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Abstract—The magnetization of a ferro- or ferri-magnetic material
has been modeled with the Landau-Lifshitz-Gilbert (LLG) equation.
In this model demagnetization effects are included. By applying
a linearized small signal model of the LLG equation, it was found
that the material can be described by an effective permeability and
with the aid of a static external biasing field, the material can be
switched between a Lorentz-like material and a material that exhibits
a magnetic conductivity. Furthermore, the reflection coefficient for
normally impinging waves on a PEC covered with a ferro/ferri-
magnetic material, biased in the normal direction, is calculated.
When the material is switched into the resonance mode, two distinct
resonance frequencies in the reflection coefficient were found, one
associated with the precession frequency of the magnetization and
the other associated with the thickness of the layer. The former of
these resonance frequencies can be controlled by the bias field and
for a bias field strength close to the saturation magnetization, where
the material starts to exhibit a magnetic conductivity, low reflection
(around −20 dB) for a quite large bandwidth (more than two decades)
can be achieved.
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1. INTRODUCTION

Along with more advanced technology and research progress, highly
sophisticated detection systems have been developed. Obviously,
especially in military applications, there are occasions where detection
is not desirable. As a result, interest has been directed towards
methods of reducing detectability, i.e., radar cross section reduction
(RCSR).

One of the most important methods to achieve RCSR is by
manipulating the shape of the object of interest, so called shaping. This
procedure is described, for instance, in [1]. Of course, there are other
requirements than those in terms of RCSR that determine the shape
of an object(aerodynamic properties etc.), which means that a shape
optimized in terms of RCSR may not fulfill additional requirements.
Therefore, additional methods for RCSR are needed. One of them,
also being mentioned in [1], is using radar absorbing materials (RAM).
By reducing the energy reflected back to the radar, radar absorbing
materials prevents objects from being detected. The absorption is
achieved through dielectric and/or magnetic loss mechanisms that
convert electromagnetic energy into heat. Once again, additional
requirements than just RCSR are important when designing the RAM.
It is often desirable that the RAM is thin, light, durable, inexpensive,
insensitive to corrosion and temperature etc. Also, it is important that
a RAM absorbs well over a wide range of frequencies. As one might
expect, to meet all of these demands in a single design is very difficult
and herein lies the challenge for the engineers. One crucial point in
the process of designing a RAM is, of course, to understand the loss
mechanisms of the materials used and how they should be modeled.

Radar absorbing materials based on dielectric structures and
resistive sheets have been in use for quite some time, and are reasonably
well understood, including problems involving antenna integration
[2, 3]. Two of the oldest and simplest types of such absorbers are
the Salisbury screens and the Dallenbach layers.

The Salisbury screen is simply a resistive sheet at a distance of λ/4
above a metal plate, where λ is the wavelength of the radar wave. At
this distance the electric field is maximal, and the energy is absorbed
through ohmic losses. Due to the requirement on the wavelength, this
absorber is not broadband. The fractional bandwidth at a −20 dB
reflectivity level is typically about 25% [1, p. 316].

The Dallenbach layer consists of a homogeneous lossy layer backed
by a metal plate. The ideal Dallenbach layer, where the material
parameters are independent of frequency, with purely dielectric loss
has a fractional bandwidth around 20% (at a −20 dB reflectivity level)



Progress In Electromagnetics Research, PIER 75, 2007 87

for a material thickness around λ/4 at the center frequency [4, p. 621].
These two types of single layer absorbers have difficulties of

achieving the bandwidths that are usually required in radar absorbing
applications, which can be several decades. By using resistive sheets
sandwiched between multiple dielectric layers, the bandwidth can be
increased. This design, referred to as the Jaumann absorber, can be
viewed as a matching network between the wave impedance of air,
377 Ω, and the short circuit of the metal plate. However, by adding
more layers, which have a typical electrical length of λ/4 at some
center frequency, the absorber occupies a lot of space which may not be
available. Also, the different dielectric materials often need to have a
low permittivity, which is not necessarily compatible with the demand
for mechanical strength. Furthermore, the design may be very sensitive
to the material parameters in each layer.

Due to their inability to absorb power for low frequencies,
materials based on purely dielectric phenomena and electric losses are
often considered unsuitable for a broadband absorber design where
the available physical space is limited. Therefore it is of interest
to investigate whether a material with magnetic losses can be used
for the purpose of obtaining thin absorbers that also copes with the
broadband requirement. Using magnetic materials as absorbers seems
to be an area that is not as well explored as its dielectric counterpart,
although practical designs have been in use for a long time. There
is no lack of research on magnetism in general, since it is a key
component for digital memory technology such as hard disks, and is
also important for power transformers. The enormous financial impact
of these markets provides a lot of research in magnetism. However, in
such applications the engineers are usually more interested in obtaining
small losses, whereas engineers working with RCSR are interested in
high losses. This research gap is important to close in order to be able
to manufacture composite materials with the desired properties.

Magnetism is a difficult subject, much due to the nonlinear nature
of many magnetic materials. Therefore, a nonlinear model may be
needed which makes the well-posedness of the equations an important
and largely unresolved issue [5]. Because of this and since most
nonlinear models usually are rather complicated to analyze, one tries
to linearize the problem. In the next section we use an isotropic linear
model to show that the bandwidth of a Dallenbach layer is improved
when adding magnetic losses and in [6] the same conclusion is obtained
when a perfectly conducting sphere is coated with a magnetic lossy
material. Furthermore, in [7] a finite-difference time-domain method is
applied to calculate the radar cross section of cylindrical objects coated
with an anisotropic material with electric and/or magnetic losses.
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However, these examples use models that are frequency independent,
and as such they might not be adequate representations of a realistic
magnetic material.

