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Abstract—It is well known that the performance of a wireless
multiple-input and multiple-output (MIMO) system depends on the
propagation channel. The propagation channel models can generally
be divided into two different groups, the statistical models based on
information theory and the site-specific models based on measurement
or ray tracing. In this paper, a general procedure for predicting the
MIMO channel model has been presented. Analytical expressions
for the channel matrix elements in a general scattering environment
have been derived from the statistical theory for a narrow-band
electromagnetic field, and have been verified by numerical simulation
and experiments. The limitations of information capacity of the
MIMO wireless communication system imposed by the antennas have
also been discussed, and analytical upper bounds on the information
capacity in terms of the antenna parameters for multiple antenna
system in free space have been obtained. Once the capacity of a MIMO
system is specified, these upper bounds can serve as a criterion for
estimating how many antennas are needed or how big the antenna
must be to achieve the capacity.

1. INTRODUCTION

An important performance index for characterizing a communication
system is the spectral efficiency measured in bit/s/Hz. Shannon’s
channel capacity theorem reveals that there is a maximum spectral
efficiency, called channel capacity, at which any communication
system can operate reliably [1, 2]. The multiple-input multiple-output
(MIMO) system has emerged as one of the most promising technologies
to increase the capacity of the wireless link [3–6]. In a MIMO wireless
system, multiple antenna elements are deployed and the data stream
from a single user is demultiplexed into nt (the number of transmitting
antennas) substreams. Each substream is then encoded into channel
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symbols, and the signals are received by nr receiving antennas. Various
coding schemes, such as layered space-time codes, space-time Trellis
codes and space-time block codes, have been proposed to exploit the
benefits of MIMO channels.

LnZ +

1tLnZ +

T

1tnT +

tnT

1T
z

1z

rny

1y

tn

1x

Antenna 1

Antenna tn

Antenna 
1tn +

Antenna

Scatters

Rx̂

x̂

̂
̂

tn + rn̂ ̂
rn

tn + rn

tn + rnt

Figure 1. An arbitrary MIMO system.

A general linear time-invariant MIMO system with nt inputs
and nr outputs is shown in Figure 1, where Ti (i = 1, 2, . . . , nt +
nr) is the ith antenna terminal plane (i.e., the reference plane),
and the nr outputs are terminated by loads ZLi at Ti (i =
nt + 1, . . . , nt + nr). The output random signal vector y(t) =
[ynt+1(t), ynt+2(t), . . . , ynt+nr(t)]T ∈ Rnr (Rnr is the n dimensional
real space) is related to the input random signal vector x(t) =
[x1(t), x2(t), . . . , xnt(t)]T ∈ Rnt by the following convolution integral
[3]

y(t) =

∞∫
−∞

h(τ)x(t− τ)dτ + z(t) (1)

where z(t) = [znt+1(t), znt+2(t), . . . , znt+nr(t)]T ∈ Rnr is assumed
to be the zero-mean additive white Gaussian noise (AWGN) vector
whose components have a power spectral density σ2, and h(t) =
{hij(t)} is the impulse response matrix (or channel matrix) of the
MIMO system with hij(t) being the impulse response between the jth
(j = 1, 2, . . . , nt) transmitting antenna and the ith receiving antenna
(i = nt +1, nt +2, . . . , nt +nr). In most applications, communications
are carried out in a passband around a carrier frequency ωc. Thus one
may write [7, 8]

x(t) = Re
[
x̂(t)ejωct

]
, y(t) = Re

[
ŷ(t)ejωct

]
, z(t) = Re

[
ẑ(t)ejωct

]
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where x̂(t), ŷ(t) and ẑ(t) are the complex envelopes of x(t),y(t) and
z(t) respectively (a caret ‘̂’ will be used to represent the complex
envelope), and they all belong to the n-dimensional complex space Cn.
As usual, if the bandwidth of the input signal vector is narrow the
Fourier transform of h(t) will be treated as a constant over the band
of interest. Then (1) can be approximated by [3]

ŷ(t) ≈ Hx̂(t) + ẑ(t) (2)

where H = h(0). For the simulation and design of a MIMO
system, precise knowledge about the channel matrix H is needed.
Numerous MIMO channel models have been proposed to characterize
the complicated propagation environments [9–14], such as statistical
models and site-specific models based on ray tracing. The usual
statistical channel models include the Rayleigh fading channel model
for non-line-of-sight scenarios and the Rician fading channel model for
line-of-sight scenarios. A shortcoming of these statistical descriptions
for a wireless MIMO channel is that they do not explicitly contain
the information about the physical parameters, such as antenna gain.
In addition, these statistical descriptions depend on the measuring
equipments, and the influences of the channel and equipments on the
channel model cannot be separated [15]. Therefore the channel models
that include physical parameters are preferred.

It has been noted that incorporating electromagnetics into the
methodologies of signal processing and communication theory will lead
to a better solution when deploying a system in a real environment [16].
In this paper, a general procedure of predicting the MIMO channel
model from an electromagnetic point of view has been presented, which
is based on the scattering matrix description of the MIMO system. The
channel model so obtained has included all the physical parameters
such as the influences of antennas, from which a connection can be
established between the system capacity and antenna parameters.
When the upper bounds of the antenna performances [17–19] are
taken into account in this connection, the upper bound of information
capacity of a wireless MIMO system can then be determined. The
paper is organized as follows. Section 2 discusses briefly the narrow-
band stationary stochastic process for electromagnetic field, and
it is demonstrated that the conventional time-harmonic theory of
electromagnetic field also holds for the complex envelopes as well
as the ensemble average of the complex envelopes of a narrow-band
stationary electromagnetic field. Section 3 studies the capacity of a
general deterministic MIMO system and it is shown that the channel
matrix can be identified as the scattering matrix, and upper bounds
on the system capacity have been obtained in terms of the scattering
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parameters. Section 4 provides a general procedure to calculate the
channel matrix in free space as well as in a scattering environment,
which has been verified by numerical simulation and experiments.
Section 5 summarizes the upper bounds on the antenna performances
and discusses upper bounds of capacity for various MIMO system
in free space and explains how the upper bounds of information
capacity can be applied to estimate the antenna numbers and antenna
sizes required to achieve the capacity requirement, which answers a
frequently asked question of whether there is a fundamental limit as
to how many independent antennas can be squeezed into a given small
volume to satisfy a given capacity requirement [20].

2. NARROW-BAND STATIONARY STOCHASTIC
VECTOR FIELD

As a linear modulation technique, an easy way to translate the
spectrum of low-pass or baseband signal a(t) to a higher frequency
is to multiply or heterodyne the baseband signal with a carrier wave.
A narrowband bandpass stochastic vector field F (modulated signal)
in the time domain can be expressed as [7, 8]

F (r, t) =


a(r, t) cos[ωct + ϕ(r, t)]
x(r, t) cosωct− y(r, t) sinωct

Re F̂ (r, t)ejωct

where ωc = 2πfc, a(r, t) and ϕ(r, t) are the carrier frequency, envelope
and phase of the modulated signal respectively, and

F̂ (r, t) = x(r, t) + jy(r, t)
x(r, t) = a(r, t) cosϕ(r, t)
y(r, t) = a(r, t) sinϕ(r, t)

in which F̂ (r, t), x(r, t) and y(r, t) are the complex envelope, in-
phase component, and quadrature component of the modulated signal
respectively. The complex envelope F̂ (r, t) is slowly varying function of
time compared to ejωct. It is easy to show that the complex envelopes of
the electromagnetic fields satisfy the time-harmonic Maxwell equations{

