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Abstract—Maxwell’s equations are solved to determine transient
electromagnetic fields inside as well as outside a large conducting plate
of an arbitrary thickness. The plate is carrying a uniformly distributed
excitation winding on its surfaces. Transient fields are produced due
to sudden interruption of the d.c. current in the excitation winding.
On the basis of a linear treatment of this initial value problem it is
concluded that the transient fields may decay at a faster rate for plates
with smaller value of relaxation time. It is also shown that the energy
dissipated in the eddy current loss may exceed the energy stored in the
initial magnetic field.
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1. INTRODUCTION

Impact excitation of an electric system can be classified into two broad
groups. (i) Voltage impact excitation , where a voltage is either
instantly impressed at the terminals of a circuit or it is instantly set to
zero; and (ii) Current impact excitation , where a current is either
instantly forced into a circuit or it is instantly interrupted.

If a step d.c. voltage is applied to a coil, the resulting current in
the coil is time-dependent. At any instant the coil terminal voltage
must equal the resistance drop minus the induced voltage due to the
growth of coil flux. This leads to an ordinary differential equation.
The magnetic field in the core of the coil varies with time as well as
space coordinates. Therefore, the system involves both, ordinary as
well as partial differential equations.

As an example of current impact excitation, consider the magnetic
flux in a transformer core at no-load, when the high-speed circuit
breaker on the primary side trips. The no-load current is interrupted
almost instantly. The core flux shall, however, not become instantly
zero as eddy currents in the core tend to support this flux. Since the
core is invariably laminated, eddy currents will be small, resulting in
a fast decay of flux. In the case of fast changing fields the role of
displacement currents become significant.

Many technical papers have been published on electromagnetic
transients in solid blocks of steel. Weber [1], Wagner [2], Concordia
and Poritsky [3], and also Pohl [4] are amongst the early contributors.
A number of research papers on electromagnetic transients [5–
15] appeared subsequently. Recently, research papers on transient
analysis of grounding systems, transmission lines and impulsive sources
appeared [16–20], indicating the importance of the study.

Barring few [14, 15], most authors in their analysis ignored the
presence of displacement currents in comparison to the conduction
currents. In the present treatment Maxwell’s equations are solved
without ignoring displacement currents, for transient fields in a large
conducting plate with constant values for permeability, µ, permittivity,
ε, and conductivity, σ. The method of separation of variables has been
adopted to solve the one-dimensional initial-value problem.

2. FIELD EQUATIONS

Consider Fig. 1, showing a large conducting plate of thickness W ,
carrying uniform current sheets of density ±Ky on its surfaces located
at x = ±W/2. These current sheets simulate the excitation winding
carrying d.c. currents. If these currents are instantly interrupted, say
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Figure 1. Large conducting plate with surface current sheets.

at t = 0, transient fields are caused.
Because of symmetry only y-component of electric field and only

z-component of magnetic field exist. The former is an odd function
and the latter is an even function of x. Further, both transient fields
vanish as t tends to infinity. These fields satisfy Maxwell’s equations
in one dimension:

∂Ey

∂x
= −µ

∂Hz

∂t
(1)

and − ∂Hz

∂x
= σEy + ε

∂Ey

∂t
(2)

Therefore, electromagnetic fields obey the following equations:

∂2Ey

∂x2
= µσ

∂Ey

∂t
+ µε

∂2Ey

∂t2
(3)

and
∂2Hz

∂x2
= µσ

∂Hz

∂t
+ µε

∂2Hz

∂t2
(4)

For free space:

σ = 0, (5)
µ = µ0, (6)

and ε = ε0 (7)
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Now, if displacement currents are ignored, Eqs. (2), (3) and (4) reduce
to:

−∂Hz

∂x
= σEy (8)

∂2Ey

∂x2
= µσ

∂Ey

∂t
(9)

and
∂2Hz

∂x2
= µσ

∂Hz

∂t
(10)

The last two equations can be identified as eddy current equations.