Absorbers consisting of ferrite material have been manufactured
and analyzed for some time [3–6]. Recently, composites with
ferromagnetic- or ferrite inclusions in a background material have been
considered as microwave absorbers [7–11]. These articles treat isotropic
materials and composites from an experimental point of view where
the main focus rather often is on the manufacturing process, whereas
a comparison between numerical methods for composites can be found
in [17]. The results reported are based on actual measurements
on ferrites or manufactured composites, where the permeability has
been measured and from these measurements reflection data from a
Dallenbach layer is calculated. The frequencies of interest in these
measurements and calculations typically ranges from 0.1–20 GHz. At
center frequencies of about 0.2–0.3 GHz, fractional bandwidths (below
−20 dB reflectivity level) of 100–140% for a material thicknesses of a
few mm is reported [8, 9]. For center frequencies in the range 1–20 GHz
the bandwidth is usually smaller. There also exist analyses based
on theoretical models of the magnetization [12–14]. Again, isotropic
materials are considered and the frequency range is about the same as
mentioned above. A multilayer design is also analyzed and an improved
bandwidth is reported.

Furthermore, in [21, 22] biased ferrite materials for applications
in microwave devices are described. The gyrotropic and non reciprocal
property of the biased ferrite is used to construct devices such as
gyrators, isolators and circulators. However, for these applications, in
difference to radar absorbing applications, small losses are desirable.
Finally, commercial products from at least two companies are available
on the web†. Besides military applications, they also list some
interesting civilian applications of magnetic microwaves absorbers,
among others RFID: by applying a magnetic surface under the RFID
tag, it can be placed directly on an electric conductor without the
antenna being shortcircuited by the metal.

In this paper, a theoretical analysis using the Landau-Lifshitz-
Gilbert equation to model the dynamics of the magnetization in
a biased ferromagnetic/ferrite material is presented. With this
model, which includes demagnetization effects, the permeability of the
material is obtained and it is found that the material is gyrotropic.
The reflection from a perfect electric conductor (PEC) covered with
a thin layer (Dallenbach layer) of a magnetic material is studied.
† http://www.eccosorb.com
http://www.cfe.com.tw.
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Due to the gyrotropic nature of the materialof the material, the
polarization of the impinging wave in the analysis have been included.
The effects on the reflection of variations in parameters such as
saturation magnetization, the damping factor and material thickness
are examined. The possibility of controlling the material properties
with the aid of an external bias field and how this will affect the
absorbing properties of the material is also investigated.

2. MOTIVATING EXAMPLE

At microwave frequencies, which are the frequencies of interest in
radar applications, the loss is due to effects on the atomic scale. In
this frequency range, the major contribution to the electric losses
comes from the finite conductivity of the material, whereas for most
magnetic absorbers, the main loss mechanism is magnetization rotation
within the domains. However, the engineers are often interested
only in the cumulative effects on a macroscopic level and therefore
the loss mechanisms are modeled by a phenomenological complex
permittivity (ε) and permeability (µ), which both may depend on
frequency. Furthermore, this model assumes that the material is linear,
which often is the case for dielectric materials but usually not for
magnetic materials. Nevertheless, a simple linear model is usually a
good starting point for obtaining physical insight into the problem.

As a first step in analyzing a magnetic RAM, a simple Dallenbach
layer is considered. Hence, the absorber consists of a single slab backed
by a PEC where the slab is then assumed to be a homogeneous lossy
magnetic material. Not only is the structure of this absorber simple but
it is also one of the most common designs for magnetic RAM. To keep
things as basic as possible the material is furthermore assumed to be
linear, isotropic and frequency independent. The reflection coefficient
for normally impinging time-harmonic waves on an isotropic slab of
thickness d backed by a PEC is [23, p. 119]

r =
r0 + rdei2k0dn

1 + r0rdei2k0dn
(1)

where k0 = ω/c0 is the wave number in vacuum (c0 is the speed
of light in vacuum), the PEC is modeled by the reflection coefficient
rd = −1, and

r0 =
η − 1
η + 1

, η =
√

µ

ε
, n =

√
εµ, ε = ε′ + iε′′ µ = µ′ + iµ′′ (2)

where ε and µ are the relative complex permittivity and
permeability, respectively. Introducing real and imaginary parts as
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r0 = r′0 + ir′′0 and n = n′ + in′′, we study the expression (1) when k0d
becomes small to find

r =
r0 − ei2k0dn

1 − r0ei2k0dn
≈ r′0 + ir′′0 −(1 + i2k0d(n′ + in′′))

1 −(r′0 + ir′′0)(1 + i2k0d(n′ + in′′))

=
r′0 − 1 + 2k0dn

′′ + i(r′′0 − 2k0dn
′)

1 − r′0 + r′′02k0dn′ + r′02k0dn′′ − i(r′′0 + r′02k0dn′ − r′′02k0dn′′)
(3)

which gives the reflectance

R = |r|2

≈ [r′0 − 1 + 2k0dn
′′]2 + [r′′0 − 2k0dn

′]2

[1−r′0(1−2k0dn′′)+r′′02k0dn′]2+[r′′0(1−2k0dn′′)+r′02k0dn′]2
(4)

First, as k0d approaches zero, one would expect that R → 1, i.e.,
that the reflectance from a PEC is obtained. The same conclusion
is also readily obtained from the expression for the reflectance above.
Secondly, by examining the expression for the reflection coefficient r0,
one discovers a fundamental difference between electric and magnetic
losses, which appears in the imaginary part of r0. The reflection
coefficient r0 = (η − 1) /(η + 1) is restricted to the unit circle in the
complex plane for all µ and ε with µ′′ > 0 and ε′′ > 0. For dominantly
electric losses we have r′′0 < 0, and dominantly magnetic losses are
characterized by r′′0 > 0. By dominantly electric losses we mean
materials that have the property tan δe = ε′′/ε′ > tan δm = µ′′/µ′, and
for dominantly magnetic losses the inequality is reversed. Depending
on the sign of r′′0 , we get different behaviors of the term [r′′0 − 2k0dn

′]2

in (4) for small k0d, that is, for thin absorbers. For magnetic losses,
r′′0 > 0, this term decreases as k0d increases, and from Figure 1, it
is seen that in order to obtain low reflectance at small frequencies,
magnetic losses are superior to electric losses. This conclusion is also
reached after studying Figures 8.12–8.14 in [1].

