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Abstract—This paper presents simple formulas for designing
different configurations of two-dimensional photonic band gap (PBG)
structures. These formulas are obtained by interpolating full wave
analysis based on the plane wave expansion method. The design
parameters of these formulas include the physical dimensions of the
unit cell and the electrical properties of both host and inclusion in
the structure. These formulas represent an efficient and fast method
to obtain the band gap and the center frequency of different PBG
structures.

1. INTRODUCTION

The wave propagation in periodic structure has attracted many
researchers to investigate the properties of these structures over the
past ten years [1]. Photonic band gap structures have frequency
stop bands over which the propagation of electromagnetic waves are
forbidden in certain or all directions. The band gap frequency in such
periodic structure depends on many factors such as host and inclusion
dielectric constants, lattice type, filling fraction, periodicity, and angle
of incidence.
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PBG structures were initially applied to optical applications like
high-quality optical mirrors and resonators [2–6]. By scaling optical
PBG structures, electromagnetic crystals could be realized to be used
in the microwave range. Recently, many potential applications have
been introduced for 1-D, 2-D, and 3-D electromagnetic band gap
structures [7–12]. The present paper is mainly focused on 2-D dielectric
PBG structures. Figure 1 shows schematic diagrams for the cross
sections of general 2-D square and triangular PBG structures.

Analysis of photonic band gap structures has been discussed by
different techniques such as method of moment [13], transfer matrix

(a) Square lattice. �a1 = ax̂, �a2 = aŷ.

(b) Triangular lattice. �a1 = ax̂, �a2 = a(0.5x̂ + 0.5
√

3ŷ).

Figure 1. Geometry of a 2-D PBG structure on (a) square lattice, (b)
triangular lattice. (�a1 and �a2) are the basis vectors. (εa and εb) are
the dielectric constants of both the inclusion and the host respectively.
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method [14], finite difference time domain [15], finite element method
[16] and plane wave expansion method [17]. Each method has its
own advantages and disadvantages that make it more appropriate
to simulate specific problems related to PBG structure. However, a
common disadvantage in all these method is the large computational
requirements to calculate the band gap diagram. The motivation
of this paper is to introduce simple design equations based on
interpolating the full wave results of different PBG structures. The
analysis of the present paper is based on the plane wave method and
its also verified by using FDTD.

The plane wave method has been found to be a simple and
efficient method to obtain the dispersion relation of different PBG
configurations [17]. The following section presents a brief description
of this method for different cases including rectangular and triangular
lattice grids. Then this method is applied on different configurations
of PBG structures to obtain their corresponding band gap diagrams.
These different configurations include different shapes of implanted
dielectric rods, different dielectric constants and different polarizations.
By interpolating the corresponding results, we could obtain design
equations for the width of the band gaps and the corresponding center
frequencies for these different configurations. These design equations
can be used as a fast designing tool to design 2-D PBG structures. A
design example is presented to show how one can use these equations
to design a 2-D PBG structure of specific rod type, specific center
frequency and bandwidth.

2. THEORY AND ANALYSIS

This section presents a brief description of plane wave method to obtain
the dispersion diagram of two-dimensional PGB structures. More
details can also be found in previously published papers [17, 19]. In
this method, the total field of a periodic structure is represented as a
superposition of infinite discrete spectral components. Each spectral
component represents either a propagating or an evanescent plane
wave. These discrete components have the same periodicity of the
periodic boundary condition. Most of PBG structures are based on
non-magnetic material. Thus, it is preferred to formulate the problem
in terms of the magnetic field to avoid the discontinuity of the normal
component of the electric field at the interface between the host and
the inclusion. Such magnetic field in an infinite 2-D periodic structure
can be represented as

H(r) = ejk·r ∑
G

∑
j=1,2

êjHj,k(G)ejG·r (1)
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where r is the vector in the lattice plane, k is the lattice vector, G is the
reciprocal lattice vector, êj is the unit vector parallel to the direction
of the magnetic field where j = 1 corresponds to TMz wave and j = 2
corresponds to TEz wave, and H(G) is the Fourier expansion of the
magnetic field.

