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Abstract—This paper proposes the pseudo-periodic Fourier trans-
form to analyze the electromagnetic scattering from periodic structures
with non-plane wave incidence. The pseudo-periodic Fourier transform
converts arbitrary field components into pseudo-periodic functions and
the conventional grating theories based on the Floquet theorem become
applicable. The inverse transform is given by integrating with respect
to the transform parameter over a finite interval and the near field
analysis requires numerical integration. Some application examples
are numerically examined and the results show good convergence.

1. INTRODUCTION

Periodic structures are widely used in microwave, millimeter-
wave, and optical wave regions because of various effects; for
example, wave reflection, wavelength or polarization selectivity, mode
conversion. Therefore, electromagnetic scattering from periodic
structures has been extensively studied, and many analytical and
numerical approaches have been developed to analyze the scattering
problems. When a plane wave is incident on a periodic structure,
the scattered waves propagate to discrete directions. Then most of
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the approaches are based on the Floquet theorem, which claims that
the electromagnetic fields are pseudo-periodic by assuming plane wave
incidence [1]. This means that each field components is a product of
a periodic function and an exponential phase factor, and allows us to
reduce the analysis region to the single periodicity cell. However, for
the problems with non-plane wave incidence, the Floquet theorem is
no longer applicable. Surely there are a limited number of papers that
address the more realistic situation of the Gaussian beam incidence
[2, 3]. The beam field is well approximated by a superposition of a
finite number of propagating plane waves because the evanescent plane
waves are negligible to express the beam fields. Then, the scattered
fields for the beam incidence can be calculated by superposing all the
scattered fields for each plane wave component.

Recently, Caloz et al. [4] and Jandieri et al. [5] developed a
numerical approach to analyze radiation from a line source in two-
dimensional photonic crystals formed by periodic array of circular
cylinders. The aim of the present paper is to propose a novel numerical
approach for scattering problems of periodic structures with arbitrary
incident waves. For this purpose, we propose a novel transform by
extending the concept of the line source array introduced in Refs.
[4, 5]. We call it pseudo-periodic Fourier transform (PPFT) because
it is similar to the periodic Fourier transform (PFT) developed by
Nakayama [6] but makes any function pseudo-periodic. PFT, which
makes any function periodic, was originally developed to analyze a
scattering problem of a plane wave from a finite periodic surface,
and also applied to the propagation analyses in waveguide transition
problems [7]. The relation between PFT and PPFT is equivalent to
that between the periodic and the pseudo-periodic functions. However,
we believe that the periodic property of PPFT with respect to the
transform parameter is good for thinking the numerical integration
required on the inverse transform. Anyway, PPFT converts an incident
field to a pseudo-periodic function and, therefore, it is expressed in
the Rayleigh expansion (e.g. plane wave expansion). The scattered
fields for each plane wave incidence can be calculated by using the
conventional approaches based on the Floquet theorem. PPFT uses
a transform parameter, which determines each plane wave incidence,
and the inverse transform is given by integrating with respect to the
transform parameter over a finite interval. Therefore, the scattered
fields for arbitrary incident field are obtained by integrating the
scattered field for each transform parameter.

Throughout the paper, we deal with only time-harmonic fields,
assuming a time dependence in exp(−i ω t), and the electromagnetic
fields and the structures under consideration are uniform in the z-



Progress In Electromagnetics Research, PIER 74, 2007 243

direction. Two fundamental polarizations are expressed by TE and
TM, in which the E and the H fields are respectively perpendicular
to the (x, y)-plane. Also, the arguments of complex square roots are
taken in (−π/2, π/2]. For numerical purposes, all matrices appeared
later have to be truncated in practical computation. We denote the
truncation order by N , which truncates the generalized Fourier series
expansions from the −Nth to the Nth order for both incident and
scattered fields.