3. INITIAL DISTRIBUTION OF ELECTROMAGNETIC
FIELDS

As shown in Fig. 1, let the region occupied by the plate, −W/2 <
x < W/2, be indicated as region 1, while the regions x > W/2 and
x < −W/2, be indicated as regions 2 and 3, respectively. In view of
the symmetry, it will be sufficient to consider the field distributions in
regions 1 and 2 only. At the boundary between these two regions, i.e.,
at x = W/2, we have

H1z = H2z + Ky (11)
and E1y = E2y (12)

where suffix 1 indicates fields in region 1, and suffix 2 indicates fields in
region 2. The current sheet with surface current density Ky, simulates
the excitation winding carrying d.c. current. Its value becomes zero
after the excitation current is interrupted, i.e., for t > 0.

Before the onset of transient, i.e., for t ≤ 0, the initial fields are:

H1z = Ky (13)
E1y = 0 (14)
H2z = 0 (15)

and E2y = 0 (16)

These solutions are consistent with boundary conditions defined by
Eqs. (11) and (12).

4. APPROXIMATE DISTRIBUTION OF TRANSIENT
FIELDS

If displacement currents are ignored, electromagnetic fields satisfy eddy
current equation. Therefore field distributions inside the conducting
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plate can be given as:

H1z =
∞∑

n−odd

[
Ky.

4
π
.
sin

(
nπ
2

)
n

]
. cos

(
n

π

W
x
)
.e

− 1
µσ

.(n π
W )2

.t (17)

and E1y =
∞∑

n−odd

[
Ky.

4
Wσ

. sin
(nπ

2

)]
. sin

(
n

π

W
x
)
.e

− 1
µσ

.(n π
W )2

.t(18)

These solutions are consistent with initial conditions defined by
Eqs. (13) and (14). Eddy current loss per unit plate surface area is

Pe =

W/2∫
−W/2

σE2
1ydx (19)

Therefore, using the approximate expression for E1y from Eq. (18), we
get

Pe =
∞∑

n−odd

[
K2

y .
8

Wσ

]
.e

− 2
µσ

.(n π
w )2

.t (20)

Further, energy dissipated due to eddy current loss is given by

∃e =

∞∫
0

Pedt (21)

Thus on performing the integration and summing the resulting infinite
series [21, 22], we get

∃e = K2
y .

W

2
.µ (22)

This is exactly equal to the energy stored in the magnetic field per unit
plate surface area. Since displacement currents are ignored, energy
radiated outside the plate is zero. Therefore outside fields remain zero
during transient as well.

5. EXACT DISTRIBUTION OF TRANSIENT FIELDS

5.1. Fields inside the Plate

Consider the electromagnetic fields inside the plate. These fields
must satisfy the initial conditions given by Eqs. (13) and (14), for
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−W/2 < x < W/2, and must vanish as t tends to infinity. Therefore,
field expressions satisfying Eqs. (1)–(4), are

H1z = Ky.e
−σ

ε
t + Ky.

(σ

ε

)
.θ.

cos
(
θ. 2x

W

)
sin (θ)

.t.e
− 1

2
σ
ε t

−
∞∑

m=1

am. cos
(
m

2π
W

x

)
.
[
e−αmt − e−βmt

]
(23)

and,

E1y = Ky.µ
σ

ε
.x.e−

σ
ε
t −Ky.µ

σ

ε
.
W

2
.
sin

(
θ 2x

W

)
sin (θ)

.

[
1 −

(
1
2
σ

ε

)
.t

]
e−

1
2

σ
ε
t

−
∞∑

m=1

bm

(αm − βm)
sin

(
m

2π
W

x

)
.
[
αm.e−αmt − βm.e−βmt

]
(24)

where,

θ =
σ

2

√
µ

ε
.
W

2
(25)

αm, βm =
1
2
σ

ε
± 1√

µε
.
2π
W

.

√(
θ

π

)2

−m2 (26)

am = bm.
1
µ
.

(
m2π

W

)
(αm − βm)

(27a)

and bm = Ky.µ
σ

ε
.
W

π
.
cos (mπ)

m
.

(
θ
π

)2[
m2 −

(
θ
π

)2
] (27b)

5.2. Fields outside the Plate

Both magnetic- and electric-field, as shown by Eqs. (15) and (16) are
zero till the current sheets on the plate surfaces are suddenly switched
off at the instant t = 0. For t > 0, the magnetic field is continuous
on the plate surfaces. Since both, eddy currents and displacement
currents oppose any sudden change of magnetic flux in the plate, H1z

cannot change instantly. Consequently, on the plate surface in region-
2, the magnetic field H2z suddenly changes from its original zero value
to the value of H1z at t = 0, i.e., ky.