From the above analysis it is seen, in terms of thickness and
bandwidth, that low frequency performance of the magnetic material
exceeds its electric analogue. The fact that the magnetic field
is maximal close to the PEC makes it efficient to place magnetic
losses there. Thus, a magnetic layer can be very thin. With the
material parameters used in Figure 1 a reflectance level below −20 dB
is obtained in the interval 4–6 GHz, corresponding to a fractional
bandwidth of (6 − 4)/5 = 40%, for a layer just 1 mm thick. This
corresponds to a thickness less than 2% of the vacuum wavelength at
5 GHz, which should be compared with the 25% fractional bandwidth
obtained with the Salisbury screen, having a thickness of λ/4 or 25% of
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Figure 1. Comparison of the influence of electric and magnetic losses
on the reflectance from a 1 mm thick isotropic slab backed by a PEC.
The dashed line corresponds to the case ε = 1 + 10i and µ = 1, and
the solid line is ε = 1 and µ = 1 + 10i. The dotted line is an example
where µ = ε = 1 + 10i.

the vacuum wavelength. One should also bear in mind that the results
in Figure 1 are based on parameters picked at random and no attempt
whatsoever has been made to optimize the design, still a considerable
amount of RCSR is achieved. Furthermore, as k0d approaches zero
and the magnetic layer becomes infinitesimally thin (compared to the
wavelength), zero reflection can be obtained [4, p. 616] provided that

ωµ0µ
′′d = η0 (5)
µ′′ � µ′ (6)

where η0 is the vacuum wave impedance.
Provided these requirements are fulfilled for all frequencies, one

can, in theory, construct vanishly thin absorbing layers with zero
reflection, at all frequencies. This means that µ′′ must have a frequency
dependence ∼ 1/ω. This is sometimes referred to in literature as a
magnetic Salisbury screen [4, 1].

In this section we have considered materials with purely electric or
magnetic losses in order to get an introductory analysis and comparison
of these losses and how they affect the reflectance for a simple
Dallenbach layer. However, most magnetic materials available for use
in RAM applications generally have both of these loss properties, and
are modeled with losses in both permittivity and permeability. Being
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able to combine these two parameters gives additional possibilities to
design a broadband absorbing material. For instance, if one could
find a material that has the property that µ = ε over a wide range of
frequencies, one could in theory devise a broadband RAM for normal
incidence. An example of this is shown in Figure 1. With this condition
on the material parameters no reflection will occur at the interface
between air and the layer (r0 in (1) is zero), but rather at the interface
between the layer and the PEC. Thus, all of the incident wave will
be transmitted into the absorber. If the layer is thick enough and
has large enough losses, the reflection at the PEC will be negligible.
However, in reality few materials can accomplish this.

For the results in Figure 1, µ and ε were assumed to be
independent of frequency. This is not the case in reality, since for both
µ and ε the real and imaginary parts are related via the Kramers-
Kronig relations [24]. Also, it is seen from (5) that a frequency
dependent permeability is required. Thus, in order to find out if it
is possible to meet the requirements (5) and (6) for the ideal RAM
with magnetic losses and to analyze the absorbing properties of the
material more accurately, it is crucial to have a model that includes
frequency dependent material parameters.

3. MICROSCOPIC ORIGIN AND MODELING OF
MAGNETIC LOSSES

The microscopic origin of magnetism is the spin and orbital momentum
of the electron [25, 26], which can be described accurately only by
means of quantum mechanics. It is one of few phenomenon on quantum
level that is observable by macroscopic means. A nice review of
concepts of the physical origin and mechanisms of losses in magnetic
materials is presented in [27]. The loss mechanisms are divided into
three traditional categories.

Hysteresis losses Due to irreversible flux-change mechanisms, energy
is dissipated in the material. These irreversible processes manifest
themselves through the famous hysteresis loop for the magnetization
curve. The main irreversible mechanism responsible for the magnetic
hysteresis loop is domain-wall motion, i.e., the magnetic moments
within the domain wall rotate as the wall moves to a new position.
There are also instances where uniform rotation of the magnetic
moments in the domain (domain-rotation) can be important. However,
since domain wall motion experiences a relaxation effect, with a
material-dependent frequency that is usually on the order of a few tens
to a few hundreds of megahertz, excitation at microwave frequencies



Progress In Electromagnetics Research, PIER 75, 2007 93

does not cause appreciable domain wall motion in magnetic materials.
Thus, hysteresis loss is often negligible in RAM applications.

Eddy-current or dielectric losses An external time-varying magnetic
field will cause changes in the orientation of the individual atomic
moments in the material, i.e., there are flux-changes. As a
consequence, currents are induced in the material, whose associated
magnetic fields oppose the domain-wall motion producing the flux
change. These currents cause ohmic losses through the finite
conductivity.

Residual losses These losses are due to various relaxation processes.
The precise interaction mechanisms that are responsible for the
magnetic-relaxation processes are far from understood. However, its
origin is from magnetic moments interacting in a complicated way with
themselves or with the lattice. Among the processes that contribute to
the residual losses are the resonance losses, and at high frequencies they
often dominate. The resonance phenomena are usually divided into
two distinct mechanisms; domain-wall resonance and ferromagnetic
resonance.

The losses mentioned above are those attributed to ferro- and
ferrimagnetic materials. In contrast to paramagnetic materials where
the magnetic moments of the atoms are randomly oriented due to
thermal agitation and an external magnetic field is required to align the
moments along a specific direction, ferro- and ferrimagnetic materials
exhibit domains where the moments are aligned even in the absence of
an external field. The magnetization in a domain is therefore given by

M = Nm (7)

where N is the number of magnetic moments per unit volume and m
is the magnetic moment of the atoms. Due to the domain structure,
the net magnetic moment of a finite sample of a ferromagnetic material
is zero because the direction of the magnetization in each domain is
random, which means that the magnetization in the different domains
cancel each other out. However, when a sufficiently strong external
dc magnetic field is applied and for an appropriate shape of the
sample, all the magnetic dipoles are aligned parallel to each other
and the sample behaves like a single domain. When this state is
reached the sample is said to be magnetically saturated and the net
magnetization, called saturation magnetization, is then given by (7).
It should also be mentioned that the spontaneous magnetization in
the domain vanishes above a critical temperature Tc called the Curie
temperature. Above Tc the material behaves like a paramagnetic
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material. In Table 1 saturation magnetization and Curie temperature
for different substances are presented.