2. BASIC IDEA

2.1. Pseudo-Periodic Fourier Transform

Let f(x) be a function and d be a positive real constant. Then PPFT
is defined by the relation:

f(x; ξ) =
∞∑

m=−∞
f(x−md) ei m d ξ, (1)

which is implicitly assumed to converge and ξ is a transform parameter.
The transformed function f(x; ξ) has a pseudo-periodic property with
the pseudo-period d in terms of x:

f(x−md; ξ) = f(x; ξ) e−i m d ξ, (2)

for any integer m. The transformed function has also a periodic
property with the period 2π/d in terms of the transform parameter
ξ:

f

(
x; ξ −m 2π

d

)
= f(x; ξ), (3)

and the inverse transform is formally derived as

f(x) =
d

2π

∫ π/d

−π/d
f(x; ξ) dξ. (4)

As written above, the transformed function is pseudo-periodic, and it
is therefore expressed in the generalized Fourier series expansion [1]:

f(x; ξ) =
∞∑

n=−∞
fn(ξ) ei αn(ξ) x (5)
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with

αn(ξ) = ξ + n
2π
d
. (6)

The coefficient functions fn(ξ) relates to f(x; ξ) and f(x) in the
following form:

fn(ξ) =
1
d

∫ d/2

−d/2
f(x; ξ) e−i αn(ξ) x dx =

1
d

∫ ∞

−∞
f(x) e−i αn(ξ) x dx. (7)

2.2. Rayleigh Expansion of Arbitrary Field

Let ψ(x, y) be a two-dimensional wave function satisfying the following
Helmholtz equation:(

∂2

∂x2
+
∂2

∂y2
+ ks

2

)
ψ(x, y) = 0 (8)

where ks is a wavenumber and supposed to be real and constant.
We apply PPFT defined by Eq. (1) to this equation. The differential
operation in Eq. (8) is unchanged by PPFT, and then the equation is
formally transformed into the same form:(

∂2

∂x2
+
∂2

∂y2
+ ks

2

)
ψ(x; ξ, y) = 0. (9)

Since the transformed wave function ψ(x; ξ, y) is pseudo-periodic in
terms of x with the pseudo-period d, it can be expanded in a generalized
Fourier series as Eq. (5):

ψ(x; ξ, y) =
∞∑

n=−∞
ψn(ξ, y) ei αn(ξ) x. (10)

This expression is substituted into Eq. (9) and the orthogonality of the
exponential functions yields(

∂2

∂y2
+ βs,n(ξ)2

)
ψn(ξ, y) = 0 (11)

for arbitrary integer n, where

βs,n(ξ) =
√
ks

2 − αn(ξ)2. (12)
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The general solution to Eq. (11) can be expressed as

ψn(ξ, y) = a(+)
s,n (ξ, y) + a(−)

s,n (ξ, y) (13)

with

a(±)
s,n (ξ, y) = a(±)

s,n (ξ, y′) e±i βs,n(ξ)(y−y′) (14)

where a(+)
s,n (ξ, y′) and a

(−)
s,n (ξ, y′) denote the amplitudes at y = y′

propagating in the positive and the negative y-direction, respectively.
Substituting into Eq. (10), the transformed wave function ψ(x; ξ, y) is
expressed in the Rayleigh expansion as

ψ(x; ξ, y) =
∞∑

n=−∞

{
a(+)

s,n (ξ, y′) ei[αn(ξ) x+βs,n(ξ)(y−y′)]

+a(−)
s,n (ξ, y′) ei[αn(ξ) x−βs,n(ξ)(y−y′)]

}
. (15)

To treat the expansion functions and coefficients systematically, we
introduce column matrices and Eq. (15) is then rewritten as

ψ(x; ξ, y) = f (+)
s (x; ξ, y − y′)t a(+)

s (ξ, y′)

+ f (−)
s (x; ξ, y − y′)t a(−)

s (ξ, y′) (16)

where a
(+)
s (ξ, y′) and a

(−)
s (ξ, y′) denote the column matrices generated

by the amplitude of plane waves, and f
(+)
s (x; ξ, y) and f

(−)
s (x; ξ, y) are

the column matrices of the plane waves given as(
f (±)

s (x; ξ, y)
)

n
= ei(αn(ξ) x±βs,n(ξ) y) (17)

where αn(ξ) and βs,n(ξ) denote the propagation constants in the x-
and the y-directions, respectively.