The effect of sudden disappearance of the current sheets, at
a distant point, is also an abrupt change in the magnitude of
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electromagnetic field at that point. This change, however, takes place
at a later instant of time as the electromagnetic disturbance propagates
in free space at a finite velocity c.

The sudden interruptions of current sheets induce traveling waves
in free space that vanish as t tends to infinity. Wave-front of each wave
moves away from the plate surfaces with the velocity c.

The electromagnetic fields in region-2 satisfy wave equation, thus

∂2Ey

∂x2
= µ0ε0

∂2Ey

∂t2
(28)

and
∂2Hz

∂x2
= µ0ε0

∂2Hz

∂t2
(29)

Further, we have

Hz

(
t±√

µ0ε0.x
′) = ∓

√
ε0
µ0

.Ey

(
t±√

µ0ε0.x
′) (30)

where,

x′ = x−W/2 (31)

Therefore, in view of boundary conditions, vide Eqs. (11) and (12),
the expressions for electric and magnetic fields in region 2 are found
as follows:

E2y =
1
2
KyµW.

(
1
2
σ

ε

)
.

[
e−

σ
ε
.t− −

{
1 −

(
1
2
σ

ε

)
.t−

}
.e−

1
2

σ
ε
.t−

]

+
1
2
KyµW.

(
1
2
σ

ε

)
.

[
e−

σ
ε
.t+ −

{
1 −

(
1
2
σ

ε

)
.t+

}
.e−

1
2

σ
ε
.t+

]

+
√

µ0

ε0
.
1
2
.Ky.

[
e−

σ
ε
.t− − e−

σ
ε
.t+

]
(32)

+
√

µ0

ε0
.
1
2

∞∑
m=1

amcos(mπ).
[(

e−αmt− − e−αmt+
)
−

(
e−βmt− − e−βmt+

)]

+
√

µ0

ε0
.Ky.

(
1
2
σ

ε

)
.θ cot (θ) .

[
t−.e−

1
2

σ
ε
.t− − t+.e−

1
2

σ
ε
.t+

]
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and

H2z =
1
2
Ky.

[
e−

σ
ε
.t− + .e−

σ
ε
.t+

]

+
1
2

∞∑
m=1

am cos (mπ).
[(

e−αmt− + e−αmt+
)
−

(
e−βmt− + e−βmt+

)]

+Ky.

(
1
2
σ

ε

)
.θ cot (θ) .

[
t−.e−

1
2

σ
ε
.t− + t+.e−

1
2

σ
ε
.t+

]

+
√

ε0
µ0

.
1
2
.Ky.µW

(
1
2
σ

ε

) [
e−

σ
ε
.t− −

{
1 −

(
1
2
σ

ε

)
.t−

}
e−

1
2

σ
ε
.t−

]
(33)

−
√

ε0
µ0

.
1
2
.Ky.µW

(
1
2
σ

ε

) [
e−

σ
ε
.t+ −

{
1 −

(
1
2
σ

ε

)
.t+

}
e−

1
2

σ
ε
.t+

]

where, the retarded time t−, and the accelerated time t+ are defined
as:

t− = t−√
µ0ε0.x

′ (34)
and t+ = t +

√
µ0ε0.x

′ (35)

In order to satisfy the initial conditions, vide Eqs. (15) and
(16), we multiply the R.H.S. of Eqs. (32) and (33) by the unit step
function: u(t−). Field expressions thus modified are consistent with
the observation made at the beginning of this section.

6. POWER DISSIPATION

The expression for instantaneous eddy current loss per unit plate area,
found using Eqs. (19) and (24), is as follows:

Pe = P0

6∑
n=1

℘en(t) (36)

where P0 is the initial energy stored in the magnetic field per unit plate
area, divided by the relaxation time of the plate material, i.e.,

P0 =

(
1
2K

2
yµW

)
τ

∆
∃0

τ
(37)

where the relaxation time,

τ = ε/σ (38)
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while,

℘e1(t) =
8
3
.θ2.e−2t/τ (39a)

℘e2(t) = 4.
{
θ2. cos ec2(θ) − θ. cot(θ)

}
.