Table 1. Saturation magnetization, Ms, and Curie temperature for
ferromagnetic crystals [25].

Substance Ms (·105 A/m) Curie temp.(in K)
Room temp. 0 K Tc

Fe 17.07 17.40 1043
Co 14.00 14.46 1388
Ni 4.85 5.10 627
Gd - 20.60 292
Dy - 29.20 88
MnAs 6.70 8.70 318
CrO2 5.15 - 386
NiOFe2O3 2.70 - 858
MgOFe2O3 1.10 - 713

It can be shown [28, 22, 21, 29] that the dynamics of the
magnetization in a domain, when interacting with a magnetic field
is given by

∂M

∂t
= −γµ0M × H (8)

where

γ = ge/2me = 1.759 × 1011C/kg (9)

is the gyromagnetic ratio for the material, me and e represent the mass
and charge of the electron and the g-factor (spectroscopic splitting
factor) is ∼= 2 for most ferro- and ferrimagnetic materials used in
microwave applications. From this equation it is found that if H
is a static field n̂H0, where n̂ is an arbitrary unit vector, then the
magnetization M precesses about the n̂ axis with an angular frequency

ω0 = γµ0H0 (10)

where H0 is the magnitude of the dc magnetic field, the biasing field.
Hence, equation (8) describes a uniform precession of the magnetic
moments in the domain, about the biasing field. Furthermore, if a
small time harmonic magnetic field H1 with frequency equal to the
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precession frequency of the magnetization is superimposed on H0, then
it can be shown [29] that, in a small signal approximation regime, the
amplitude of the magnetization tends to grow and energy is transferred
from the magnetic field to the material in an efficient way, i.e., we
have a resonance condition. In fact, with this approximation the
precessional amplitude grows to infinity in the direction perpendicular
to the static H-field. However, due to the loss mechanisms described
above, such singularities are damped out in a real magnetic material,
and the precession is finite. Since these loss mechanisms are many
and some of them complicated and not very well understood, they are
modeled by a phenomenological damping term that is added to (8) in
the following way

∂M

∂t
= −γµ0M × H − Λ

|M |2
M ×(M × H) (11)

where Λ has the dimension [time]−1 and is a (positive) phenomenolog-
ical parameter that represents all the losses. Due to its dimension, Λ is
called the relaxation frequency. This damping term, first proposed by
Landau and Lifshitz [30] in 1935, is in effect a resistive torque pulling
back the magnetization toward the H-field and thus preventing the
precession to become infinite.

Another form of the damping term was proposed by T. L. Gilbert
[31]. He reasoned that the damping term should depend on the time
derivative of the magnetization and suggested the model

∂M

∂t
= −γµ0M × H + α

M

|M | ×
∂M

∂t
(12)

in which α is a dimensionless constant, called the damping factor.
This equation is often referred to as the Landau-Lifshitz-Gilbert
equation(LLG). The damping factor can be found from the resonance
line halfwidth measurements [28, 22, 29] and it seems that its largest
value is of the order α ≈ 0.1, although some values as large as 0.4 or
even 0.92 can be found in the literature [20, 32] .

The LLG-equation (12) and Landau-Lifshitz equation (11) are
very similar in mathematical structure. In fact, the LLG-equation
can with a few straightforward manipulations be transformed into a
Landau-Lifshitz equation. However, there is a substantial difference
between the two equations. In the limit when the damping goes to
infinity, λ → ∞ in (11) and α → ∞ in (12), the LL-equation and
LLG-equation give respectively:

∂M

∂t
→ ∞,

∂M

∂t
→ 0 (13)
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The result, increased damping accompanied by faster motion obtained
from the LL-equation is somewhat counterintuitive and physically
implausible. Because of this behavior, it is argued [31, 33, 34] that
the LLG model is to prefer.

From the LL- and LLG equation it is seen that the magnitude of
the magnetization is preserved. Since the right hand side is orthogonal
to M , we have

M · ∂M

∂t
=

1
2
∂ |M |2
∂t

= 0 ⇒ |M | = Ms (14)

where the constant Ms is the saturation magnetization. Hence, only
the orientation of the magnetization can change, not the magnitude.

Equations (11) and (12) do not take into account several
interactions present in real ferro- and ferrimagnetic materials. In
order to incorporate these interactions, the magnetic field, H, is
replaced by an effective magnetic field, Heff , that includes other
torque-producing contributions besides the external magnetic field.
The effective magnetic field can be modeled in the following way
[29, 31, 35]

Heff = H + Han + Hex + Hme (15)

where the different terms are: 1) the classical magnetic field, H,
appearing in Maxwell’s equations 2) the crystal anisotropy field
Han = −Nc · M due to magnetocrystalline anisotropy of a ferro-
or ferrimagnetic material, 3) the exchange field Hex = λex∇2M due
to non-uniform exchange interaction of the precessing spins 4) the
magnetoelastic field Hme due to interaction between the magnetization
and the mechanical strain of the lattice. The anisotropy tensor
Nc is assumed to be known, as well as the exchange constant λex.
For a uniaxial crystal with axis n̂, the anisotropy tensor becomes
Nc = Ncn̂n̂. The case Nc < 0 is termed easy axis, and the case Nc > 0
is termed easy plane. Due to [36, eq. (2.21)], Nc can be computed as
Nc = −2K1/

(
µ0M

2
s

)
, where K1 is the uniaxial magnetocrystalline

anisotropy constant as given in [36, p. 137]. The exchange length of
the material, defined by lex =

√
λex, is also given for different materials

in [36, p. 137]. From this, it is seen that the exchange length is in the
order of 3 − 10nm.