The wave equation of the magnetic field in a spatial varying
medium is

∇× 1
ε(r)

∇× H(r) =
ω2

c2
H(r) (2)

By applying the spectral representation of Eq. (1) into the above
magnetic field wave equation and taking into consideration the
directions of the TMz and the TEz components of the magnetic field,
one can obtain the following eigenvalue problems for both TM and TE
waves [17]

∑
G′

|k + G||k + G′|ε−1(G − G′)H1,k(G′) =
ω2

c2
H1,k(G) (3a)

∑
G′

(k + G) · (k + G′)ε−1(G − G′)H2,k(G′) =
ω2

c2
H2,k(G) (3b)

where ε(G) is the Fourier transformation of the relative dielectric
constant ε(r) given by:

ε(G) =
1
A

∫
A

ε(r)e−jG·rdr (4)

where ε(r) is the dielectric constant as a function of the position inside
the lattice, r is the coordinate in a plane perpendicular to the rods,
and A is the area of the lattice unit cell. Equation (4) can be simplified
as:

ε(G) =

{
βεa + (1 − β)εb for G = 0
(εa − εb)S(G) for G �= 0

(5)

where β is the filling fraction, defined as the area of the rod to the area
of the unit cell and S(G) is the structure factor that depends on the
geometry of both the rod and the lattice as follows:

S(G) =
1
A

∫
inclusion

e−jG·rdr (6)

In the present analysis, S(G) is calculated for different structures for
both rectangular and triangular lattice as shown in Fig. 1. To calculate



Progress In Electromagnetics Research, PIER 74, 2007 323

the band gap, the k vector is calculated around the boundaries of the
irreducible Brillouin zone [18] as shown in Fig. 2. The remaining points
inside the irreducible Brillouin zone can be obtained by interpolating
the values at its boundaries.

(a) Reciprocal space of square lattice. �b1 = 2π
a

, �b2 = 2π
a

.

(b) Reciprocal space of triangular lattice. �b1 = 2π
a

(
x̂ − 1√

3
ŷ
)

, and �b2 = 2π
a

2√
3
ŷ.

Figure 2. The reciprocal lattices of the PBG structures. The
reciprocal lattice bases are (�b1 and �b2). The light shading area is the
first Brillouin zone; the dark shading area is the irreducible Brillouin
zone and the dark points are the reciprocal lattice points.
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3. DESIGN EQUATIONS OF TWO-DIMENSIONAL PBG

In this section rectangular and triangular lattice PBG structures of
different rod shapes are investigated for both TM and TE polarization
by using PWM. Then the results of these different configurations
are interpolated to obtain design equations for these configurations.
The present analysis is based on truncating the infinite matrix of
the corresponding eigenvalue problem in Eq. (3) to N × N where N
is chosen to be eleven. It is found that such number of expansion
functions is enough for a good accuracy and it is also suitable for
simulation time. The band gap width considered here is basically the
band gap between the first two modes of the structure if nothing else
is mentioned.

Figure 3 shows the calculated relative bandwidth of the first band
gap ∆ω/ω0 as a function of the filling fraction β for different index
ratios α = εa/εb. The negative value of ∆ω/ω0 indicates that there
is an overlap region between the dispersion curves of the first and the
second modes. This means that the real band gap would correspond
to the positive values of ∆ω/ω0 only. The results shown in Fig. 3
represent both square and triangular lattices of circular rods. The
lattice constant in both cases is a = 12 mm. For the case where the
index ratio is greater than unity, α > 1, the dominant band gap is
found to be of TM polarization as shown in Figs. 3(a) and (b). In
this case, it can be noted that increasing the index ratio causes the
peak of the relative bandwidth to take place at a smaller value of the
filling fraction. On the other hand, for the case of , the dominant
band gap is found to be of TE polarization as shown in Figs. 3(c)
and (d). In this case, decreasing the index ratio causes the peak of the
relative bandwidth to take place at a larger value of the filling fraction.
Figure 3(d) also shows that the relative bandwidth has a considerable
values in triangular lattice case for different values of α ≤ 1/2 while
in square lattice case the relative bandwidth values exist for α ≤ 1/6,
Fig. 3(c).