{
1 − 1

2
t

τ

}2

.e−t/τ (39b)

℘e3(t) = 16. {θ. cot (θ) − 1} .
{

1 − 1
2
t

τ

}
.e−

3
2
t/τ (39c)

℘e4(t) = 16
∞∑

m=1

(θ/π)6

m2.
{
m2 − (θ/π)2

}2 .γ
2
m(t) (39d)

℘e5(t) = −32
∞∑

m=1

(θ/π)4{
m2 − (θ/π)2

}2 .γm(t).
{

1 − 1
2
t

τ

}
e−

1
2
t/τ (39e)

℘e6(t) = 32
∞∑

m=1

(θ/π)4

m2.
{
m2 − (θ/π)2

} .γm(t).e−t/τ (39f)

and

γm(t) =
αm.e−αmt − βm.e−βmt

αm − βm
(40)

7. ENERGY DISSIPATION

Energy dissipated in the eddy current loss, found in view of Eqs. (21)
and (36), can be given as:

∃e = ∃0

7∑
n=1

∃en (41)

where,

∃0 = τ.P0 =
1
2
K2

yµW (42)

∃e1 =
4
3
θ2 (43a)

∃e2 = 2
[
θ2. cos ec2(θ) − θ. cot(θ)

]
(43b)

∃e3 =
64
9

[θ. cot (θ) − 1] (43c)



24 Mukerji et al.

∃e4 = 8
∞∑

m=1

(θ/π)6

m2.
[
m2 − (θ/π)2

]2 (43d)

∃e5 = −64
∞∑

m=1

(θ/π)6[
m2 − (θ/π)2

]2
.
[
m2 +

(√
3θ/π

)2
] (43e)

∃e6 = −64
∞∑

m=1

(θ/π)6[
m2 − (θ/π)2

]
.
[
m2 +

(√
3θ/π

)2
]2 (43f)

and ∃e7 = 128
∞∑

m=1

(θ/π)6

m2.
[
m2 − (θ/π)2

]
.
[
m2 +

(
2
√

2θ/π
)2

] (43g)

Various infinite series involved in Eqs. (43d)–(43g) can be summed up
[21, 22], resulting:

∃e4=
4
3
θ2 + 2θ2. cos ec2 (θ) + 6θ. cot (θ) − 8 (44a)

∃e5=−4θ2. cos ec2 (θ) − 6θ. cot (θ) − 2√
3
θ. coth

(√
3θ

)
+

32
3

(44b)

∃e6=
4
3
θ2. cos ech2

(√
3θ

)
+

10
3
√

3
.θ. coth

(√
3θ

)
+2θ. cot(θ)− 32

9
(44c)

and ∃e7=−8
3
θ2 − 64

9
θ. cot (θ) +

2
√

2
9

θ. coth
(
2
√

2θ
)

+ 7 (44d)

Therefore, in view of Eq. (41), we have

∃e/∃0 =
4
3
θ2. cos ech2

(√
3θ

)
+

4
√

3
9

θ. coth
(√

3θ
)

+
2
√

2
9

θ coth
(
2
√

2θ
)
− 1 (45)

Thus, for zero conductivity:

∃e/∃0 = 0 (45a)

8. POWER RADIATION

The expression for instantaneous power radiated per unit area from the
two surfaces of the plate, found using Poynting theorem and Eqs. (23)
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and (24), is as follows:

Pr = P0

9∑
n=1

℘rn(t) (46)

where,

℘r1 = 2e−2t/τ (46a)

℘r2 = −2e−
3
2
t/τ (46b)

℘r3 = (t/τ).e−
3
2
t/τ (46c)

℘r4 = 2θ. cot(θ).(t/τ).e−
3
2
t/τ (46d)

℘r5 = −2θ. cot(θ).(t/τ).e−t/τ (46e)

℘r6 = θ. cot(θ).(t/τ)2.e−t/τ (46f)

℘r7 = −4
∞∑

m=1

(θ/π)2{
m2 − (θ/π)2

} .

[
e−(αm+ 1

τ )t − e−(βm+ 1
τ )t

(αm − βm) .τ

]
(46g)

℘r8 = 4
∞∑

m=1

(θ/π)2{
m2 − (θ/π)2

} .