4. SMALL AMPLITUDE APPROXIMATION

In RAM applications it is reasonable to assume that the magnetic field
H can be divided into two parts, H = H0+H1. In this decomposition
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H0 is a strong static field and H1 is a weak, time-harmonic field
due to an incoming radar wave, i.e., |H1| 
 |H0|. Therefore it is
convenient to represent the magnetization by a static part M0 and
a time-harmonic part M1 as M = M0 + M1, where |M1| 
 |M0|.
The static field M0 is the magnetization induced by the static H0-field
whereas M1 is the magnetization induced by the small perturbation
H1. The static part of the magnetization satisfies |M0| = Ms, and we
can represent the zeroth order magnetization by

M0 = Msm0, |m0| = 1 (16)

If we ignore the exchange field and the magnetoelastic fields in (15),
the effective field is

Heff = H0 − NcM0 + H1 − NcM1 = Heff,0 + Heff,1 (17)

where Heff,0 = H0 − NcM0 is the static effective field and Heff,1 =
H1 − NcM1 is the time varying effective field.

For the special case of a spheroidal particle immersed in
a homogeneous external bias field He

0, the particle is uniformly
magnetized, and the total classical field within the particle can be
shown to be

H0 = He
0 − NdM0 (18)

where Nd is the demagnetization tensor for the particle and in Table 2
some demagnetization tensors are shown for different extremes of
spheroidal particles [37]. Hence, the static part of the effective field
becomes

Heff,0 = He
0 −(Nd + Nc)M0 = He

0 − NM0 (19)

and the time varying effective field is

Heff,1 = H1 − NcM1 (20)

At this point we choose to neglect the anisotropy of the crystal. This
can be justified for certain ferromagnetic uniaxial crystals where the
value of Nc is of the order 10−2, i.e., a rather small number. This
leaves us with the following expression for the effective field

Heff = He
0 − NdM0 + H1 = H0 + H1 (21)

Substituting this effective field into the LLG equation (12) results in

∂(M0 + M1)
∂t

= −γµ0 [(M0 + M1) ×(H0 + H1)]

+ α
(M0 + M1)

Ms
× ∂(M0 + M1)

∂t
(22)
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Table 2. Demagnetization tensors for different shapes.

Shape Nd

Sphere


1/3 0 0

0 1/3 0
0 0 1/3




Thin plate (normal in z-direction)


0 0 0

0 0 0
0 0 1




Thin rod (in z-direction)


1/2 0 0

0 1/2 0
0 0 0




Since M0 corresponds to a static solution, i.e., ∂M0
∂t = 0, the

zeroth order term gives

M0 × H0 = M0 ×(He
0 − NdM0) = 0 (23)

⇒ He
0 − NdM0 = βM0 (24)

⇒ m0 =(βI + Nd)
−1 He

0/Ms (25)

where β is a constant and is determined from the condition |m0| = 1.
For the special case of a spherical particle, we have Nd = I/3, and
β = ±|He

0|/Ms − 1/3. In the case of a bias field in the normal direction
of a thin plate we have β = ±|He

0|/Ms − 1 ‡. From this it is seen that
if the bias field is in the normal direction of the thin plate, then M0

will also be in this direction.
First order terms give (assuming H1 has an e−iωt time dependence

so that M1(r, t) ≈ M1(r) e−iωt and ∂M1
∂t = −iωM1)

−iωM1 = −γµ0 [M0 × H1 + M1 ×(He
0 − NdM0)] − α

M0

Ms
× iωM1

(26)

Collecting all terms containing M1 on the left hand side implies[
−iωI − γµ0(He

0 − NdM0) × I + iωα
M0

Ms
× I

]
M1 = −γµ0M0 × H1

(27)
‡ The minus signs in the solutions of β corresponds to the magnetization being antiparallel
to the applied external field, which we consider an unstable solution. Thus, we deal only
with the plus sign from now on.
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where I is the identity matrix.
Since we have βM0 = He

0 − NdM0 from before, this equation
can also be written[

−iωI −(γµ0βMs − iωα)
M0

Ms
× I

]
M1 = −γµ0M0 × H1 (28)

Introducing

ωm = γµ0Ms andusing m0 =
M0

Ms
(29)

one obtains

[−iωI −(ωmβ − iωα) m0 × I]M1 = −ωmm0 × H1 (30)

From this equation it is then seen that m0 ·M1 = 0, which means we
only have to consider components orthogonal to m0. The matrix on
the left hand side is then (where the cross product m0×I is represented
by the matrix

(
0 −1
1 0

)
)

−iωI −(ωmβ − iωα) m0 × I = −iω
(

1 0
0 1

)
−(ωmβ − iωα)

(
0 −1
1 0

)

=
(

−iω ωmβ − iωα
−ωmβ + iωα −iω

)
(31)

The equation is then on the form(
a11 a12

a21 a22

) (
M1,1

M1,2

)
= −ωm

(
0 −1
1 0

) (
H1,1

H1,2

)
(32)

with the explicit solution(
M1,1

M1,2

)
= − ωm

a11a22 − a12a21

(
a22 −a12

−a21 a11

) (
0 −1
1 0

) (
H1,1

H1,2

)

= − ωm

a11a22 − a12a21

(
−a12 −a22

a11 a21

) (
H1,1

H1,2

)
(33)

The small signal susceptibility is defined from the relation M1 = χH1

and since the components parallel to m0 were shown to be zero, we
have

χ =
1

(β − iαω/ωm)2 −(ω/ωm)2

(
β − iαω/ωm −iω/ωm 0

iω/ωm β − iαω/ωm 0
0 0 0

)

(34)
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The permeability tensor µ is defined through B1 = µ0(M1 + H1) =
µ0(χ + I)H1 = µ0µH1, and in this case it has the form of a gyrotropic
tensor

µ =

(
µ iµg 0

−iµg µ 0
0 0 µz

)
(35)

where

µ(ω) = 1 +
β − iαω/ωm

(β − iαω/ωm)2 −(ω/ωm)2
(36)