The value of βmax would be defined here as the optimum value
of filling fraction β where the maximum relative bandwidth occurs for
certain value of the index ratio α. This value represents an important
designing factor to obtain the maximum available bandwidth of a
certain PBG structure.

By getting the peaks of Fig. 3 for different values of α and
interpolating the obtained results, one can obtain the designing
equation

βmax(α) =
N∑

n=0

anαn (7)



Progress In Electromagnetics Research, PIER 74, 2007 325

(a) Square lattice with (b) Triangular lattice with

α = εa/εb > 1 (TM polarization). α = εa/εb > 1 (TM polarization).

(c) Square lattice with (d) Triangular lattice with

α = εa/εb < 1 (TE polarization). α = εa/εb < 1 (TE polarization).

Figure 3. The relative band width ∆ω/ω0 versus filling fraction
β for different index ratio α = εa/εb of circular rods. The lattice
constant a = 12 mm. The dotted line is the maximum limit of the
filling fraction.

For the case of a square lattice of circular rods, the value of βmax as a
function of the index ratio for α > 1 Fig. 4(a) is found to be:

βmax(α) = −4.141 × 10−6α5 + 1.6899 × 10−4α4 − 2.7977 × 10−3α3

+2.4554 × 10−2α2 − 0.12827α + 0.47809 (8a)

While for α < 1 Fig. 4(c):

βmax(α) = 0.34147α2 − 0.53021α + 0.59739 (8b)

Figures 4(a) and (c) show a comparison between the calculated βmax

and the corresponding design equation for the case of a square lattice
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(a) Square lattice with (b) Triangular lattice with

α = εa/εb > 1 (TM polarization). α = εa/εb > 1 (TM polarization).

(c) Square lattice with (d) Triangular lattice with

α = εa/εb < 1 (TE polarization). α = εa/εb < 1 (TE polarization).

Figure 4. βmax versus α for circular rods.

of circular rods. Similarly, Figures 4(b) and (d) show the same
comparison for the case of the triangular lattice of circular rods. It
can be noticed the good agreement between the actual results and the
corresponding design equations.

These peaks of the relative maximum bandwidth can also be
interpolated as a function of βmax as follows

max(∆ω/ω0) =
M∑

m=0

bm(βmax(α))m (9)

This function represents another important designing equation where
it is usually required to increase the relative bandwidth. For the case
of a square lattice of circular rods, the maximum relative bandwidth
is given by
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(a) Square lattice with (b) Triangular lattice with

α = εa/εb > 1 (TM polarization). α = εa/εb > 1 (TM polarization).

(c) Square lattice with (d) Triangular lattice with

α = εa/εb < 1 (TE polarization). α = εa/εb < 1 (TE polarization).

Figure 5. ∆ω/ω0|max versus βmax for circular rods.

for α > 1, Fig. 5(a)

max(∆ω/ω0) = −8.3658β3
max + 7.3676β2

max − 4.6609βmax + 0.84218
(10a)

While for α < 1, Fig. 5(c)

max(∆ω/ω0) = 2.7544β2
max − 0.3744βmax − 0.54748 (10b)

Figure 5 shows a comparison between the calculated maximum relative
bandwidth and the corresponding value obtained by the design
equations for both square and triangular lattices of circular rods.

The remaining designing parameter that should be considered
is the center frequency of the maximum relative bandwidth; f0; at
β = βmax which is a function of the lattice constant, the index
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ratio, the filling ratio and the dielectric constant of the host. It is
found that, direct interpolation of such central frequency is usually
weakly convergent. Thus, it is preferred to interpolate the reciprocal
normalized central frequency defined as 1/(f0

√
εba). For α > 1, such

reciprocal normalized central frequency can be approximated as

1/ (f0
√

εba) =
N∑

v=0

cva
v (11a)

On the other hand, for PBG with α < 1, the reciprocal normalized
central frequency can be approximated as

1/ (f0
√

εba) =
N∑

v=0

cva
−v (11b)

For the case of the square lattice of circular dielectric rods, the central
frequency is given by for α > 1, Fig. 6(a),

f0(a, α) =
1/

√
εba[

1.5385×10−7α5 − 4.9417×10−6α4 + 6.3124×10−5α3

−4.2991 × 10−4α2 + 1.8655 × 10−3α + 4.2527 × 10−3

]

(12a)
while for α < 1 Fig. 6(c)

f0(a, α) =
1/

√
εaa[

3.0923 × 10−6α−3 − 7.9818 × 10−5α−2

+1.0737 × 10−3α−1 + 4.94 × 10−3

] (12b)

where f is in (GHz) and a is in (mm). Figure 6 shows a comparison
between the calculated reciprocal normalized central frequency and the
corresponding interpolation as a function of index ratio for both square
and triangular lattices of circular rods.