∇× Ĥ(r, t) = jωcεÊ(r, t) + Ĵ(r, t)

∇× Ê(r, t) = −jωcµĤ(r, t)
(3)

where all notations have their conventional meaning. Therefore most of
the theoretical results about the time-harmonic fields can be applied to
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the complex envelopes of the fields. Let F denote the ensemble average
of F . For a stationary and ergodic vector field F , the ensemble average

equals the time average, i.e., F = lim
T→∞

1
T

T/2∫
−T/2

F (t)dt. For a stationary

and ergodic electromagnetic field, one may take the ensemble average
of (3) to get  ∇× Ĥ(r) = jωcεÊ(r) + Ĵ(r)

∇× Ê(r) = −jωcµĤ(r)
(4)

Hence most of the theoretical results about the time-harmonic fields
can also be applied to the ensemble averages of the complex envelopes
of the fields. The autocorrelation function RF F (τ) of a vector field F
can be expressed as

RF F (τ) = F (t + τ) · F (t) =
1
2
Re

[
R

F̂ F̂
(τ)ejωcτ

]
where F denotes the complex conjugate of F . From now on, all the
electromagnetic fields will be assumed to be a narrow-band stochastic
process and the time dependence in the complex envelope notations
will be dropped.

3. CAPACITY OF DETERMINISTIC MIMO SYSTEM

The MIMO system capacity is defined as the maximum mutual
information over all possible input vector signals [21–24]. The mutual
information between x̂ and ŷ is denoted by I(x̂, ŷ). The capacity
(measured in bit/s/Hz) of a deterministic MIMO system is then given
by [3–6]

C = sup
Tr(Rx̂x̂)=P

I(x̂, ŷ)

= sup
Tr(Rx̂x̂)=P

log2 det
[
Inr+HRx̂x̂H† (Rẑẑ)−1

]
(5)

where Rkk is the covariance matrix for the vector k (k = x̂, ẑ); In is
an n× n identity matrix; and P is the total transmitted power, which
is kept constant regardless of the number of transmitting antennas.
It is common to assume that the noises in the receiver branches are
uncorrelated so that one can write Rẑẑ = σ2Inr . Thus (5) may be
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written as

C = sup
Tr(Rx̂x̂)=P

log2 det
(

Inr +
1
σ2

HRx̂x̂H†
)

= sup
Tr(Rx̂x̂)=P

log2 det
(

Int +
1
σ2

Rx̂x̂H†H

)
(6)

where the determinant identity det(I + AB) = det(I + BA) has been
used. In practice the input has no knowledge about the channel
matrix H. For this reason one can choose x̂ to be spatially white
(i.e., signals on each input port are independent) and use a uniform
power distribution (i.e., each input is equi-powered). In this case the
covariance matrix of x̂ is given by Rx̂x̂ = (P/nt)Int , and (6) reduces
to

C = log2 det
(

Inr +
P

σ2nt
H H†

)
= log2 det

(
Int +

P

σ2nt
H†H

)
(7)

Once the channel matrix is known the capacity is then determined.
For the nt×nr MIMO system shown in Figure 1, the modal voltage V̂i

and modal current Îi at a reference plane Ti for the antenna element
i are defined by Ê(r) = V̂iei, Ĥ(r) = Îiun × ei [25], where Ê and
Ĥ are the complex envelopes of the transverse fields inside the feeding
line; ei denotes the dominant vector mode function of the feeding line
for the ith antenna element; and un is the unit vector perpendicular
to the reference plane Ti, as shown in Figure 2. Let the normalized
incident and reflected waves at the antenna terminal Ti be denoted by
âi and b̂i respectively. By definition, one may write
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Figure 2. An arbitrary antenna.
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V̂i =

Zsi√
ReZsi

âi +
Zsi√
ReZsi

b̂i

Îi =
1√

ReZsi
âi −

1√
ReZsi

b̂i

, i = 1, 2, . . . , nt + nr (8)

where Zsi is the reference impedance for the input terminal of antenna
element i. For a noisy MIMO network, the relationship between the
normalized incident wave and reflected wave can be expressed as [26]

b̂1
...

b̂nt

b̂nt+1
...

b̂nt+nr


=



S11 · · · S1nt S1(nt+1) · · · S1(nt+nr)
...

. . .
...

...
. . .

...
Snt1 · · · Sntnt Snt(nt+1) · · · Snt(nt+nr)

S(nt+1)1 · · · S(nt+1)nt
S(nt+1)(nt+1) · · · S(nt+1)(nt+nr)

...
. . .

...
...

. . .
...

S(nt+nr)1 · · · S(nt+nr)nt
S(nt+nr)(nt+1) · · · S(nt+nr)(nt+1)



×



â1
...

ânt

ânt+1
...

ânt+nr





b̂n
1
...

b̂n
nt

b̂n
nt+1
...

b̂n
nt+nr


(9)

where Sij is the transmission coefficient from antenna j to antenna i,
and b̂n

i is the normalized noise wave which will be assumed to be a
zero-mean white Gaussian noise. Taking the ensemble average of (9)
and making use of the assumption that the channel is deterministic
and b̂n

i (i = 1, 2, . . . , nt + nr) have zero mean lead to
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b̂1
...

b̂nt

b̂nt+1

...

b̂nt+nr


=



S11 · · · S1nt S1(nt+1) · · · S1(nt+nr)
...

. . .
...

...
. . .

...
Snt1 · · · Sntnt Snt(nt+1) · · · Snt(nt+nr)

S(nt+1)1 · · · S(nt+1)nt
S(nt+1)(nt+1) · · · S(nt+1)(nt+nr)

...
. . .

...
...

. . .
...

S(nt+nr)1 · · · S(nt+nr)nt
S(nt+nr)(nt+1) · · · S(nt+nr)(nt+nr)



×



â1
...

ânt

ânt+1

...

ânt+nr


(10)

Hereafter all antennas will be assumed to be matched so that b̂1 =

· · · = b̂nt = 0 and ânt+1 = · · · = ânt+nr = 0. Then (10) reduces to
b̂nt+1

...

b̂nt+nr

 =

 S(nt+1)1 · · · S(nt+1)nt

...
. . .

...
S(nt+nr)1 · · · S(nt+nr)nt


 â1

...
ânt

 (11)

Comparing (11) with the ensemble average of (2), the following
identifications can be made
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H =

 S(nt+1)1 · · · S(nt+1)nt

...
. . .

...
S(nt+nr)1 · · · S(nt+nr)nt

 (12)

x̂ =
[
â1/

√
2, â2/

√
2, . . . , ânt/

√
2
]T

ŷ =
[
bnt+1/

√
2, bnt+2/

√
2, . . . , bnt+nr/

√
2
]T

Substituting (12) into (7) gives

C = log2 det

 Int +
P

σ2nt



nr∑
i=1

∣∣S(nt+i)1

∣∣2 nr∑
i=1

S(nt+i)1S(nt+i)2 · · ·
nr∑
i=1

S(nt+i)1S(nt+i)nt

nr∑
i=1

S(nt+i)2S(nt+i)1

nr∑
i=1

∣∣S(nt+i)2

∣∣2 · · ·
nr∑
i=1

S(nt+i)2S(nt+i)nt

...
...