µg(ω) = − ω/ωm

(β − iαω/ωm)2 −(ω/ωm)2
(37)

µz(ω) = 1 (38)

The losses are connected to the anti-hermitian part of the permeability
tensor. In analogy with the electric conductivity, a magnetic
conductivity tensor can be defined as σm = −iωµ0

(
µ − µ†) /2 [38],

although it has units of [σm] = Ω/m and not S/m as in the electric
case. With the permeability tensor described above and after some
algebra, this is found to be (neglecting components parallel to m0

since they are zero)

σm = −iωµ0
µ − µ†

2
=

αµ0ωm(ω/ωm)2(
β2 −(1 + α2)(ω/ωm)2

)2
+ 4α2(ω/ωm)2 β2

·
(
β2 +

(
1 + α2

)
(ω/ωm)2 −2iβω/ωm

2iβω/ωm β2 +
(
1 + α2

)
(ω/ωm)2

)
(39)

Since β depend on the bias field, He
0 (for instance, β = |He

0| /Ms − 1
for the flat plate with bias field in the normal direction), we have the
possibility to control the value of β with the aid of this bias field. For
the special case of β = 0, the magnetic conductivity is independent of
frequency

σm
β=0
= µ0ωm

α

1 + α2
I (40)

Thus, in this particular case(β = 0), σm can be used to represent
a magnetic conductivity tensor, which is independent of frequency.
From the above analysis it is seen that with the aid of He

0, it is
possible (at least in theory) to change the character of the material.
The material can be switched between a material that behaves like
a Lorentz material with a resonance frequency, and a material that
exhibits a magnetic conductivity tensor.
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BA

z=0 z=d

PEC

z

ε,µε0,µ0

Figure 2. Slab of a ferromagnetic material with thickness d on a PEC.

5. REFLECTION FROM PEC COATED WITH
FERROMAGNETIC MATERIAL

In this section the reflection coefficient for normally impinging waves
on a Dallenbach layer with material parameters given by (35) and an
isotropic permittivity, εI, is calculated. The situation is depicted in
Figure 2. It is assumed that the static external biasing field He

0 is in
the ẑ-direction and that the impinging wave is propagating along this
direction. This impinging wave is then represented by an impressed
time-harmonic field, and the field inside the material is the field H1

that is used in (17).
Materials represented by permittivity- and permeability tensors

on the form like (35) are referred to as gyrotropic media. The wave
propagation along the ẑ-direction in gyrotropic media is well known
and the so called eigenmodes for the material, that represents the field
H1, are given by (see [21, 22] for detailed discussion){

H+ = H+(x̂ − iŷ) e±ik+z

H− = H−(x̂ + iŷ) e±ik−z (41)

where k± = ω
c0

(ε(µ± µg))
1
2 and the E- and H-fields are related to

each other in the following way{
E+ = ∓η0Z

+ẑ × H+

E− = ∓η0Z
−ẑ × H− (42)
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where the minus (plus) sign corresponds to propagation in the positive

(negative) ẑ-direction and Z± =
(

1
ε (µ± µg)

) 1
2 .

In the vacuum region we are free to choose the polarization of
the fields at will. However, since the polarization in the material is
restricted to the eigenmodes which in this case are circularly polarized,
it is convenient to represent the polarization in the vacuum region
in this polarization state as well. Setting up the in- and outgoing
eigenmodes in the different regions then yields:

Region A (vacuum region):

H1 = H ie
ik1z + Hre

−ik1z

=
[
H+

i (x̂ − iŷ) + H−
i (x̂ + iŷ)

]
eik1z

+
[
H+

r (x̂ − iŷ) + H−
r (x̂ + iŷ)

]
e−ik1z (43)

E1 = −η0ẑ × H ie
ik1z + η0ẑ × Hre

−ik1z (44)

Region B (material region):

H1 =
[
H+

+eik+z + H+
−e

−ik+z
]
(x̂ − iŷ)

+
[
H−

+eik−z + H−
−e

−ik−z
]
(x̂ + iŷ) (45)

E1 = η0Z
+ẑ ×(x̂ − iŷ)

[
−H+

+eik+z + H+
−e

−ik+z
]

+η0Z
−ẑ ×(x̂ + iŷ)

[
−H−

+eik−z + H−
−e

−ik−z
]

(46)

where k1 = ω/c0 and η0 =
√

µ0

ε0
.

The total field in both regions can be represented by the sum of
two orthogonal modes (right- and left-hand circularly polarized modes)
that do not couple into each other. This means that one can separate
the two modes and analyze the reflection coefficient for each mode
separately. In fact, this will be exactly analogous to the case discussed
in Section 2 for an isotropic layer. Hence, the reflection coefficient for
each mode will take the form (1) or written in matrix form for both
modes (

E+
r

E−
r

)
=

(
r+ 0
0 r−

) (
E+

i
E−

i

)
(47)

where

r+ =
r+
0 − ei2k+d

1 − r+
0 ei2k+d

(48)

r− =
r−0 − ei2k−d

1 − r−0 ei2k−d
(49)
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and r±0 = Z±−1
Z±+1

, k± = ω
c0

(ε(µ± µg))
1
2 and Z± =

(
1
ε (µ± µg)

) 1
2 .

The structure of the reflection coefficients r+ and r− are the
same as that of the Dallenbach layer considered in Section 2. It
is also seen that for the case when the waves propagate along the
direction of magnetization, the material can, in terms of wave number,
wave impedance and reflection coefficient, be described by an effective
permeability

µ±
eff = µ± µg (50)

It is often of interest to study the reflection for incoming waves that
are linearly polarized. The reflection coefficients when the incoming
wave is represented by a linearly polarized mode (instead of circularly
polarized) are easily obtained from the reflection coefficients above in
the following way

rco =
r+ + r−

2
(51)

rcross = −i
r+ − r−

2
(52)

where rco is the reflection coefficient for the same polarization as the
incoming wave and rcross corresponds to the orthogonal polarization.