The previous analyses are applied on different configurations of
PBG structures as shown in Figures 7 and 8 [19]. These configurations
include square and triangular lattice in both cases TE and TM
polarizations for α > 1 and for α < 1. The design equations of these
structures are summarized in the Appendix. From the analysis of these
PBG configurations in square and triangular lattice, it is found that
each configuration has special band gap properties. These properties
could be classified according to the existence of a complete band gap,
or the existence of a band gap at higher order modes as shown in
Appendix. It should also be noted that this analysis is valid for any
frequency range due to the scalability of the PBG structures.



Progress In Electromagnetics Research, PIER 74, 2007 329

(a) Square lattice with α = εa/εb > 1 (b) Triangular lattice with α = εa/εb > 1

and εb = 1 (TM polarization). and εb = 1 (TM polarization).

(c) Square lattice with α = εa/εb < 1 (d) Triangular lattice with α = εa/εb < 1

and εa = 1 (TE polarization). and εa = 1 (TE polarization).

Figure 6. 1/f0a versus α, the filling fraction is set at maximum value
for different values of α. f is in (GHz) and a is in (mm).

4. DESIGN EXAMPLE OF A PBG STRUCTURE BY
USING THE DEVELOPED EQUATIONS

Assuming that it is required to design a PBG structure of square
lattice with circular dielectric rods in microwave range where the center
frequency of its band gap is f0 = 6 GHz and the required band gap is
∆f = 2 GHz for TM polarization. Thus, the required steps to design
a PBG structure with these required specifications are as follows:

(a) Using the maximum relative bandwidth equation (9a)

For ∆f/f0 = 1/3, βmax is found to be as shown in Fig. 9(a)
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7. Rod shapes and configurations considered in square
lattice. (a) square-circle (SC). (b) square-square (SS). (c) square-
rotated square (SRS). (d) square-cross (SCR). (e) square-rotated
cross (SRCR). (f) square-mixed square (SMS). (g) square-mixed cross
(SMCR).

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 8. Rod shapes and configurations considered in triangular
lattice. (a) triangular-circle (TC). (b) triangular-hexagon (TH). (c)
triangular-rotated hexagon (TRH). (d) triangular-triangle (TT). (e)
honeycomb-circle (HC). (f) honeycomb-hexagon (HH). (g) honeycomb-
rotated hexagon (HRH). (h) honeycomb-triangle (HT). (i) honeycomb-
rotated triangle (HRT).
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(a) ∆ω/ω0|max versus βmax for (b) βmax versus α for square

square lattice of circular rods. lattice of circular rods.

(c) 1/f0a versus α for square lattice of circular rods.

Figure 9. Design steps of a 2-D PBG of square lattice with circular
dielectric rods, f0 = 6 GHz and band gap ∆f = 2 GHz.

(b) Applying the value of βmax, it is possible to obtain α by using
equation (10a)

For βmax = 0.1333 the corresponding value of α is found to be 9 as
shown in Fig. 9(b)

(c) Finally applying the obtained value of α into the (f0, α) relation,
using equation (12a) where for α = 9 we get 1/f0a = 8.9167×10−3

as shown in Fig. 9(c)

Thus, the final design parameters at f0 = 6 GHz are found to be
a = 18.7 mm, r = 3.85 mm, εa = 9, and εb = 1. Applying these
parameters to the PWM simulation program, the resulting band gap
is found to be between f1 = 5.068 GHz and f2 = 6.99 GHz as shown
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Figure 10. The PWM results of the design example using the
parameters obtained from the design equations.