2.3. Scattering by Periodic Structures

Here, we consider the scattering of waves from periodic structures
contained in a half-space. The x-axis is taken along the periodicity
direction, and the periodic scatterer is contained in y ≤ 0. The other
half-space y > 0 is filled with a medium described by a wavenumber ks,
and the incident field comes from this side. The fields have to satisfy
the Helmholtz equation (8) in the region y > 0, and the transformed
fields are therefore expressed in the Rayleigh expansions given by
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Eq. (16). Considering the propagation direction of the plane waves,
the incident and the scattered field are given by the second and the
first terms, respectively. If the fictitious pseudo-period d is chosen to
be identical to the structural period, f

(+)
s (x; ξ, y) and f

(−)
s (x; ξ, y) give

sets of space-harmonic waves generated by an incident plane wave with
the x-directional wavenumber of ξ. Let ψ(i)(x, y) be the incident field
that illuminates the periodic structure. Then, the amplitudes of the
plane waves propagating downward are given from Eq. (7) as

a(−)
s,n (ξ,+0) =

1
d

∫ ∞

−∞
ψ(i)(x,+0) e−i αn(ξ) x dx. (18)

The relation between the amplitudes is written in the following form:

a(+)
s (ξ,+0) = S(ξ) a(−)

s (ξ,+0) (19)

and the scattering-matrix S(ξ) may be obtained by the conventional
formulations based on the Floquet theorem for each ξ. The inverse
transform (4) gives an expression of the scattered field ψ(s)(x, y) as

ψ(s)(x, y) =
d

2π

∫ π/d

−π/d
ψ

(s)(x; ξ, y) dξ

=
d

2π

∫ π/d

−π/d
f (+)

s (x; ξ, y)t a(+)
s (ξ,+0) dξ. (20)

An Expression of the far-zone field is obtained by using the
cylindrical coordinate (ρ, φ) and applying the saddle-point method [8].
The integral in Eq. (20) is approximated for ρ → ∞ as the following
form:

ψ(s)(ρ, φ) ≈ ei ks ρ

√
ks ρ

p(φ) (21)

where the scattering pattern function p(φ) is given by

p(φ) =
ks d sinφ√
i 2π

a(+)
s,u (α−u(ks cosφ),+0). (22)

In this expression, u is the closest integer number of (d/λs) cosφ where
λs denotes the wavelength in the surrounding media.
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3. APPLICATION EXAMPLE I: PERIODIC ARRAY OF
CIRCULAR CYLINDERS

3.1. Computational Details

In this section, we shall investigate a scattering problem on a infinitely
periodic array of cylindrical objects situated parallel to each other as
shown in Fig. 1. The cylindrical objects are identical and infinitely long
in the z-direction, and consist of a homogeneous and isotropic material
with the permittivity εc, the permeability µc, and the radius a. One of
the cylinders is located at the origin and the cylinders are periodically
spaced with a common distance d (d > 2 a) in the x-direction. The
surrounding region is filled with a lossless, homogeneous, and isotropic
material described by the permittivity εs and the permeability µs,
and then the wavenumber in the surrounding media is written as
ks = ω

√
εs µs. In the previous section, we consider the scattering from

a periodic structure contained in the half space y ≤ 0, and show some
relations between the incident and the scattered fields in the other half
space y > 0. But, on this problem, the scatterers are contains in a
layer −a ≤ y ≤ a, and the fields in the lower region y < −a are also
considerable.

The computation of electromagnetic scattering from two or more
cylindrical objects has been efficiently performed with the recursive T-
matrix algorithm (RTMA) [9]. Here we use a calculation technique of
RTMA developed by Roussel [10] and Yasumoto et al. [11–14] to derive
the T-matrices of periodic cylinder array for plane wave incidence.
Following these methods, the scattering relation of the wave amplitudes

Figure 1. Geometry of a periodic array of circular cylinders.
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is calculated in the following form(
a

(+)
s (ξ,+0)

a
(−)
s (ξ,−0)

)
=

(
S11(ξ) S12(ξ)
S21(ξ) S22(ξ)

) (
a

(−)
s (ξ,+0)

a
(+)
s (ξ,−0)

)
(23)

S11(ξ) = Q(+)
s (ξ)

(
T−1 − L(ks d, ξ d)

)−1
P (−)

s (ξ) (24)

S12(ξ) = I + Q(+)
s (ξ)

(
T−1 − L(ks d, ξ d)

)−1
P (+)

s (ξ) (25)

S21(ξ) = I + Q(−)
s (ξ)

(
T−1 − L(ks d, ξ d)

)−1
P (−)

s (ξ) (26)

