[n × E(r′, t) ∗ ×∇′g(|r − r′|, t)]

−
[
µn × ∂H(r′, t)

∂t
∗ g(|r − r′|, t)

]

+[E(r′, t) · n] ∗ ∇′g(|r − r′|, t)
}

(18)

where “∗×” stands for the presence of both the convolution and cross
operation.

Assume S to be a smooth surface (In FE-BI method, usually a
smooth surface is chosen as the truncation boundary). Considering
r closes to S from outer, we separate S into two parts, as shown in
Fig. 1, where S0 denotes the small spherical surface surrounding point
r. Now we compute the integral over S0 as R = |r − r′| → 0.

r

n

S02

1

S1

Figure 1. Calculation of singular point’s contribution.
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With (18), as R → 0, the integral over S0 may written as

I0 =
∫∫
©

S0

dS′ 1
4πR2

{n × E(r′, t − R/c) × eR + [n · E(r′, t − R/c)]eR}
(19)

where eR = r−r′
R . On obtaining (19), 1/R terms have been omitted,

whose contribution to the integral vanishes as R → 0. Note that, on
the spherical surface S0, n = eR, with which it can be derived from
(19) that I0 = E(r, t).

Therefore, we may write (18) as
∫ t

−∞
c2∇∇ · A(r, τ)dτ − ∂tA(r, t) − ε−1∇× F(r, t)

=
∫∫

S1

dS′{[n × E(r′, t) ∗ ×∇′g(
∣∣r − r′

∣∣ , t)]

−
[
µn × ∂H(r′, t)

∂t
∗ g(

∣∣r − r′
∣∣ , t)

]

+ [E(r′, t) · n] ∗ ∇′g(
∣∣r − r′

∣∣ , t)
}

+ 0.5E(r, t) (20)

In fact, here the integral over S is denoted in terms of Cauchy principle
value and singular point’s contribution. We rewrite (20) as

∫ t

−∞
c2∇∇ · A(r, τ)dτ − ∂tA(r, t) − ε−1∇× F(r, t)

= 0.5E(r, t)+
∫ t

−∞
c2∇∇ · A(r, τ)dτ−∂tA(r, t)−ε−1∇×F(r, t) (21)

In the above equation, A and F denote the integrals (7) and (8) with
the singular point removed from them. Similarly, we may have

∫ t

−∞
c2∇∇ · F(r, τ)dτ − ∂tF(r, t) + µ−1∇× A(r, t)

= 0.5H(r, t)+
∫ t

−∞
c2∇∇ · F(r, τ)dτ−∂tF(r, t)+µ−1∇×A(r, t) (22)

Actually, the computation of vm
i (t) is performed in terms of
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elements, and we will encounter integrals given by

Imn
e0 =

∫∫
Sm

tm
i (r) · [∂tEi(r, t) + 0.5∂tE(r, t)]dS (23)

Imn
h0 =

∫∫
Sm

Sm
i (r) · [∂tHi(r, t) + 0.5∂tH(r, t)]dS (24)

Imn
e1 =

∫∫
Sm

tm
i (r) ·

∫∫
Sn

g(|r − r′|, t) ∗ J(r′, t)dS′dS (25)

Imn
h1 =

∫∫
Sm

Sm
i (r) ·

∫∫
Sn

g(|r − r′|, t) ∗ M(r′, t)dS′dS (26)

Imn
e2 =

∫∫
Sm

tm
i (r) ·

∫∫
Sn

∇g(|r − r′|, t) ∗ ×M(r′, t)dS′dS (27)

Imn
h2 =

∫∫
Sm

Sm
i (r) ·

∫∫
Sn

∇g(|r − r′|, t) ∗ ×J(r′, t)dS′dS (28)

Imn
e3 =

∫∫
Sm

tm
i (r) · ∇

∫∫
Sn

g(|r − r′|, t) ∗ ∇′
s · J(r′, t)dS′dS (29)

Imn
h3 =

∫∫
Sm

Sm
i (r) · ∇

∫∫
Sn

g(|r − r′|, t) ∗ ∇′
s · M(r′, t)dS′dS (30)

where Sm
i = n × Wm

i and tm
i = n × n × Wm

i . On obtaining (29) and
(30), we have used (16) and (17).

Let us examine the above integrals. Obviously, Imn
e0 and Imn

h0 are
regular integrals. As source point r′ close to field point r, Imn

e1 and Imn
h1

are of 1/R singularity, which may be calculated numerically. However,
Imn
e2 , Imn

h2 , Imn
e3 and Imn

h3 are of 1/R2 singularity. Thus, it is difficult to
calculate them accurately by numerical method, and further measures
have to be taken to reduce their singularity.