[
e−(αm+ 1

2τ )t − e−(βm+ 1
2τ )t

(αm − βm) .τ

]
(46h)

℘r9 = −2
∞∑

m=1

(θ/π)2{
m2−(θ/π)2

} .

[
(t/τ) .

e−(αm+ 1
2τ )t−e−(βm+ 1

2τ )t

(αm−βm) .τ

]
(46i)

9. RADIATED ENERGY

Energy radiated per unit area from the two plate surfaces can be given
as

∃r =

∞∫
0

Prdt (47)

Therefore, using Eqs. (46)–(46i), one obtains

∃r = ∃0

4∑
n=1

∃rn (48)
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where,

∃r1 =
1
9

(48a)

∃r2 =
8
9
θ. cot (θ) (48b)

∃r3 = 16
∞∑

m=1

(θ/π)4[
m2 − (θ/π)2

]
.
[
m2 +

(
2
√

2θ/π
)2

] (48c)

and ∃r4 = −16
∞∑

m=1

(θ/π)4[
m2 +

(√
3θ/π

)2
]2 (48d)

Infinite series involved in the last two equations can be summed up
[21, 22]. Thus, in view of Eq. (48)

∃r/∃0 =2− 2
√

2
9

θ. coth
(
2
√

2θ
)
− 4

√
3

9
θ. coth

(√
3θ

)
− 4

3
θ2. cos ech2

(√
3θ

)
(49)

Therefore, for zero energy radiation:

θ = 1 · 809316 (50)

while for zero conductivity:

∃r/∃0 = 1 (50a)

10. CONCLUSION

On the basis of the approximate solution of Maxwell’s equations,
obtained by ignoring displacement currents, one may conclude that:
(i) It may be seen from Eqs. (17) and (18) that larger the conductivity

of the plate, slower is the decay of the electromagnetic fields in it.
Smaller is the value of the power dissipated due to eddy current
loss for plates with large values of conductivities, as shown in
Eq. (20).

(ii) The energy dissipated due to eddy current loss in the plate is
independent of its conductivity. Even with zero plate conductivity,
this energy is equal to the energy stored in the magnetic field
caused by d.c. excitation, vide Eq. (22).

The exact solution of Maxwell’s equations, however, presents an
altogether different picture. Therefore, modified conclusions are:
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(i) Electromagnetic fields in a plate with larger value of conductivity
(or smaller value of relaxation time) decay at a faster rate, vide
Eqs. (23) and (24).

(ii) Energy dissipated due to eddy current loss in the plate is a function
of the plate parameter, θ, vide Eq. (25). For zero conductivity the
energy dissipated is zero, vide Eq. (45a). This energy increases as
the conductivity is increased.

(iii) There is a radiation of energy outside the plate, vide Eq. (49).
This energy also depends on the plate parameter, θ. For zero plate
conductivity, the energy radiated is equal to the energy stored in
the d.c. field inside the plate.

(iv) The sum of the energy dissipated due to eddy current loss and the
energy radiated outside the plate is equal to the energy stored in
the d.c. magnetic field. If the plate parameter, θ, is more than
1·809316, the energy dissipated due to eddy current loss will be
more than the energy stored in the d.c. magnetic field. In this
case the plate receives energy across its surfaces as the Poynting
vector is reversed.

The treatment considers a hypothetical situation involving a plate
with infinite surface area and uniformly distributed current sheets on
its surfaces. In a practical situation, it may be concluded that for
the study of current impact excitation, displacement currents may not
be ignored. Further, it may be possible to design a system with a
minimum radiation. In the case of zero radiation, the energy stored
in the d.c. magnetic field is completely dissipated in the eddy current
loss. It appears that under certain conditions it is possible that at the
instant the excitation current is switched off, the d.c. source radiates
some energy that is received by the conducting plate. After all, it
is well known that if the current flowing in a series R-L circuit is
suddenly interrupted there is a sparking at the switch. On the basis of
the treatment presented, it may be inferred that a part of this radiated
energy accounts for the energy stored in the inductor minus its core
loss and the rest comes from the source.

The present work may be extended for conducting plates made of
left-handed materials with simultaneously negative permittivity and
permeability [23–25].
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