(a) Normal incidence θ = 0◦, φ = 0◦ (b) Oblique incidence θ = 0◦, φ = 45◦

Figure 11. Results of FDTD simulation of transmission response for
the PBG in Fig. 9.

in Fig. 10. This result shows a good agreement with the pre-required
specifications of the design problem.

The transmission response of this PBG structure is also verified by
using periodic FDTD algorithm [15]. Ten rods are used to simulate the
periodic PBG in the propagation direction, while periodic boundary
conditions are applied to simulate infinite periodicities in the other
directions. A UPML absorbing boundary condition is used to truncate
the domain of analysis in the direction of propagation. A TMz plane
wave Gaussian pulse is used as an excitation for this 2-D periodic
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structure by using total field scattered field (TF/SF) formulation [15].
Figure 11 shows the calculated transmission coefficients for this PBG
structure for two different angles of incidence. A comparison between
the FDTD results and the dispersion diagram of the PWM shows a
good agreement where the band gap regions are identical.

5. CONCLUSION

Design formulas for 2D photonic band gap structures are presented.
These formulas are obtained by interpolating the results obtained by
using plane wave expansion method. The present analysis is applied
for both rectangular and triangular lattices that permitted the ability
to use different structure forms. The design formulas include the
center frequency of operation as a function of the lattice constant,
the filling ratio, and the permittivity of host and inclusion. The
formulas also include the optimum filling fraction that can be used
to obtain maximum bandwidth as a function of the filling ratio, and
the maximum bandwidth as a function of the optimum filling fraction.

APPENDIX A.

The previous steps for obtaining design equations are applied on
different configurations of PBG structures. These configurations
include square and triangular lattice for both TE and TM polarizations
and for both α > 1 and α < 1. The design equations of these structures
are summarized in the following tables.

a. Case I (α > 1)

For α > 1 it is found that the dominant band gap is TM. In this
case, it is found that increasing the index ratio causes the peak of
the relative bandwidth to take place at a smaller value of the filling
fraction.

(1) Square Lattice (TM-Polarization) (α > 1)

(2) Triangular Lattice (TM-Polarization) (α > 1)

(3) Triangular Honeycomb Lattice (TM-Polarization) (α > 1)

In this case, the band gap does not exist between the first two
modes as in the previous cases. However, it could be found between
the second and the third mode for values of greater than or equal five.
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Table A1. Design equations of square lattice PBG structure for TM
polarization where (α > 1).

Type No. Equations

(a)

(b)

SS
(c)

 

(a)

(b)

SC (c)

(a)

(b)  

SCR
(c)

(a)

(b)

SMCR
(c)

(a)

(b)

SRCR
(c)

(a)

(b)

SMS (c)

(a)

(b)

SRS (c)  

βmax(α) = −2.3459×10−6α5+10.093×10−5α4−17.965×10−4α3

+17.443 × 10−3α2 − 0.1037α + 0.44203

max(∆ω/ω0) = 1.7261β2
max − 3.5588βmax + 0.76458

f0(a, α) =
1/
√

εba

[1.2821×10−7α5 − 4.9534×10−6α4 + 7.5233×10−5α3

−5 .7535 10−4α2+2.4655 α10−3 +3.4394×10−5]

βmax(α) = −4.141×10−6α5+1.6899×10−4α4−2.7977×10−3α3

+2.4554× 10−2 α2 − 0.12827α + 0.47809

max(∆ω/ω0) = −8.3658β3
max +7.3676β2

max−4.6609βmax +0.84218

f0(a, α) =
1/

√
εba

[1.5385×10−7α5 − 4.9417×10−6α4 + 6.3124×10−5α3

−4.2991×10−4α2+1.8655×10−3α +4.2527×10−3]

βmax(α) = −2.7652×10−6α5+1.2653×10−4α4 −2 .2657×10−3α3

+2.0674 × 10−2α2 − 0.10866α + 0.41462

max(∆ω/ω0) = −7.6628β3
max +7.1226β2

max−4.9761βmax +0.80522

f0(a, α) =
1/

√
ε a

[−2.5641×10−8α5 + 5.711×10−7α4 − 1.1655×10−8α3

−9.6026×10−5α2+1.0591×10−3α +4.7564×10−3]