Fortunately, examining (27) and (28) carefully, we may find that
Imn
e2 and Imn

h2 vanish if Sm and Sn are on the same plane. As for Imn
e3

and Imn
h3 , applying Gauss divergence theorem to them, we may get

Imn
e3 =

∫
∂Sm

tm
i (r) · nc

[∫∫
Sn

g(|r − r′|, t) ∗ ∇′
s · J(r′, t)dS′

]
dΓ (31)

and

Imn
h3 =

∫∫
Sm

∇s · Sm
i (r)

[∫∫
Sn

g(|r − r′|, t) ∗ ∇′
s · M(r′, t)dS′

]
dS

(32)

where ∂Sm denotes the boundary of Sm, and nc is the outward unit
vector normal to ∂Sm, lying in the plane of Sm. So, Imn

e3 and Imn
h3 are

also of 1/R singularity as r′ close to r.
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Up to now, it seems that vm
i (t) may be calculated conveniently by

numerical method. However, here, a problem is with (31). With (10)
and (11), it may be shown that ∇′

s · J(r′, t) = 0, which will lead to a
completely wrong result for Imn

e3 . This problem can be accounted for
by the numerical errors introduced by the way of obtaining the electric
current J. For, the Whitney 1-form basis functions used in (11) are
of “linear” functions (Actually, they are of order 0.5), consequently,
within each element, the electric current J obtained by (10) is a
constant, and hence, its divergence is zero.

Here, we will present our remedy for this problem. According to
the definition of surface divergence, we may have

∇′
s · J(r′, t) = −∂t[ε0E(r′, t) · n] (33)

By using the above identity, Imn
e3 is written as

Imn
e3 = −

∫
∂Sm

tm
i (r) · nc

{∫∫
Sn

g(|r−r′|, t) ∗ ∂t[ε0E(r′, t) · n]dS′
}

dΓ

(34)

which can avoid the above problem.
In fact, this problem hasn’t been encountered in other integral

equation methods, such as time domain integral equation (TDIE)
method, or even in frequency domain FE-BI method. Essentially, it
can be attributed to the routine of the time domain FE-BI method,
where either electric field or magnetic field is taken as the variable, and
the other field is obtained by numerical method. For example, here,
electric field is taken as the variable, and the tangential component
of magnetic field (i.e., equivalent electric current) on boundary S is
obtained by (10). This problem can be circumvented by the remedy
presented here.

After the above treatments, and with the contribution of singular
point has been computed analytically, vm

i (t) can be calculated by
numerical method e.g., by Gaussian quadrature. And applying a
traditional central difference scheme to (12) yields

Aen+1 = (2T− ∆t2S)en + [0.5∆t(R + Q) −T]en−1 − ∆t2vn (35)

where en = e(n∆t), vn = v(n∆t), and A = T + 0.5∆t(R + Q).
It is worthy of being pointed out here that by adopting the

central difference scheme, the required electric and magnetic currents
on the surface S for the computation of column vector vn at each time
step are known quantities, and so the sparseness and symmetry of
finite element matrices are well preserved. Namely, while it reduces
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the computational domain, the proposed scheme using one auxiliary
boundary will not contaminate the finite element matrices.

Apparently, to update electric field with (35), we have to solve
a matrix equation at each time step. However, matrix A is time-
invariant, and is highly sparse. Hence, the matrix equation can be
solved efficiently. Generally, a direct solver is suitable for small- and
medium-sized problems, and matrix A has to be factorized only once.
Whereas an iterative solver is more attractive for large-scale problems,
and the preconditioner also has to be constructed only once.

4. NUMERICAL RESULTS

This section presents numerical examples to demonstrate the validity
and performance of the proposed scheme. We first examine the
accuracy of proposed scheme with respect to that of previous one, and
that of the frequency domain FE-BI method. Then we will give an
analysis of the CPU time and memory requirements with the proposed
scheme compared to the previous one as direct solver is considered for
Equation (35).

For the examples considered herein, we use a Neumann pulse as
excitation

Ei(r, t)=E0[t−t0−c−1k̂ · (r−r0)] exp
{
−[t−t0−c−1k̂ · (r−r0)]2/τ2

}
(36)

where k̂ and E0 denote the direction of propagation and polarization of
the incident pulse, respectively, and t0, r0, and τ are parameters that
define the pulse’s temporal and spectral reference points and width.

The radar cross section (RCS) is computed as

σ = lim
r→∞

4πr2 |F [Efar(r, t)]|2
|F [Ei(r, t)]|2 (37)

where F [·] denotes Fourier transform, and Efar(r, t) represents the
scattered electric field in the far-field zone, which is evaluated by

rEfar(r, t + c−1r) = (4πc)−1∂t

∫∫
S
[r̂ × M(r′, t + c−1r̂ · r′)

+η0r̂ × r̂ × J(r′, t + c−1r̂ · r′)]dS′ (38)

where η0 is the free space intrinsic impedance, r = |r|, and r̂ = r
r .
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4.1. Accuracy

We first examine the accuracy of the proposed scheme with respect
to that of the previous one by considering the scattering problem of
a conducting sphere. And next, the accuracy of the proposed scheme
is also compared with that of the frequency domain FE-BI method as
the scattering from a coated sphere is analyzed.