6. RESULTS

For the particular geometry described in Section 5, the elements of the
demagnetization tensor are all zero except for Nzz which equals unity
(see Table 2). Because of this, equations (36)–(38) become

µ(ω) = 1 +
β − iαω/ωm

(β − iαω/ωm)2 −(ω/ωm)2
(53)

µg(ω) = − ω/ωm

(β − iαω/ωm)2 −(ω/ωm)2
(54)

µz(ω) = 1 (55)

where

β = |He
0|/Ms − 1 (56)

The permittivity was set to a constant, ε = 5 + 1i, in all of the
calculations in this section. In [22, p. 715] the permittivity for different
ferrite materials can be found. From this we see that our choice of
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0 2 4 6 8 10

x 10
9

-3

-2

-1

0

1

2

3

Hz

R
e 

µ

0 2 4 6 8 10

x 10
9

0

1

2

3

4

5

6

Hz

Im
 µ

(a) Re µ (b) Im µ

0 2 4 6 8 10

x 10
9

-3

-2

-1

0

1

2

3

Hz

R
e 

µ
g

0 2 4 6 8 10

x 10
9

0

1

2

3

4

5

6

Hz

Im
 µ

g

(c) Re µg (d) Im µg

Figure 3. Real and imaginary parts of the permeability tensor. Ms

is set to 2·105 A/m, He
0 = Ms/3 and α = 0.2.

permittivity is of the same order as listed even though the losses for
ferrites are usually smaller.

In Figure 3, plots of the components of the permeability tensor
is shown. From these it is seen that the material exhibits a resonant
behavior but with finite amplitude because of the loss term in LLG
equation. For small losses (i.e., α 
 1) the resonance frequency is
close to ω0 = γµ0(|He

0| −Ms) (≈ 4.7 GHz for the parameters used in
Figure 3 ).

Also, in Figure 4, plots of the effective permeabilities are shown.
From these it is seen that the resonance behavior for µ−

eff is absent while
for µ+

eff the resonance peaks are increased in amplitude. This shows
that there is a preferred rotation direction in terms of the circularly
polarized modes. This is due to the fact that the magnetization
executes a clockwise precession (viewed in the direction of the H0-
field) about the H0-field at the frequency ω0. This results in a
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Figure 4. Real and imaginary parts of the effective permeability
µ±

eff = µ± µg. Ms is set to 2·105 A/m, He
0 = Ms/3 and α = 0.2.

strong interaction between the mode with a circular polarization that
rotates clockwise (left hand circular polarized when M0 > H0) and
the medium, and induces a resonance when the two frequencies are
equal, i.e., when ω = ω0. However, the circular polarized mode that
rotates counter clockwise opposes the precession and thus interacts
rather weakly with the medium. This is also seen from Figure 4,
where the imaginary part of µ−

eff is much smaller than that of µ+
eff ,

which means that the absorption is poorer for the mode associated
with µ−

eff .
In the limit He

0 → Ms, one obtains the following expression for
µ±

eff

µ±
eff = 1 ± ωm

ω(1 + α2)
+ i

ωmα

ω(1 + α2)
(57)

From this expression it is seen that even though it is possible
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to fulfil (5), it is not possible to reach the condition (6) for a small
k0d. Hence, with the LLG model one cannot expect to achieve the
ideal RAM mentioned in Section 2 where we had zero reflection at all
frequencies. It is also seen that in this limit, the magnitude of the
imaginary part of µ±

eff (and thus the losses) falls off like ∼ 1/ω and
depends on the damping factor α and the saturation magnetization
Ms.

In Figures 5–10 plots of |r+|2,|r−|2, |rco|2 and |rcross|2 are shown
for different strength of the biasing field. Once again it is confirmed
that the mode with a circular polarization that rotates in the same
direction as the precession of the magnetization has a strong interaction
with the material when ω ≈ ω0. This interaction is manifested
through the sharp dips in r+ in Figures 5a,c,e. On the other hand,
for the r− mode, this resonance does not appear and the mode passes
through the material without any considerable absorption. It is also
seen that this resonance is shifted when the saturation magnetization
is changed (or when He

0 is changed), since ω0 changes according to
ω0 = γµ0(|He

0| −Ms). An additional resonance is also found to
appear at approximately 30 GHz in Figures 5a,b,c,d. This resonance
is associated with the thickness of the material and occurs when the
thickness corresponds to roughly a quarter wavelength. This resonance
occurs for slightly different frequencies for the two different modes
since these two modes have different wavelengths in general. When the
thickness of the material is changed one can see from Figures 5e,f that
this resonance is shifted, as expected. For the special case He

0 = Ms

presented in Figure 6, the resonance associated with the precession
of the magnetization is no longer present since ω0 = 0 (He

0 = Ms

also corresponds to β = 0, i.e., the material exhibits a magnetic
conductivity, see (40)). Now, only the thickness resonance remains.
From (57) it is inferred that the losses will increase as Ms and α is
increased, which then would result in a reduction of r+ and r−. This
conclusion is also reached by studying Figures 6a,b,c,d. A noteworthy
result in Figure 7 is that the resonance frequency associated with the
magnetization is shifted over to the r− mode as He

0 exceeds Ms. This
result arise from the fact that the effective H0-field is reversed as
He

0 exceeds Ms and thus changes the precession direction of the spin.
Consequently, the r− mode now rotates in the same direction as the
magnetization.