. . .
...

nr∑
i=1

S(nt+i)nt
S(nt+i)1

nr∑
i=1

S(nt+i)nt
S(nt+i)2 · · ·

nr∑
i=1

∣∣S(nt+i)nt

∣∣2




(13)

C = log2 det

 Inr +
P

σ2nt
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nt∑
i=1

∣∣S(nt+1)i

∣∣2 nt∑
i=1

S(nt+1)iS(nt+2)i · · ·
nt∑
i=1

S(nt+1)iS(nt+nr)i

nt∑
i=1

S(nt+2)iS(nt+1)i

nt∑
i=1

∣∣S(nt+2)i

∣∣2 · · ·
nt∑
i=1

S(nt+2)iS(nt+nr)i

...
...

. . .
...

nt∑
i=1

S(nt+nr)iS(nt+1)i

nt∑
i=1

S(nt+nr)iS(nt+2)i · · ·
nt∑
i=1

∣∣S(nt+nr)i

∣∣2




(14)

Since H†H and H H† are positive definite, it follows from Hadamard’s
inequality [27, 28] that

C≤ log2

nt∏
j=1

(
1+

P

σ2nt

nr∑
i=1

∣∣S(nt+i)j

∣∣2)=
nt∑

j=1

log2

(
1+

P

σ2nt

nr∑
i=1

∣∣S(nt+i)j

∣∣2)
(15)

C≤ log2

nr∏
j=1

(
1+

P

σ2nt

nt∑
i=1

∣∣S(nt+j)i

∣∣2)=
nr∑

j=1

log2

(
1+

P

σ2nt

nt∑
i=1

∣∣S(nt+j)i

∣∣2)
(16)

The right-hand sides of (15) and (16) are upper bounds on the
information capacity of the MIMO system.

4. CALCULATION OF CHANNEL MATRIX

The elements of the channel matrix can be determined from
electromagnetic theory. Consider a system consisting of n antennas
contained in a region V∞ bounded by S∞. Let the fields generated by
antenna i (i = 1, 2, . . . , n) when antenna j (j �= i) are receiving with

all scatters being in place be denoted by Êi, Ĥ i (ensemble averages),
and Vi be the source region of antenna i, which is chosen in such a
way that its boundary, denoted by Si, is coincident with the metal
surface of the antennas except for a portion of the reference plane Ti.
This state of operation is illustrated in Figure 3, where the medium
around the antenna is assumed to be isotropic and inhomogeneous.
To calculate the scattering parameter Sij , the frequency-domain
reciprocity theorem for the ensemble averages of the complex envelopes
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Figure 3. Derivation of scattering parameters.

may be used [29]∫
S

(
Êi × Ĥj − Êj × Ĥ i

)
· unds = 0 (17)

where it is assumed that the closed surface S does not contain any

impressed sources. The closed surface S can be chosen as S∞ +
n∑

l=1

Sl

in (17) so that

n∑
l=1

∫
Sl

(
Êi×Ĥj−Êj×Ĥ i

)
· unds+

∫
S∞

(
Êi×Ĥj−Êj×Ĥ i

)
· unds

=
n∑

l=1

(
V̂

(j)
l Î

(i)
l − V̂

(i)
l Î

(j)
l

)
= 0 (18)

Here the feeding lines have been assumed to be in a single mode
operation so that the following calculation applies∫

Sl

(
Êi × Ĥ i

)
· unds = −V̂

(i)
l Î

(i)
l , l = 1, 2, . . . , n

From now on, V̂ (i)
l and Î

(i)
l will be used to represent voltage and current

at the feeding plane of antenna l when antenna i is transmitting and
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the rest are receiving. Substituting (8) into (18) yields
n∑

l=1

[
â

(i)
l b̂

(j)
l − â

(j)
l b̂

(i)
l

]
= 0

For a matched system, the above equation reduces to â
(i)
i b̂

(j)
i = â

(j)
j b̂

(i)
j ,

which gives the symmetric property of scattering matrix

Sij = b̂
(j)
i /â

(j)
j

∣∣∣∣
â
(j)
i =0,i�=j

= b̂
(i)
j /â

(i)
i

∣∣∣∣
â
(i)
j =0,j �=i

= Sji (19)

Now choosing S as S′
i+Si in (17), where S′

i is a closed surface containing
antenna i only, gives

V̂
(i)
i Î

(j)
i − V̂

(j)
i Î

(i)
i =

∫
S′

i

(
Êi×Ĥj−Êj×Ĥ i

)
· unds (20)

Similarly it may be found that

V̂
(j)
j Î

(i)
j − V̂

(i)
j Î

(j)
j =

∫
S′

j

(
Êj×Ĥ i−Êi×Ĥj

)
· unds (21)

where S′
j is a closed surface containing antenna j only. In terms of the

normalized incident and reflected waves defined by (8), (20) and (21)
can be written as

b̂
(i)
i â

(j)
i − b̂

(j)
i â

(i)
i =

1
2

∫
S′

i

(
Êi×Ĥj−Êj×Ĥ i

)
· unds (22)

b̂
(j)
j â

(i)
j − b̂

(i)
j â

(j)
j =

1
2

∫
S′

j

(
Êj×Ĥ i−Êi×Ĥj

)
· unds (23)

From (22) and (23), one may obtain

Sij =
b̂
(j)
i

â
(j)
j

∣∣∣∣∣∣∣
a
(j)
l =0,l �=j

= − 1

2â(i)
i â

(j)
j

∫
S′

i

(
Êi×Ĥj−Êj×Ĥ i

)
· unds (24)

Sji =
b̂
(i)
j

â
(i)
i

∣∣∣∣∣∣∣
a
(i)
l =0,l �=i

= − 1

2â(i)
i â

(j)
j

∫
S′

j

(
Êj×Ĥ i−Êi×Ĥj

)
· unds (25)
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Note that (24) and (25) are exact and may be regarded as a different
expression of Huygens’ principle [33], which is applicable to an
inhomogeneous medium. In fact, the effects of environments such as
the scatters and the coupling between any two antenna elements have

all been included in (24) and (25). The fields
{

Êi, Ĥ i

}
should be

determined with all antenna elements and scatters being in place.

4.1. Channel Matrix in Free Space

The computation of the fields
{

Êi, Ĥ i

}
(i = 1, 2, . . . , n) in (24)

with antenna j (j �= i) and all scatters being in place is not an easy
task, and one must resort to numerical methods in order to obtain the
channel matrix elements Sij . When the separations between antennas
are large enough and all antennas are in free space (i.e., there are
no scatters), the following simplification is usually made [30–32]: the

calculation of
{

Êi, Ĥ i

}
produced by antenna i is carried out with all

other antennas removed. Physically this simplification is equivalent to
neglecting the reflection between antennas. It will be assumed that
the antennas are located in the far field region of each other. To
derive the expressions of Sij when the antenna i and antenna j are
far apart, two different coordinate systems for antenna i and antenna
j will be used. Let 2ai be the maximum size of antenna i. The
origins of the coordinate systems are chosen to be the geometrical
center of the current distributions and the separation between antenna
i and antenna j satisfies krj  1, rj  2aj , rj  2ai where
rj = |rj | is the distance between antenna j and an arbitrary point
of the circumscribing sphere (denoted by S′

i) of antenna i, as shown in
Figure 4. Let r′

i be a point on the circumscribing sphere of antenna i,
and ri,j = ri,juri,j , where ri,j is the distance between the two origins
and uri,j is a unit vector directed from antenna i to antenna j. Thus
the far field of antenna j at antenna i can be expressed as

Êj(rj) ≈ −
jkηÎ

(j)
j e−jkrj

4πrj
Lj(urj ), Ĥj(rj) ≈

1
η
urj × Êj(rj) (26)

where k = ωc
√
µ0ε0, η = 120π is the wave impedance in free space,

rj = r′
i −ri,j is assumed to be a point on the circumscribing sphere S′

i
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Figure 4. Coupling between two antenna elements in free space.