A. Conducting sphere. The radius of the PEC sphere is 0.1 m.
The pulse parameters are E0 = x̂, k̂ = ẑ, τ = 5.25 ns, t0 = 15 ns,
and r0 = −1.2m ẑ. For the proposed scheme, the truncation boundary
(also as the source boundary) is a spherical surface positioned a single
element away from the PEC surface. The computational domain
is discretized with tetrahedra, yielding 242 edges with 72 edges on
the truncation boundary. As for the scheme using two auxiliary
boundaries, the source boundary is placed one element away from
the PEC surface, and the truncation boundary is in turn placed
one element away from the source boundary. For comparison, same
discretization has been adopted on the truncation boundary as the
above one, yielding 412 edges (also with 72 edges on truncation
boundary for this case). Equation (35) is solved by direct method,
and the time step is ∆t = 25 ps.

The bistatic RCS and frequency response of static RCS obtained
from the two schemes are given by Fig. 2 and Fig. 3, respectively,
where scheme A denotes the proposed scheme and scheme B denotes
the scheme that uses two auxiliary boundaries. It may be seen that
the results obtained from the two schemes both agree well with exact
solutions, almost having the same accuracy.

We note that, beyond the range approximately from 40 MHz to
250 MHz, the computed results become worse as the frequency becomes
higher or lower, as shown in Fig. 3. This can be accounted for by the
pulse’s spectrum, whose amplitude decays seriously as the frequency is
too high or too low. For example, when f = 250 MHz, the pulse’s
spectrum decays to 4.29 × 10−7 times its peak value. To achieve
accurate results for higher frequency, we have to broaden the width of
the pulse’s spectrum by reducing its parameter τ , and in the meantime,
a finer discretization is required, correspondingly.

B. Coated sphere. As stated earlier, in the sense of one auxiliary
boundary being used, the proposed scheme may be viewed as the
extension of the frequency domain FE-BI method to the time domain.
By considering the scattering problem of a coated sphere, we would like
to show its accuracy with respect to that of its frequency counterpart,
too. The radii of the coated sphere and the conducting core are 0.13 m
and 0.1 m, respectively. The dielectric layer has a relative permittivity
εr = 2, and a relative permeability µr = 1. The pulse parameters are
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Figure 2. E-plane bistatic RCS of a conducting sphere (f =
150 MHz).
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Figure 3. Backscatter RCS versus frequency of a conducting sphere.

identical to those of the above case. We directly choose the coated
spherical surface as the truncation boundary. The discretization of
computational region yields 242 edges. The time step is ∆t = 25 ps.
The backscattered temporal electric field obtained by the proposed
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scheme is given in Fig. 4 (rEZ = 0, and this can be explained by (38)).
To compare with the solutions gained by the frequency domain FE-BI
method, the temporal result is converted into frequency domain RCS
shown in Fig. 5. As demonstrated in Fig. 5, the results from the two
methods accord each other well. Incidentally, the results obtained for
the frequencies beyond the width of the pulse’s spectrum by the time
domain FE-BI method are inaccurate as well, and they have not been
presented here.
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Figure 4. Backscattered far-field response of a coated sphere in time
domain.
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Figure 5. Comparison of frequency response of static RCS obtained
by frequency- and time-domain methods.

4.2. Computational costs

Here we perform the analysis of the computational costs for the two
schemes by considering, as an example, scattering from a coated sphere,
where the conducting core is with different given radii. The pulse
parameters, the thick of dielectric layer and its relative permittivity
are assumed to be the same as those of example B considered above.
The computational region is divided into tetrahedra.

For the proposed scheme, the dielectric surface is chosen as the
truncation boundary, and a one-element layer has been set between the
truncation boundary and the PEC surface. For the scheme using two
auxiliary boundaries, the dielectric surface is used as source boundary,
and a one-element layer has been set between the source boundary
and the PEC surface. However, for this case, an additional layer of
elements has to be adopted outside the source boundary. So, a two-
layer element has been placed between the truncation boundary and
the PEC surface for this scheme. For comparison, we have adopted
same discretization on the truncation boundaries for the two schemes,
where the edges’ length is about 0.1 m.