S22(ξ) = Q(−)
s (ξ)

(
T−1 − L(ks d, ξ d)

)−1
P (+)

s (ξ) (27)

where the (n,m)th-entries of the square matrices Q
(±)
s (ξ), L(ζ, η), and

G(±)(η) are given as follows:

(
Q(±)

s (ξ)
)

n,m
=




2
d βs,n(ξ)

(
−i αn(ξ)±βs,n(ξ)

ks

)m
for m ≥ 0

2
d βs,n(ξ)

(
i αn(ξ)±βs,n(ξ)

ks

)−m
for m < 0

(28)

(L(ζ, η))n,m =
∞∑
l=1

H
(1)
n−m(l ζ)

[
ei l η + (−1)n−m e−i l η

]
(29)

(
P (±)

s (ξ)
)

n,m
=

(
i αm(ξ) ± βs,m(ξ)

ks

)n

. (30)

The entries of L(ζ, η) are given by the lattice sums, which are known to
converge very slowly. An efficient calculation of lattice sums has been
developed by Yasumoto and Yoshitomi [11], and we use it for practical
computation. Also, the square diagonal matrix T is the T-matrix of
the unit cylinder in isolation. Concrete representation of the T-matrix
depends on the polarization, and the (n,m)th-entries are given by

(T )n,m = δn,m

√
εcµsJn(ksa)J ′n(kca) −

√
εsµcJ

′
n(ksa)Jn(kca)

√
εsµcH

(1)
n

′
(ksa)Jn(kca) −

√
εcµsH

(1)
n (ksa)J ′n(kca)

(31)

for the TE polarization, and

(T )n,m = δn,m

√
εsµcJn(ks a)J ′n(kca) −

√
εcµsJ

′
n(ksa)Jn(kca)

√
εcµsH

(1)
n

′
(ksa)Jn(kca) −

√
εsµcH

(1)
n (ksa)J ′n(kca)

(32)

for the TM polarization, where kc = ω
√
εc µc denotes the wavenumber

inside the cylinder and δn,m denotes Kronecker’s delta.
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3.2. Line Source Excitation

First, we consider a line source excitation that gives the calculation
of the Green function. The line source under consideration is situated
parallel to the z-axis at (x, y) = (x0, y0) where y0 > a or y0 < −a.
Then, the incident field is expressed as

ψ(i)(x, y) = H(1)
0 (ks ρ(x− x0, y − y0)) (33)

where ρ(x, y) is given as

ρ(x, y) =
√
x2 + y2. (34)

The Hankel function of the first kind of order zero can be expressed
by the Fourier integral representation [9]:

H
(1)
0 (ks ρ(x, y)) =

1
π

∫ ∞

−∞

1√
ks

2 − η2
e
i
(
η x+

√
ks

2−η2|y|
)
dη. (35)

Using this relation, the amplitudes of the transformed incident field is
obtained as follows:

a(−)
s,n (ξ,+0) =




2
d βs,n(ξ)

e−i(αn(ξ) x0−βs,n(ξ) y0) for y0 > a

0 for y0 < −a
(36)

a(+)
s,n (ξ,−0) =




0 for y0 > a
2

d βs,n(ξ)
e−i(αn(ξ) x0+βs,n(ξ) y0) for y0 < −a (37)

for any integer n.
Here we consider a specific example of a periodic cylinder array

with the following parameters: εs = ε0, εc = 4 ε0, µs = µc = µ0,
d = 0.8λ0, a = 0.4 d, and the line source is located at (x0, y0) = (0, 2d).
The same calculation with Eq. (20) yields the expression of the total
field outside the periodic layer in the following form:

ψ(x, y)=



ψ(i)(x, y)+

d

2π

∫ π/d

−π/d
f (+)

s (x; ξl, y)ta(+)
s (ξl,+0)dξ for y>a

d

2π

∫ π/d

−π/d
f (−)

s (x; ξl, y)t a(−)
s (ξl,−0) dξ for y<−a

.