βmax(α) = −1.5905×10−6α5+7.7302×10−5α4−1.4995×10−3α3

+0.015098α2−0.089117α + 0.38664

max(∆ω/ω0) = 5.0163β3
max − 0.3833β2

max − 3.6507βmax + 0.73191

f0(a, α) =
1/

√
εba

[−5.1282×10−8α5+1.6084×10−6α4−1.704×10−5α3

+4.8392×10−5α2+3.7921×10−4α +0.0037612]

βmax(α) = −3.2713× 10−6α5 + 1.394× 10−4α4 − 0.0023711α3

+0.020893α2−0.10728α+0.40572

max(∆ω/ω0) = −7.8726β3
max +7.6325β2

max−5.2271βmax +0.82195

f0(a, α) =
1/

√
εba

[5.641×10−8α5−2.183×10−6α4+3.491×10−5α3

−0.000301α2+0.001599α+0.004263]

βmax(α) = −3.5784× 10−6α5 +1.4982× 10−4α4 − 0.0025741α3

+ 0.023621α2−0.12824α+0.48138

max(∆ω/ω0) = −17.524β3
max +13.646β2

max−5.9793βmax +0.91454

f0(a, α) =
1/

√
εba

[1.9231×10−7α5−6.6142×10−6α4+8.8258×10−5α3

−0.00058429α2+0.0021297α+0.0021727]

βmax(α) = −9.8394 × 10−6α5 + 0.00036373α4 − 0.0053214α3

+0.039907α2−0.17097α+0.5173

max(∆ω/ω0) = −9.645β3
max + 8.8939β2

max − 5.1899βmax + 0.88357

f0(a, α) =
1/

√
εba

[1.2626×10−6α3−4.9892×10−5α2+0.00073131α+0.0055149]

× ×

b
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Table A2. Design equations of triangular lattice PBG structure for
TM polarization where (α > 1).

Type No. Equations 

(a) 

(b) 

 
 

 
TC 

(c) 

(a) 

(b) 

 
 

 
TH (c) 

(a) 

(b) 

 

 
 

TRH 
 

 
 

(c) 

(a) 

(b) 

 
 

 
TT 

 
(c) 

βmax(α) = −1.5396×10−5α5+5.4826×10−4α4−7.6488×10−3α3

+5.3722 × 10−2α2 − 0.21008α + 0.55824

max(∆ω/ω0) = −3.0631β3
max +4.0749β2

max−3.5876βmax +0.83159

f0(a, α) =
1/

√
εba

[1.3908×10−7α5 − 5.024×10−6α4 + 7.0711×10−5α3

−4.9953 10−4α2+2.0088 α10−3 +3. 10−5]

βmax(α) = −1.5514× 10−5α5 +5.5216× 10−4α4 − 7.6984 −3α3

+5. 10−2α2 − 0.21072α + 0.55806
max(∆ω/ω0) = −2.9776β3

max +4.0585β2
max−3.5973βmax +0.83178

f0(a, α) =
1/

√
εba

[8.1453×10−8α5 − 3.2708×10−6α4 + 5.1599×10−5α3

−4.0964×10−4α2+1.8313×10−3α +3.9154×10−3]

βmax(α) = 2.3817 × 10−5α4 − 0.00082916α3 + 0.011697α2

− 0.08932α + 0.43282

max(∆ω/ω0) = −16.818β3
max +10.823β2

max−4.5364βmax +0.86926

f0(a, α) =
1/

√
εba

[2×10−6α3 − 6.7×10−5α2−0.00083α+0.0048]

βmax(α) = −1.8745×10−5α5+6.5795×10−4α4−8.984×10−3α3

+6.0953×10−2α2−0.22452α + 0.54599
max(∆ω/ω0) = −1.8663β3

max +4.3259β2
max−3.8945βmax +0.81259

f0(a, α) =
1/

√
εba

[−1.1281×10−8α5 − 1.5326×10−7α4 + 1.1936×10−5α3

−1.7355×10−4α2+1.1824×10−3α +4.465×10−3]

× × 7983×

10×
4011×
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Table A3. Design equations of triangular lattice-Honeycomb PBG
structures for TM polarization where (α > 1).