We consider applying a direct sparse matrix solver to Equa-
tion (35), and matrix A is factorized by LDLT method. Because matrix
A is time-invariant, the factorization is performed only once. Sparse
memory storage technique is used for the matrices in Equation (35).
As R (the radius of the conducting core) is with different given val-
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Figure 6. Degrees of freedom with the two schemes.
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Figure 7. Required memory with the two schemes.

ues, the overall degrees of freedom, required memory, and CPU time
consumed by the factorization for the two schemes are presented in
Fig. 6, Fig. 7, and Fig. 8, respectively. We may see that, compared to
the previous one, the proposed scheme reduces the overall degrees of
freedom, which in turn decreases the required memory and CPU time
significantly, especially as the radius being larger, as demonstrated in
Fig. 7 and Fig. 8.
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5. CONCLUSION

This paper has proposed an improved time domain FE-BI scheme for
3-D scattering. Contrary to the scheme reported in the literature, the
proposed scheme uses only one auxiliary boundary, serving both as
truncation and source boundary, by which the computational domain
for finite elements has been reduced. And in the meantime, the
sparseness and symmetry of the finite element matrices have been well
preserved. So it is a more efficient scheme for the time domain FE-BI
method. The treatment of the singularity of Green’s function with
this scheme has been addressed in detail. Finally, the accuracy and
efficiency of the proposed scheme were verified by numerical examples.

REFERENCES

1. Paulsen, K. D., D. R. Lynch, and J. W. Strobehn, “Three-
dimensional finite, boundary, and hybrid element solutions of
Maxwell equations for lossy dielectric media,” IEEE Trans.
Microwave Theory Tech., Vol. 36, 682–693, Apr. 1988.

2. Shen, X. Q., J. M. Jin, J. Song, C. C. Lu, and W. C. Chew, “On
the formulation of hybrid finite-element and boundary-integral
methods for 3-D scattering,” IEEE Trans. Antennas Propagat.,
Vol. 46, 303–311, Mar. 1998.

3. Liu, J. and J. M. Jin, “A novel hybridization of higher order



Progress In Electromagnetics Research, PIER 75, 2007 135

finite element and boundary integral methods for electromagnetic
scattering and radiation problems,” IEEE Trans. Antennas
Propagat., Vol. 49, 1794–1806, Dec. 2001.

4. Botha, M. M. and J. M. Jin, “Adaptive finite element-boundary
integral analysis for electromagnetic fields in 3-D,” IEEE Trans.
Antennas Propagat., Vol. 53, 1710–1720, May 2005.

5. Zhang, Y. J. and E. P. Li, “Scattering of three-dimensional chiral
objects above a perfect conducting plane by hybrid finite element
method,” J. Electromagn. Waves Appl., Vol. 19, 1535–1546, 2005.

6. Qiu, Z. J., X. Y. Hou, X. Li, and J. D. Xu, “On the
condition number of matrices from various hybrid vector FEM-
BEM formulations for 3-D scattering,” J. Electromagn. Waves
Appl., Vol. 20, 1797–1806, 2006.

7. Gao, S., L. W. Li, and A. Sambell, “FETD analysis
of a dual-frequency microstrip patch antenna,” Progress In
Electromagnetics Research, PIER 54, 155–178, 2005.

8. Gong, Z. and G. Q. Zhu, “FDTD analysis of an anisotriopically
coated missile,” Progress In Electromagnetics Research, PIER 64,
69–80, 2006.

9. Pingenot, J., R. N. Rieben, D. A. White, and D. G. Dudley, “Full
wave analysis of RF signal attenuation in a rough surface cave
using a higher order time domain vector finite element method,”
J. Electromagn. Waves Appl., Vol. 20, 1695–1705, 2006.

10. Jiao, D., M. Lu, E. Michielssen, and J. M. Jin, “A
fast time-domain finite element-boundary integral method for
electromagnetic analysis,” IEEE Trans. Antennas Propagat.,
Vol. 49, 1453–1461, Oct. 2001.

11. McCowen, A., A. J. Radcliffe, and M. S. Towers, “Time-domain
modeling of scattering from arbitrary cylinders in two dimensions
using a hybrid finite-element and integral equation method,” IEEE
Trans. Magn., Vol. 39, 1227–1229, May 2003.

12. Jiao, D., A. A. Ergin, B. Shanker, E.Michielssen, and J. M. Jin,
“A fast higher-order time-domain finite element-boundary integral
method for 3-D electromagnetic scattering analysis,” IEEE Trans.
Antennas Propagat., Vol. 50, 1192–1202, Sep. 2002.

13. Rao, S. M. and D. R. Wilton, “E-field, H-field, and combined
field solution for arbitrarily shaped three-dimensional dielectric
bodies,” Electromagn., Vol. 10, 407–421, 1990.

14. Bossavit, A., “Whitney forms: a class of finite elements for
three-dimensional computation in electromagnetism,” IEE Proc.,
Vol. 135, 493–500, Nov. 1988.