Now, analyzing the figures when the material is illuminated by
a linearly polarized wave (i.e., Figures 8–10), one can qualitatively
understand the result in the following way: Due to the fact that rco
and rcross is the sum and difference of r+ and r−, respectively, one
finds that as one of the co- or cross polarization increases the other will
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Figure 5. Plots of |r+|2 and |r−|2 (in dB) for He
0 
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108 Ramprecht and Sjöberg
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Figure 7. Plots of |r+|2 and |r−|2 (in dB) for different He
0 . Default

values are Ms = 9 · 105 A/m , α = 0.2, ε = 5 + 1i and d = 1 mm.

decrease and this roughly means that as one gets better, the other gets
worse. This behavior can also be seen from the figures. Of course, this
is not always true but one also has to take the phases of r+ and r− into
consideration in order to make a more precise analysis. For instance, it
may happen that r+ and r− are of the same magnitude but 180 degrees
out of phase, then rco tend to vanish while rcross becomes relatively
large. Furthermore, from the figures of the reflection coefficients for
the linearly polarized case, it is seen that rco seems to preserve both the
resonances while rcross obtains local maxima at these frequencies. Also,
in contrast to the eigenmodes in the material who does not couple into
each other (i.e., an impinging wave that is circularly polarized will not
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Figure 8. Plots of |rco|2 and |rcross|2 (in dB) for He
0 
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values are Ms = 2 · 105 A/m , α = 0.2, ε = 5 + 1i and d = 1 mm.
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1.5 (dashed line), 2 (dotted line) and
2.5 (dash-dotted line) mm.

Figure 9. Plots of |rco|2 and |rcross|2 (in dB) for He
0 = Ms. Default

values are Ms = 2 · 105 A/m, α = 0.2, ε = 5 + 1i and d = 1 mm.
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line), Ms/1.2 (dashed line), Ms/1.1
(dotted line) and Ms/1.02 (dash-
dotted line).

(b) He
0 is swept through Ms/2 (solid

line), Ms/1.2 (dashed line), Ms/1.1
(dotted line) and Ms/1.02 (dash-
dotted line).
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(c) He
0 is swept through Ms (solid

line), 1.02Ms (dashed line), 1.1Ms

(dotted line) and 1.2Ms (dash-dotted
line).

(d) He
0 is swept through Ms (solid

line), 1.02Ms (dashed line), 1.1Ms

(dotted line) and 1.2Ms (dash-dotted
line).

Figure 10. Plots of |rco|2 and |rcross|2 (in dB) for different He
0 . Default

values are Ms = 9 · 105 A/m, α = 0.2, ε = 5 + 1i and d = 1 mm.

excited the other orthogonal polarization in the material), a linearly
polarized wave will excite both polarizations. This means that if |rco|2
or |rcross|2 are close to unity then the other has to be close to zero since
|rco|2 + |rcross|2 ≤ 1 and this behavior can be verified from the figures.

7. DISCUSSION AND CONCLUSIONS

Using a linearized small signal model of the LLG equation (12),
in which the material is gyrotropic and described by an effective
permeability, we have shown that with the aid of a static external
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biasing field, the material can be switched between a Lorentz-like
material and a material that exhibits a magnetic conductivity.

Furthermore, as the material is set to behave like a Lorentz
material, it was shown that by using a ferro- or ferrimagnetic layer on a
PEC with a static external biasing field, one will obtain two resonance
frequencies in the reflection coefficient for normally impinging waves
(along the bias field) on this structure. One of these resonances is
associated with the precession frequency of the magnetization and the
other associated with the thickness of the layer. This is a fundamental
difference between using a ferro- or ferrimagnetic layer and electric
layer as absorbing material. For an electric layer, only the resonance
associated with the thickness will be present. Since it is possible to
shift the resonance frequency, ω0, with the aid of the biasing field, one
has the possibility to combine these two resonance frequencies that
are present for magnetic materials. Hence, absorbers consisting of
magnetic materials have the potential of being more broadband and
thinner than electrical absorbers. However, only the eigenmode with a
circular polarization that rotates in the same direction as the precession
of the magnetization will experience this additional resonance whereas
the other mode will experience only the resonance associated with the
thickness, i.e., like an electrical absorber.

For the linearly polarized case it is seen from the figures that when
the bias field strength is equal or close to the saturation magnetization
(β ≈ 0, i.e., the material exhibits a magnetic conductivity), increasing
Ms improves rco but worsen rcross and increasing α improves the
reflection coefficient for both polarizations. Thus, large values for Ms

and α is needed in order to obtain a broadband absorber. More than
two decades bandwidth can be achieved for a reflectivity level around
−20 dB at a material thickness of only 1 mm for co-polarization, see
Figure 11. However, this requires a quite large value for α (0.9), and
this might not be possible to obtain. The condition β = 0 may also
be difficult to achieve since this requires a bias field of the order of the
saturation magnetization, which is a very large field strength. Also, it
is seen from the figures that the absorber is sensitive to disturbances
in the bias field. Small deviations from Ms in the bias field results in
quite different results.

At this point one should not read too much into these results
in terms of bandwidths and reflectivity levels since in this analysis
the electric losses are not modeled properly. For microwave ferrite
materials, the electric losses are usually negligible [22, p. 715], but
for ferromagnetic materials this loss is usually substantial. Even
though electric losses are included they were set to be independent
of frequency. The reason for this is that we wanted to isolate our
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Figure 11. Plots of |rco|2 (solid line) and |rcross|2 (dashed(line) (in
dB) for He

0 = Ms. Ms = 16 · 105 A/m , α = 0.9, ε = 5 + 1i and d = 1
mm.

investigation to effects due to the magnetic losses and develop a
better understanding of how these losses affect the absorption of
electromagnetic energy. However, the ohmic losses are easily included
in the analysis and then one can obtain more realistic results.

It was also discovered that the conditions for the ideal magnetic
Salisbury screen (a very thin magnetic layer on a PEC with practically
zero reflection at all frequencies for normally impinging waves)
mentioned in Section 2 is unreachable with this model of the
magnetization.

In the analysis presented here the anisotropy tensor Nc was
neglected. It is possible to augment the analysis to include an arbitrary
anisotropy- and demagnetization tensor and obtain a closed form
expression for the susceptibility tensor. However, for the case of a
thin plate geometry biased in the normal direction where the material
is uniaxial with its easy axis along the normal direction, it is found
that this will just lead to a correction in the constant β (and hence
the resonance frequency) of the form β = |He

0|/Ms − 1 − Nc. Hence,
it does not change the fundamental physics of the problem for this
particular case. Therefore we have chosen not to include the full
analysis containing an arbitrary anisotropy tensor.
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