of antenna i, and

Lj(urj ) =
1

Î
(j)
j

∫
Vj

[
Ĵ j −

(
Ĵ j · urj

)
urj

]
ejkr′

j ·urj dv(r′
j)

is the antenna effective vector length [30] with Ĵ j being the current
distribution and Vj being the source region of antenna j respectively.
Since r′

i is very small compared to ri,j in magnitude, one may make

the approximation rj = |r′
i −ri,j | ≈ ri,j −uri,j ·r′

i. The field Êj in the
coordinate system Oi can then be written as

Êj(rj) ≈ −
jkηÎ

(j)
j e−jkri,jejkuri,j ·r′

i

4πri,j
Lj(−uri,j ),

Ĥj(rj) ≈ −1
η
uri,j × Êj(rj)

(27)

Then one may find that∫
S′

i

(
Êi×Ĥj−Êj×Ĥ i

)
· unds(r′

i)

=
∫
S′

i

[
−η−1Êi ×

(
uri,j × Êj

)
− Êj × Ĥ i

]
· unds(r′

i)
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=
∫
S′

i

Êj ·
[
−η−1uri,j ×

(
Êi × un

)
− Ĥ i × un

]
· ds(r′

i)

=
∫
S′

i

Êj ·
(

Ĵ is − η−1uri,j × Ĵ ims

)
ds(r′

i) (28)

where Ĵ is = un × Ĥ i, Ĵ ims = −un × Êi. Substituting (27) into (28)
gives

∫
S′

i

(
Êi×Ĥj−Êj×Ĥ i

)
·unds≈

−jkηÎ
(i)
i Î

(j)
j e−jkri,j

4πri,j
Li(uri,j)·Lj(−uri,j)

(29)

where the far field expression of antenna i at antenna j

Êi(ri,j) =
−jkηe−jkri,j

4πri,j

∫
S′

i

ejkuri,j ·r′
i

[
Ĵ is − uri,j ×

1
η
Ĵ ims

]
ds(r′

i)

=
−jkηÎ

(i)
i e−jkri,j

4πri,j
Li(uri,j ) (30)

has been used. From (8), (24) and (29) one may obtain (for a matched
system)

Sij ≈
jkηÎ

(i)
i Î

(j)
j e−jkri,j

8πri,j â
(i)
i â

(j)
j

Li(uri,j ) · Lj(−uri,j )

=
jkηe−jkri,j

8πri,j

√
ReZsi

√
ReZsj

Li(uri,j ) · Lj(−uri,j ) (31)

(31) indicates that no coupling exists between two antenna elements if
they are perpendicularly polarized.

4.2. Channel Matrix in a Scattering Environment

Unless the separations between the antenna elements are large enough,
a MIMO system fails in free space. In fact the multi-path fading due
to the scatters plays an important role in a MIMO system [20]. The



26 Geyi

pS

(  ), σ
pV

µ r (  ),rε (  )r

Figure 5. An arbitrary region where medium property changes.

presence of significant scatters in the propagation medium guarantees
that the waves from different paths will add differently at each receiving
antenna element so that the nr receiving signals are independent, and
can be used to unscramble the nt transmitted signals. To predict how
the MIMO channel matrix changes with environments, the general
expression (24) or (25) can be used via numerical simulations with
all scatters being in place. If the presence of the scatters does not
change the field distributions significantly, a perturbation procedure
may be adopted [33]. To this purpose a compensation theorem for
electromagnetic fields will be introduced first, which claims that the
influence of the medium on the fields can partly or completely be
compensated by appropriate distribution of impressed currents [34].
Consider an arbitrary region Vp enclosed by a surface Sp in which
the medium is assumed to be linear, isotropic and free of impressed
source (Figure 5). The medium in Vp may be inhomogeneous with a
permeability µ(r), permittivity ε(r), and conductivity σ(r). Thus one
may write  ∇× Ĥ(r) = [σ(r) + jωcε(r)]Ê(r) + Ĵ(r)

∇× Ê(r) = −jωcµ(r)Ĥ(r)
(32)

If the medium parameters µ(r), ε(r), σ(r) are changed to µ′(r), ε′(r),
σ′(r) in Vp, the perturbed fields will be governed by ∇× Ĥ

′
(r) = [σ′(r) + jωcε

′(r)]Ê
′
(r) + Ĵ(r)

∇× Ê
′
(r) = −jωcµ

′(r)Ĥ
′
(r)

r ∈ Vp (33)

which may be rewritten as ∇× Ĥ
′
(r) = [σ(r) + jωcε(r)]Ê

′
(r) + Ĵ

′
(r) + Ĵ(r)

∇× Ê
′
(r) = −jωcµ(r)Ĥ

′
(r) − Ĵ

′
m(r)

, r ∈ Vp

(34)
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where Ĵ
′
(r) = {σ′(r) − σ(r) + jωc[ε′(r) − ε(r)]}Ê′

(r)

Ĵ
′
m(r) = jωcĤ

′
(r)[µ′(r) − µ(r)]

, r ∈ Vp (35)

Comparing (32) and (34), it may be found that the perturbed fields
can be determined by introducing an equivalent electric current source

Ĵ
′
(r) and an equivalent magnetic current source Ĵ

′
m(r) in the region

Vp, as if the medium parameters had not changed in Vp. This is
what the compensation theorem implies. The differences of the fields

∆Ê(r) = Ê
′
(r)− Ê(r), ∆Ĥ(r) = Ĥ

′
(r)− Ĥ(r) satisfy the following

equations ∇× ∆Ĥ(r) = [σ(r) + jωcε(r)]∆Ê(r) + Ĵ
′
(r)

∇× ∆Ê(r) = −jωcµ(r)∆Ĥ(r) − Ĵ
′
m(r)

, (36)

Therefore the equivalent sources (35) generate the differential fields.
The influences of the change of the medium parameters on the

scattering parameters can be studied by means of compensation
theorem. Figure 6 shows any two antenna element i and j and a
region Vp enclosed by Sp, where the changes of medium parameters
take place. Two scenarios will be considered:

Scenario 1: The medium parameters are assumed to be µ, ε and σ.

The antenna i produces the fields Êi, Ĥ i when all other antennas are
receiving. The transmission coefficient between antenna i and antenna
j (j �= i) is denoted by Sij .

Scenario 2: The medium parameters µ, ε and σ in Vp are changed

to µ′, ε′ and σ′ respectively. The antenna i produces the field Ê
′
i, Ĥ

′
i

when all other antennas are receiving. The transmission coefficient
between antenna i and antenna j (j �= i) is denoted by S′

ij .
From (19), (24), (25) and the reciprocity theorem in a region with

impressed sources [e.g., 29], the transmission coefficient for scenario 1
may be expressed as

Sij = − 1

2â(i)
i â

(j)
j

∫
S′

i

(
Êi×Ĥj−Êj×Ĥ i

)
· unds

= − 1

2â(i)
i â

(j)
j

∫
V ′

j

Ĵ j · Êidv (37)
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Figure 6. Coupling between two antenna elements in a scattering
environment.

where S′
i is the surface enclosing antenna i only (Vp is not contained in

S′
i) and V ′

j is the region enclosed by S′
j , which contains both antenna

j and Vp (Figure 6) and Ĵ j is the current distribution of antenna j.
Similarly the perturbed transmission coefficient for scenario 2 can be

expressed as (assuming that the impressed Ĵ j remains unchanged)