Type No. Equations 

(a) 

(b) 

  
 

 
HC23

 (c) 
 

 

(a) 
 (b) 

  
  

 HH23 
 (c) 

(a) 
 

(b) 

 
 

 
HRH23

 
(c) 

(a) 
 

(b) 

 
 

 
HRT23 

 
(c) 

 

(a) 
 

(b) 

 
  

 
HT23 

 (c) 
 

βmax(α) = −1.465 × 10−5α5 + 0.00051881α4 − 0.0071957α3

+ 0.050304α2 − 0.19811α + 0.57617

max(∆ω/ω0) = −0.40627β3
max+1.5514β2

max−3.6206βmax+0.75432

f0(a, α) =
1/

√
εba

[5.5621×10−8α5 − 2.2606×10−6α4 + 3.6281×10−5α3

−0.00029768α2+0.0014396α +0.0025359]

βmax(α) = −1.4316 × 10−5α5 + 0.00050848α4 − 0.0070766α3

+0.049659α2 − 0.19636α + 0.57352

max(∆ω/ω0) = −0.41023β3
max+1.5809β2

max−3.6425βmax+0.75503

f0(a, α) =
1/

√
εba

[5.5621×10−8α5 − 2.2606×10−6α4 + 3.6281×10−5α3

−0.00029768×α2+0.0014396α +0.0025359]

βmax(α) = −4.2291× 10−6α5 + 0.0001988α4 − 0.0036243α3

+0.032746α2 − 0.16156α + 0.55062

max(∆ω/ω0) = 1.4076β2
max − 3.6361βmax + 0.75771

f0(a, α) =
1/

√
εba

[5.5621×10−8α5 − 2.2606×10−6α4 + 3.6281×10−5α3

−0.00029768α2+0.0014396α +0.0025359]

βmax(α) = −1.8399 × 10−5α5 + 0.00064739α4 − 0.0088564α3

+0.060168α2 − 0.22312α + 0.58141

max(∆ω/ω0) = 2.1853β3
max + 0.87509β2

max − 3.762βmax + 0.72024

f0(a, α) =
1/
√

εba

[2.3331×10−8α5 − 1.2991×10−6α4 + 2.5889×10−5α3

−0.00024715α2+0.0013192α +0.0025987]

βmax(α) = −1.2913 × 10−5α5 + 0.0004595α4 − 0.0064113α3

+0.045119α2 − 0.17823α + 0.51686

max(∆ω/ω0) = −4.2198β3
max +5.7629β2

max−5.0873βmax +0.79864

f0(a, α) =
1/
√

εba

[5.635×10−9α5 − 6.8744×10−7α4 + 1.7868×10−5α3

−0.00019791α2+0.0011802α +0.0027391]
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b. Case II (α < 1)

For the case of α < 1, the dominant band gap is found to be of TE
polarization. In this case, decreasing the index ratio causes the peak
of the relative bandwidth to take place at a larger value of the filling
fraction.

(1) Square Lattice (TE-Polarization) (α < 1)

(2) Triangular Lattice (TE-Polarization) (α < 1)

(3) Triangular Lattice-Honeycomb Structures (TE-Polarization)
where α < 1)

In this case, the first band gap exists between the 3rd and 4th
mode of the structure of α ≤ 1/4.

Table A4. Design equations of square lattice PBG structure for TE
polarization where (α < 1).

Type No. Equations 
(a) 

(b) 

 
 

 
SS (c) 

(a) 

(b) 

 
 

 
SC  (c) 

 

(a) 

(b) 

 

 
SRCR (c) 

(a) 

(b) 

 
 
 

SMS 
(c) 

βmax(α) = 17.761α4 − 23.538α3 + 11.656α2 − 2.9292α + 0.839

max(∆ω/ω0) = 2.4119βmax − 1.3341

f0(a, α) =
1/

√
εaa

3.0418×10−6α−3−8.9561×10−5α−2+1.0218×10−3α−1+5.0011×10−3

βmax(α) = 0.34147α2 − 0.53021α + 0.59739

max(∆ω/ω0) = 2.7544βmax − 0.3744βmax − 0.54748

f0(a, α) =
1/

√
εaa

3.0923×10−6α−3−7.9818×10−5α−2+1.0737×10−3α−1+4.94×10−3

βmax(α) = 0.51095α2 − 0.54786α + 0.51162

max(∆ω/ω0) = 3.3459βmax − 1.4782

f0(a, α) =
1/

√
εaa

−3.3098×10−5α−2+0.00088589α−1+0.0053759

βmax(α) = 0.45116α2 − 0.62026α + 0.59677

max(∆ω/ω0) = 2.0839βmax − 1.0705

f0(a, α) =
1/

√
εaa

−1.7439×10−5α−2+0.00054032α−1+0.0038746

2
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Table A5. Design equations of triangular lattice PBG structure for
TE polarization where (α < 1).