S′
ij = − 1

2â(i)
i â

(j)
j

∫
S′

i

(
Ê

′
i×Ĥ

′
j−Ê

′
j×Ĥ

′
i

)
· unds

= − 1

2â(i)
i â

(j)
j

∫
V ′

j

Ĵ j · Ê
′
idv (38)

Subtracting (37) from (38) gives

S′
ij − Sij = − 1

2â(i)
i â

(j)
j

∫
V ′

j

Ĵ j ·
(

Ê
′
i − Êi

)
dv (39)

Considering that V ′
j contains the region Vp and the sources producing

the differential fields ∆Ê = Ê
′ − Ê and ∆Ĥ = Ĥ

′ − Ĥ are given by
(35), (39) may be written as

S′
ij − Sij = − 1

2â(i)
i â

(j)
j

∫
Vp

Ĵ
′ · Ê′

j − Ĵ
′
m · Ĥjdv
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=
1

2â(i)
i â

(j)
j

∫
Vp

{
jωc(µ′ − µ)Ĥ

′
i · Ĥj

− [σ′ − σ + jωc(ε′ − ε)]Ê
′
i · Êj

}
dv (40)

from the reciprocity theorem. This formula is useful to study the effect
of changes in permittivity and permeability of the medium in a finite
three dimensional region. But it is not convenient to study the changes
in highly conducting bodies where the fields are confined to a shallow
surface layer. In this case a surface integral will be more suitable.
Making use of reciprocity theorem again, (40) may be expressed as

S′
ij − Sij = − 1

2â(i)
i â

(j)
j

∫
Vp

Ĵ
′ · Ê′

j − Ĵ
′
m · Ĥjdv

= − 1

2â(i)
i â

(j)
j

∫
Sp

[(
Ê

′
i−Êi

)
×Ĥj−Êj×

(
Ĥ

′
i−Ĥ i

)]
·unds

=
1

2â(i)
i â

(j)
j

∫
Sp

(
Êj×Ĥ

′
i−Ê

′
i×Ĥj

)
· unds (41)

Note that only the field components tangential to Sp contributes to
(41). Let Zs and Z ′

s be the surface impedances before and after
the change of the medium parameters respectively. Considering the

relations Êjt = Zsun×Ĥ it, Ê
′
jt = Z ′

sun×Ĥ
′
it, (41) may be rewritten

as

S′
ij − Sij =

1

2â(i)
i â

(j)
j

∫
Sp

(Z ′
s − Zs)Ĥjt · Ĥ

′
itds (42)

where the subscript t is used to represent the tangential component.
If there exist m scatters and each scatter occupies a region

Vp (p = 1, 2, . . . ,m), then the integrations in (40)–(42) become a
summation of integrations over each scatter. For instance, (40) may
be written as

S′
ij = Sij +

1

2â(i)
i â

(j)
j

m∑
p=1

∫
Vp

{
jωc(µ′ − µ)Ĥ

′
i · Ĥj

− [σ′ − σ + jωc(ε′ − ε)]Ê
′
i · Êj

}
dv (43)
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The first term of (43) corresponds to the contribution due to the direct
path from antenna i to antenna j. The second term represents the
m multipath components introduced by the m scatters and usually
improve the condition number of the channel matrix H, which is
important for a wireless MIMO system to be effective.

So far our discussion is exact. If the parameters ξ1 and ξ2 defined
by {

ξ1 = σ′(r) − σ(r) + jωc[ε′(r) − ε(r)]
ξ2 = jωc[µ′(r) − µ(r)]

are small numbers, a perturbation method may be introduced to

predict S′
ij [33]. In this case, the fields Ê

′
i and Ĥ

′
i may be expanded

in terms of ξ1 and ξ2 as follows Ê
′
i = Êi + ξ1Êi1 + ξ2Êi2 + · · ·

Ĥ
′
i = Ĥ i + ξ1Ĥ i1 + ξ2Ĥ i2 + · · ·

As a first order approximation, (40), (41) and (42) can then be
approximated by

S′
ij − Sij ≈ 1

2â(i)
i â

(j)
j

∫
Vp

{
jωc(µ′ − µ)Ĥ i · Ĥj

− [σ′ − σ + jωc(ε′ − ε)]Êi · Êj

}
dv (44)

S′
ij − Sij ≈ 1

2â(i)
i â

(j)
j

∫
Sp

(
Êj×Ĥ i−Êi×Ĥj

)
· unds (45)

S′
ij − Sij ≈ 1

2â(i)
i â

(j)
j

∫
Sp

(Z ′
s − Zs)Ĥjt · Ĥ itds (46)

4.3. Numerical and Experimental Results

Let us consider a situation where the scenario 1 corresponds to the free
space. Neglecting the reflections between antennas, the fields in the
region Vp produced by antenna i and antenna j in free space may then
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be approximated by

Êi(ri,p) ≈ −jkηÎ
(i)
i e−jkri,p

4πri,p
Li(uri,p),

Êj(rj,p) ≈ −
jkηÎ

(j)
j e−jkrj,p

4πrj,p
Lj(urj,p)

(47)

where ri,p = ri,puri,p and rj,p = rj,purj,p are observation points in Vp

from antenna i and antenna j respectively (Figure 6). The transmission
coefficient Sij in scenario 1 is given by (31). In scenario 2, a dielectric
scatter with dielectric constant εp = εrpε0 is introduced in region Vp.
Substituting (47) into (44) and assuming the region Vp is in the far
field region of both antenna i and antenna j one obtains

S′
ij − Sij ≈

jk3η

32π2

εrp − 1√
ReZsi

√
ReZsj

∫
Vp

Li(uri,p)·Lj(urj,p)
e−jk(ri,p+rj,p)

ri,prj,p
dv(r(p)) (48)

where the local coordinate system r(p) = (x(p), y(p), z(p)) has been
introduced and the transmission coefficient Sij is approximated by
(31). If there exist m dielectric scatters and each scatter occupies
a region Vp (p = 1, 2, . . . ,m), the above equation should change to

S′
ij ≈ jkηe−jkri,j

8πri,j

Li(uri,j ) · Lj(−uri,j )√
ReZsi

√
ReZsj

+
jk3η

32π2

εrp − 1√
ReZsi

√
ReZsj

m∑
p=1

(εrp − 1)

×
∫
Vp

Li(uri,p) · Lj(urj,p)
e−jk(ri,p+rj,p)

ri,prj,p
dv(r(p)) (49)

4.3.1. A Two-dipole System

To demonstrate (49), let us consider a two-dipole antenna system
shown in Figure 7. The two dipoles will be assumed to be identical
and are located in the far field region of each other. The length of
the dipoles is 2a and the dipole current distribution is assumed to
be Î(zl) = Î0 sin k(a − |zl|), |zl| ≤ a (l = 1, 2) [30]. The radiation
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Figure 7. Influence of dielectric slab on a two-dipole system.

resistance of the two dipoles is denoted by Rrad. The vector lengths of
the two thin dipoles are [30, 32]

L1(ur1,2) = −2[1 − cos(ka)]
k sin ka

uz1 ,

L2(ur2,1) = L2(−ur1,2) = −2[1 − cos(ka)]
k sin ka

uz2 (50)

L1(ur1,p) = − 2r1,p

k sin ka
√

x2
1,p+y2

1,p

[
cos

(
kaz1,p

r1,p

)
−cos(ka)

]
uθ1,p

L2(ur2,p) = − 2r2,p

k sin ka
√

x2
2,p+y2

2,p

[
cos

(
kaz2,p

r2,p

)
−cos(ka)

]
uθ2,p (51)

where r1,p = (x1,p, y1,p, z1,p) and r2,p = (x2,p, y2,p, z2,p) are
two observation points in the rectangular coordinate system
(x1, y1, z1) and (x2, y2, z2) respectively; the spherical coordinate system
(ri,p, θi,p, ϕi,p) (i = 1, 2) is associated with the rectangular coordinate
system (xi, yi, zi) (i = 1, 2). The transformation between the two
rectangular systems is x1 = r1,2 + x2, y1 = y2, z1 = z2. Let scenario 1
correspond to the two-dipole system in free space with µ = µ0, ε = ε0

and σ = 0. In this case the transmission coefficient is given by (31).
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Figure 8. Transmission coefficient S12 (a) Theoretical predictions; (b)
Experimental results (εr = 4.4, a = 0.25λ, bxp = 0.011λ, byp = bzp =
0.5λ).

In scenario 2, a dielectric slab with dielectric constant ε = εrε0 are
introduced into the two-dipole system, as shown in Figure 7. The
side lengths the dielectric slab are denoted by 2bxp, 2byp and 2bzp

respectively. The center of the dielectric slab is located at the middle of
the two-dipole system. From the perturbation theory, the transmission
coefficient between dipole 1 and dipole 2 can be obtained from (49) by
letting m = 1.

The theoretical predictions in terms of (31) and (49) have been
depicted as a function of separation between the two half-wavelength
dipoles in Figure 8(a). Note that both (50) and (51) are based on
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a delta gap approximation and the feeding line has been ignored. In
this case the reference impedance are chosen as the conjugate of the
input impedance of the dipole, i.e., ReZs1 = ReZs2 = 73Ω to comply
with the general definition of the scattering parameters. To verify the
theoretical predictions, two calibrated half-wavelength dipoles (ETS
3126-1880) matched to 50Ω (In this case the reference impedance is the
characteristic impedance of the feeding coaxial cable) have been used
to replace the two ideal dipoles and the measurement results are shown
in Figure 8(b). Both theoretical predictions and experiments indicate
that the introduction of the dielectric slab will enhance the coupling
between the two-dipole system. Physically this can be explained as
the focusing effect of the dielectric slab.

4.3.2. A 2 × 2 Dipole System

Next let us consider a 2 × 2 half-wavelength dipole system shown in
Figure 9, where dipole 1 and dipole 2 form a transmitting array while
dipole 3 and dipole 4 form a receiving array. The four dipoles are
identical to the ones used in the previous two-dipole system. The
separation between the two dipoles in the transmitting array is equal
to the separation between the two dipoles in the receiving array, which
is assumed to be half wavelength. The receiving array will be assumed
in the far field region of transmitting array.

Let scenario 1 correspond to the 2× 2 dipole system in free space

zpb  

ypb  

xpb  

/ 2λ  / 2λ  

Antenna 1 

Antenna 2 

Antenna 3 

Antenna 4 

Dielectric slab 

pV  

Figure 9. Influence of dielectric slab — A 2 × 2 system.
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Figure 10. Transmission coefficient S13 (a) Theoretical predictions;
(b) Experimental results (εr = 4.4, a = 0.25λ, bxp = 0.02λ, byp =
bzp = 0.5λ).

with µ = µ0, ε = ε0 and σ = 0. In scenario 2, a dielectric slab
of side lengths (2bxp, 2byp, 2bzp) with dielectric constant ε = εrε0 are
introduced in the middle of the 2 × 2 system, as shown in Figure 9.
The theoretical predictions of S13 and S14 based on (31) and (49) have
been shown in Figure 10 (a) and Figure 11(a) and the measurement
results are shown in Figure 10(b) and Figure 11(b). Note that the
reference impedance has been chosen as the conjugate of the input
impedance of the half-wavelength dipole in the theoretical calculation.
In experiments, four calibrated half-wavelength dipoles (ETS 3126-
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Figure 11. Transmission coefficient S14 (a) Theoretical predictions;
(b) Experimental results (εr = 4.4, a = 0.25λ, bxp = 0.02λ, byp =
bzp = 0.5λ).

1880) have been used and the reference impedance is 50Ω. Again
one can see that the introduction of a dielectric slab will enhance the
coupling between antennas.

5. UPPER BOUNDS OF INFORMATION CAPACITY

The most general upper bounds of capacity of a MIMO system have
been given in (15) and (16). Now these general upper bounds will
be applied to MIMO system in free space. In order to find the upper
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bounds of the capacity of the MIMO system, one must know the upper
limit of the antenna performances.

5.1. The Best Possible Antenna Performance

The antenna performance is usually characterized by gain G, fractional
bandwidth B (the fractional bandwidth at the frequency ωc is defined
by B = ∆ω/ωc, where ∆ω is the frequency increment between 0.707
points of the normalized input impedance) or quality factor Qreal. The
latter is defined by [35, 36]

Qreal = ωW̃/P (52)

where W̃ is the time average energy stored in the system and P is the
average radiated power. Here a subscript ‘real’ is used to indicate that
all stored energy around antenna has been included in the calculation of
antenna quality factor, to distinguish it from another antenna quality
factor, denoted by Q, to be introduced later, in which only the stored
energy outside the circumscribing sphere of the antenna is used. Chu
and Harrington have derived that the gain for an omni-directional
antenna and directional antenna are bounded respectively by [17, 18]

G
∣∣∣
omn

≤
N∑

n=1,3,5···

(2n + 1)
∣∣P 1

n(0)
∣∣2

n(n + 1)
, G

∣∣∣
dir

≤ N(N + 2) (53)

Here N is the number of terms in the spherical wave function
expansions, and the subscripts “omn” and “dir” refer to omni-
directional antenna and directional antenna respectively. Therefore
the upper bounds of the gain increase as N increases. Since the
upper bounds on the gain given by (53) are independent of antenna
size, one can, theoretically, achieve an arbitrarily large gain with an
arbitrarily small antenna. However an antenna with extremely high
gain is impractical as it would have high quality factor, leading to high
conduction loss. To get a finite upper bound on the antenna gain, the
concept of normal gain has been introduced [17, 18].

A more useful performance index for characterizing antenna is the
product of antenna gain and bandwidth as they must be maximized
simultaneously in most applications. It is known that the antenna
fractional bandwidth is reciprocal to antenna Qreal if Qreal is not very
small [36]. Therefore the product of antenna gain and bandwidth can
be expressed as

GB ≈ G/Qreal (54)
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Since any practical antenna can be classified into omni-directional and
directional antenna in terms of their radiation patterns, it will be
sufficient to consider the best possible antenna performances for these
two general situations. To this purpose, another antenna quality factor,
denoted by Q, is often introduced. This antenna Q is still defined by
(52), but with W̃ being replaced by the stored energy outside the
circumscribing sphere of the antenna [17–19, 35]. It can be shown that
the ratios of gain G to Q for an arbitrary omni-directional antenna
and an arbitrary directional antenna whose maximum size is 2a are
bounded respectively by [19]

G/Q
∣∣∣
omn

≤ ρ(ka)
∣∣∣
omn

, G/Q
∣∣∣
dir

≤ ρ(ka)
∣∣∣
dir

(55)

where

ρ(ka)
∣∣∣
omn

=
∞∑

n=1

2(2n + 1)
∣∣P 1

n(0)
∣∣2

n(n + 1)[Qn(ka) + Q′
n(ka)]

ρ(ka)
∣∣∣
dir

=
∞∑

n=1

2(2n + 1)
[Qn(ka) + Q′

n(ka)]