Type No. Equations 
(a) 

(b) 

 
 

 
TC 

(c) 

(a) 

(b) 

 

 
 

TH (c) 3

(a) 

(b) 

 
 
 
 

TRH  (c)  

βmax(α) = 0.89764α2 − 0.92777α + 0.72132

max(∆ω/ω0) = 2.7806βmax − 1.3252

f0(a, α) =
1/
√

εaa

3.3411×10−6α−3−9.1667×10−5α−2+1.0004×10−3α−1+4.8712×10−3

βmax(α) = 0.17α2 − 0.196α + 0.1978

max(∆ω/ω0) = 10.7βmax − 1.52

f0(a, α) =
1/

√
εaa

2.7972×10−6α−3−7.8788×10−5α−2+9.7902×10−4α−1+4.857×10−3

βmax(α) = 0.90426α2 − 0.93421α + 0.72425

max(∆ω/ω0) = 2.8723βmax − 1.3779

f0(a, α) =
1/

√
εaa

3.2822×10−6α−3−9.2682×10−5α−2+0.0010145×α−1+0.0048288

Table A6. Design equations of triangular lattice-Honeycomb PBG
structures for TE polarization where (α < 1).

Type No. Equations 

(a) 32336.027525.0             
 1886.2 5546.5 9194.7 0351.5) 2345

max

����
������� α�α�α�α�α  (β�

 

(b) � � � � 6684.1398.13819.25/max max
2
max0 �+�−=�(∆ β�β�ω�ω  

 
 

 
HC34

 
(c) 

0027903.000064636.010 6667.1
 /1

),(
125 ++���

=
������ �α�α

�ε
�α

a
af a

o  

(a) 32751.012346.0                
 47732.0 9166.2 683.10 7316.9) 2345

max
+�+

−−+−�= �α�α�α  (β�
 

(b) � � � � 6227.1104.13359.25/max max
2
max0 +�−�=�(∆ β�β��ωω  

 
 

 
HH34

 
(c) 

0027903.000064636.010 6667.1

 /1
),(

125 �++��
=

������ �α

�ε
�α

a
af a

o  

(a) 31445.025944.0
1752.20797.63461.90933.6) 2345

max

+�+
�−�+−�=

�α
�α�α�α�α

 
     (β�  

(b) 0106.2189.16487.31 max
2
max +�−�  

 
 
 

HRH34 (c) 
0028364.000063212.0105152.1

/1
125 �+�+�� ������

�ε  aa
 

(a) 34058.0 35064.024887.0 2 �+−  

(b) � � � � 46598.0 6796.1 max −�  

 
 
 

HRT34

(c) 0025099.000088895.0109477.5100837.2

/1
12536 �+�+− ����������

�ε aa  

 
(a) 57519.0 4772.2 828.10 323.24 019.21 234 �+�−+�−  

(b) � � � � 078782.0 8933.3 959.16 239.17 23 �+�−+�−�  

 

 
HT34

 
(c) 

0021188.00010841.0100.10107296.3

/1
12536 �++− ����������

�ε aa   

= − −
++

+
�α

)

×

×

×

× ×

× ×

− − −

− − −

− − −

− − − − −

− − − − −

�α �α
�α

)

�α

/max 0�(∆ �ωω ) =

),( =�αafo

),( =�αafo

),( =�αafo

)max �=�α  (β�

)max �=�α  (β�

� /max 0�(∆ �ωω ) =

β� β�

β�

�α

�α�α
�α�α

/max 0�(∆ �ωω ) =

�α �α �α

�α �α �α �α

�α�α�α

�α �α �α
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