(56)

with

Qn(ka) = ka−
∣∣∣h(2)

n (ka)
∣∣∣2 [

(ka)3/2+ka(n+1)
]
−(ka)3

∣∣∣h(2)
n+1(ka)

∣∣∣2 /2
+(ka)2(2n + 3) [jn(ka)jn+1(ka) + nn(ka)nn+1(ka)] /2

Q′
n(ka) = ka− (ka)3

[∣∣∣h(2)
n (ka)

∣∣∣2 − jn−1(ka)jn+1(ka)

− nn−1(ka)nn+1(ka)] /2

In the above, P 1
n is the first associated Legendre polynomial; k is

the wavenumber; h
(2)
n and jn are the spherical Hankel function of

the second kind and the spherical Bessel function of the first kind
respectively. Since the antenna Q in (55) does not include the stored
energy inside the circumscribing sphere, it is smaller than the real
antenna Qreal as the latter contains all the stored energy. Thus
from (54) and (55), the products of antenna gain and bandwidth
for an arbitrary omni-directional antenna and an arbitrary directional
antenna are bounded respectively by

GB
∣∣∣
omn

≤ ρ(ka)
∣∣∣
omn

, GB
∣∣∣
dir

≤ ρ(ka)
∣∣∣
dir

(57)
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Physically (57) implies that the product of antenna gain and
bandwidth that can be achieved by an arbitrary antenna of maximum
dimension 2a will never exceed the number given by the right-hand
sides of the two inequalities in (57), and they also indicate that there
is a tradeoff between antenna gain and bandwidth once the maximum
antenna size is fixed. It should be notified that the right-hand sides of
the two inequalities in (57) are finite numbers. Hence the maximum
possible antenna gain is a finite number once the antenna bandwidth
is specified, instead of an infinite number given by (53). Similarly the
maximum possible antenna bandwidth is also finite once the antenna
gain is specified. For small antennas with ka < 1, only the first term
in (56) is significant. Thus (57) reduces to [19]

GB
∣∣∣
omn

≤ 3
Q1 + Q′

1

=
3(ka)3

2(ka)2 + 1
, GB

∣∣∣
dir

≤ 6
Q1 + Q′

1

=
6(ka)3

2(ka)2 + 1
(58)

The right-hand sides of the two inequalities in (58) are the best possible
antenna performances that a small antenna of maximum dimension 2a
can achieve. They can serve as a target that may be approached by
various methods and have been proven to be very useful for small
antenna design for which try and error method is often used. Once the
antenna performance (product of the gain and bandwidth) is specified,
(57)–(58) can be used to determine the antenna size required to achieve
the performance specified. For example, one may obtain

GB
∣∣∣
omn

≤ 3(ka)3

2(ka)2 + 1
≈ 3(ka)3 (59)

from the first expression of (58) for ka � 1. If the product GB|omn is
given, the antenna size must be greater than k−1 3

√
GB|omn/3. It can

be shown that the fractional bandwidth of an arbitrary small antenna
of dimension 2a has an upper bound [19]

B ≤ 2(ka)3/[2(ka)2 + 1]

To approach the upper bound of the bandwidth, one should use
the space as efficiently as possible. When the upper bound of the
bandwidth has been reached, it can be seen from (58) that the
maximum possible antenna gain is 3 (4.8 dBi) for a directional small
antenna and 1.5 (1.8 dBi) for an omni-directional small antenna.
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5.2. Upper Bounds of Information Capacity

For simplicity all antennas will be assumed to be conjugately matched
with ReZsi = Rrad

i . Inserting (31) into (15) and (16) produces

C ≤
nt∑

j=1

log2

[
1 +

P

σ2nt

k2η2

64π2

nr∑
i=1

∣∣Lnt+i(urnt+i,j ) · Lj(−urnt+i,j )
∣∣2

Rrad
nt+iR

rad
j r2

nt+i,j

]

≤
nt∑

j=1

log2

[
1 +

P

σ2nt

k2η2

64π2

nr∑
i=1

∣∣Lnt+i(urnt+i,j )
∣∣2 ∣∣Lj(−urnt+i,j )

∣∣2
Rrad

nt+iR
rad
j r2

nt+i,j

]

=
nt∑

j=1

log2

[
1 +

P

4σ2k2nt

nr∑
i=1

Gj(−urnt+i,j )Gnt+i(urnt+i,j )
r2
nt+i,j

]
(60)

and

C ≤
nr∑

j=1

log2

[
1 +

P

σ2nt

k2η2

64π2

nt∑
i=1

∣∣Lnt+j(urnt+j,i) · Lj(−urnt+j,i)
∣∣2

Rrad
nt+jR

rad
i r2

nt+j,i

]

≤
nr∑

j=1

log2

[
1 +

P

σ2nt

k2η2

64π2

nt∑
i=1

∣∣Lnt+j(urnt+j,i)
∣∣2 ∣∣Lj(−urnt+j,i)

∣∣2
Rrad

nt+jR
rad
i r2

nt+j,i

]

=
nr∑

j=1

log2

[
1 +

P

4σ2k2nt

nt∑
i=1

Gnt+j(urnt+j,i)Gi(−urnt+j,i)
r2
nt+j,i

]
(61)

where Gi is the directivity of antenna i (i = 1, 2, . . . , nt + nr). In
deriving (60) and (61), the relation Gi = η|kLi|2/4πRrad

i has been
used. The right-hand sides of (60) and (61) are the upper bounds of
the capacity for the MIMO system in free space and will be denoted
by

Cm =
nt∑

j=1

log2

[
1 +

P

4σ2k2nt

nr∑
i=1

Gj(−urnt+i,j )Gnt+i(urnt+i,j )
r2
nt+i,j

]
(62)

and

C ′
m =

nr∑
j=1

log2

[
1 +

P

4σ2k2nt

nt∑
i=1

Gnt+j(urnt+j,i)Gi(−urnt+j,i)
r2
nt+j,i

]
(63)

respectively. Now Cm and C ′
m can be further maximized by optimizing

the geometry of antennas under the constraint that the maximum sizes
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of all antennas are fixed. From (62) and (63), maximizing Cm and C ′
m

is equivalent to maximizing antenna gain. From (57) it can be seen
that the antenna gain could be as large as one wishes if the antenna
bandwidth is allowed to be infinitely small. Therefore the antenna
gain should be maximized with a specified antenna bandwidth as an
antenna with very small bandwidth is a useless property in practice.
Let us consider the maximization of (62). Introducing (57) into the
right-hand side of (62) yields the upper bounds of capacity, denoted
by maxCm, for four different arrangements:

• Both transmitting antennas and receiving antennas are
directional

maxCm

∣∣∣
d−d

=
nt∑

j=1

log2

1 +
P

4σ2k2nt

nr∑
i=1

ρ(kaj)
∣∣∣
dir

ρ(kant+i)
∣∣∣
dir

BjBnt+ir2
nt+i,j


(64)

• Both transmitting antennas and receiving antennas are omni-
directional

maxCm

∣∣∣
o−o

=
nt∑

j=1

log2

1 +
P

4σ2k2nt

nr∑
i=1

ρ(kaj)
∣∣∣
omn

ρ(kant+i)
∣∣∣
omn

BjBnt+ir2
nt+i,j


(65)

• Transmitting antennas are directional while receiving antennas
are omni-directional

maxCm

∣∣∣
d−o

=
nt∑

j=1

log2

1 +
P

4σ2k2nt

nr∑
i=1

ρ(kaj)
∣∣∣
dir

ρ(kant+i)
∣∣∣
omn

BjBnt+ir2
nt+i,j


(66)

• Transmitting antennas are omni-directional while receiving
antennas are directional

maxCm

∣∣∣
o−d

=
nt∑

j=1

log2

1 +
P

4σ2k2nt

nr∑
i=1

ρ(kaj)
∣∣∣
omn

ρ(kant+i)
∣∣∣
dir

BjBnt+ir2
nt+i,j


(67)

In (64)–(67), 2ai and Bi represent the maximum dimension and the
fractional bandwidth of antenna i (i = 1, 2, . . . , nt + nr) respectively.
Similar upper bounds can be obtained for C ′

m. Once the required
capacity is specified, (64)–(67) can be used to determine the antenna
sizes required to achieve the capacity. Now some special MIMO
systems will be discussed.
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5.2.1. SISO System

Consider a SISO system consisting of antenna 1 and antenna 2 shown in
Figure 12, where antenna 1 is transmitting and antenna 2 is receiving.
In this case (62) reduces to

Cm = log2

[
1 +

P

4σ2k2

G1(ur1,2)G2(−ur1,2)
r2
1,2

]
(68)

The upper bounds of information capacities as a function of
maximum antenna size for the SISO systems have been depicted in
Figures 13–15, where p/σ2 = 20 dB, k = 1 and a1 = a2 = a.
It can be seen that the upper bounds of information capacities
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Figure 12. A SISO system.
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Figure 13. maxCm|d−d (k = 1, a1 = a2, B1 = B2, p/σ2 = 20 dB).
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Figure 14. maxCm|o−o (k = 1, a1 = a2, B1 = B2, p/σ2 = 20 dB).
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Figure 15. maxCm|d−o (k = 1, a1 = a2, B1 = B2, p/σ2 = 20 dB).

are a monotonically increasing function of the maximum antenna
size a but a monotonically decreasing function of fractional antenna
bandwidth. It is also indicated that once the maximum antenna
sizes are given the SISO system with both transmitting and receiving
antenna being directional has the potential to achieve the highest
information capacity. If both the transmitting antenna and the
receiving antenna are small (ka < 1), (64)–(67) may reduce to

maxCm

∣∣∣small

d−d
= log2

{
1+

p

σ2
· π

k2
· 1
B1B2

· 6(ka1)3

2(ka1)2+1
· 6(ka2)3

2(ka2)2 + 1

}
(69)
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maxCm

∣∣∣small

o−o
= log2

{
1+

p

σ2
· π

k2
· 1
B1B2

· 3(ka1)3

2(ka1)2+1
· 3(ka2)3

2(ka2)2 + 1

}
(70)

maxCm

∣∣∣small

d−o
= maxCm

∣∣∣small

o−d

= log2

{
1+

p

σ2
· π

k2
· 1
B1B2

· 6(ka1)3

2(ka1)2+1
· 3(ka2)3

2(ka2)2 + 1

}
(71)

respectively. For a high signal-to-noise ratio p/σ2, the above equations
imply that

maxCm

∣∣∣small

d−d
≈ 1 + maxCm

∣∣∣small

d−o
, maxCm

∣∣∣small

d−o
≈ 1 + maxCm

∣∣∣small

o−o

(72)

Therefore the upper bound of the capacity of a two small directional
antenna system is about 2 bit/s/Hz higher than that of a two small
omni-directional antenna system.

5.2.2. MISO System

Consider a system consisting of nt transmitting antennas and one
receiving antenna, as shown in Figure 16, where the first nt antenna
are transmitting and the antenna nt + 1 is receiving. In this case (63)
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Figure 16. A multiple transmitting antenna system.
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reduces to

C ′
m = log2

[
1 +

P

4σ2k2nt

nt∑
i=1

Gnt+1(−uri,nt+1)Gi(uri,nt+1)
r2
i,nt+1

]
(73)

If Gi(uri,nt+1), Gnt+1(−uri,nt+1) and ri,nt+1 can be treated as a
constant (i.e., independent of i), (73) reduces to (68). Therefore the
capacity of a MISO system in free space does not increase as the
number of transmitting antennas increases, which agrees with our usual
understanding.

5.2.3. SIMO System

Consider a system consisting of nr +1 antennas as shown in Figure 17,
where antenna nr + 1 is transmitting and the rest antennas are
receiving. In this case (62) reduces to

Cm = log2

[
1 +

P

4σ2k2

nr∑
i=1

Gi(−urnr+1,i)Gnr+1(urnr+1,i)
r2
nr+1,i

]
(74)

Comparing (74) with (73), one immediately finds that the right-hand
side of (74) is higher than that of (73) if nt and nr are identical.
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Figure 17. A multiple receiving antenna system.



46 Geyi

This implies that the capacity increases with the number of receiving
antennas and agrees with our usual understanding about the SIMO
system. Assuming that Gi(−urnr+1,i), Gnr+1(urnr+1,i), and rnr+1,i can
be treated as a constant (i.e., independent of i) so that one may write
Gi(−urnr+1,i) ≈ G and Gnr+1(urnr+1,i) ≈ Gnr+1, rnr+1,i ≈ r, the
right-hand side of (74) can be expressed as

Cm = log2

(
1 +

p

σ2

π

k2
nrGnr+1G

)
(75)

where p = P/4πr2. If the capacity and the transmitting antenna gain
Gnr+1 are specified, (75) can be used to estimate how many receiving
antennas are needed to achieve the capacity. For example, if the
specified information capacity is C0, one may obtain

C0 ≤ log2

(
1 +

p

σ2

π

k2
nrGnr+1G

)
≈ log2 nr + log2

( p

σ2

π

k2
Gnr+1G

)
(76)

from (75) for large p/σ2. It follows that the number of antenna
elements required to achieve C0 must satisfy

nr ≥ 2C0−log2

(
p

σ2
π
k2 Gnr+1G

)
(77)

This indicates that the use of high gain antenna can reduce the number
of antenna elements required to achieve the specified information
capacity C0. Also from (76) one may obtain

G ≥ 2C0−log2

(
nr

p

σ2
π
k2 Gnr+1

)
(78)

This inequality combined with (57) can be used to determine the
antenna size. For example, if the receiving antennas are omni-
directional and small, one can introduce (59) into (78) to get

a ≥ 1
k

3

√
B

3
2

1
3

[
C0−log2

(
nr

p

σ2
π
k2 Gnr+1

)]
(79)

The right-hand side of (79) gives the minimum antenna size required
to achieve the capacity C0, and also answers the question as to how
many independent antennas can be squeezed into a given small volume
to satisfy a given capacity requirement, proposed in [20].
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6. CONCLUSION

The multiple-input and multiple-output (MIMO) systems have become
an increasingly important research area in wireless communication
society, and the capacity of MIMO systems has been intensively
investigated [e.g., 37–41]. In this paper, an attempt has been made
to bridge the gap between information theory and electromagnetic
theory, and the MIMO channel capacity has been studied from the
electromagnetic point of view. It has been shown that the channel
matrix can be identified as the scattering matrix of the multiple
antenna system, and the channel matrix elements are related to
antenna parameters. Since the antenna parameters have upper bounds
once maximum antenna dimensions are specified, the capacity of a
wireless MIMO has upper bounds related to the maximum dimension
of the antennas. These upper bounds of capacity can be used to
estimate the antenna numbers (or real estate) demanded to achieve
certain capacity requirement. The procedure of predicting the channel
matrix discussed in the paper is applicable to a general MIMO system
with a complicated environment, and may be used to determine the
site-specific channel models through numerical simulations. In this
respect, much more work has yet to be done.
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