(38)

The near-zone field can be computed by applying an appropriate
numerical integration scheme. Let {ξl}L

l=1 (−π/d < ξ1 < ξ2 <
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· · · < ξL ≤ π/d), and {wl}L
l=1be the sample points and the weights

chosen by the numerical integration scheme. Then the scattered field
is approximately expressed as

ψ(x, y)=



ψ(i)(x, y)+

d

2π

L∑
l=1

wlf
(+)
s (x; ξl, y)ta(+)

s (ξl,+0) for y>a

d

2π

L∑
l=1

wl f
(−)
s (x; ξl, y)t a(−)

s (ξl,−0) for y<−a
.

(39)

We choose that the truncation order is N = 10 and the location
of observation point is (x, y) = (0,−d). Figure 2 shows the intensity
of the total field at the observation point as function of the number
of integration segments L. The dotted and the dashed curves
are the results of the trapezoidal and the Gauss-Legendre methods,
respectively, and they converge slowly. To consider the origin of slow
convergence, the transformed field, which is the integrand to calculate
the total field, is plotted as function of the normalized transform
parameter ξ d/(2π) in Fig. 3. As written in Eq. (3), the transformed
functions has a periodic property in terms of the transform parameter
ξ with the period 2π/d and the horizontal range of Fig. 3 gives a
periodicity cell. The trapezoidal method is known to usually provide
accurate results to integrate smooth periodic functions over one period.
However, Fig. 3 shows that the curves of the integrand are not smooth
at ξ d/(2π) = ±0.2. These points are given by the Wood-Rayleigh
anomalies that are known to occur when diffracted field of a spectral
order propagates along the grating surface and cause abrupt changes
in the power diffracted into the other orders. Then the x-directional
propagation constant ξ has to satisfy αn(ξ) = ±ks at the anomalies
and, in the present formulation, the anomalies are degenerated to two
points

ξ = ±ks − v
2π
d

(40)

where v is the closest integer number of ±d/λs. It is well known,
if there are discontinuities or singularities of the integrand or of its
derivative and we know where they are, the integration range should
be split at these points and analyze each subinterval. Here we split the
integration interval at the Wood-Rayleigh anomalies and apply the
Gauss-Legendre method for each subinterval. The integration interval
is divided into two subinterval by considering the periodicity and the
sample point number L is divided in the ratio of the subinterval widths.
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The solid curves in Fig. 2 are the results and show much improvement
of convergence. We do not know the exact values of the field intensity,
and the most reliable values in Fig. 2, which are given by solid curves
with N = 10 and L = 100, are used as the references to estimate the
errors in the following. When the Gauss-Legendre method is used for
the split subinterval, the results show that 0.1% accuracy is achieved
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Figure 2. Calculated intensity of the total field at (x, y) = (0,−d)
for a line source excitation as function of the number of integration
segments L.
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with L = 60 for TE polarization (the referred value is 0.2783) and
L = 37 for TM polarization (the referred value is 0.40763). Also,
the convergence with respect to the truncation order N is shown in
Fig. 4. The numerical results are computed by the Gauss-Legendre
method for the splitted subinterval with the same parameters as for
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Fig. 2, but we use the integration segment number of L = 70. It is
observed that 0.1% accuracy is achieved with only N = 4 for both TE
and TM polarizations. The total field intensities outside the periodic
array layer are calculated with N = 5 and L = 70 by changing the
observation point, and shown in Fig. 5. The positions of cylinders are
indicated by the white dashed lines. Also, Fig. 6 shows the absolute
values of the scattering pattern function p(φ) calculated by Eq. (22)
with N = 5. As shown in Sec. 2.3, the far-zone fields can be calculated
without use of the numerical integration.

We examine the reciprocal property to validate the formulation.
Let ψpq(xp, yp;xq, yq) be the field observed at (xp, yp) for a line source
located at (xq, yq). Then we define the reciprocity error by

σ(xp, yp;xq, yq) = ψpq(xp, yp;xq, yq) − ψqp(xq, yq;xp, yp). (41)

The reciprocity theorem requires that this function should be zero
when both (xp, yp) and (xq, yq) are located outside the periodic array
layer. We fix one point (xq, yq) = (0, 2d) and the other point (xp, yp)
is moved on lines y = ±d. Figure 7 shows the calculated values of
|σ(x,±d; 0, 2d)| that are computed in the standard double-precision
arithmetic. The largest value is about 1.2 × 10−15 that is in the order
of round-off error, and the reciprocal property is completely satisfied
in the sense of numerical analysis. Also, the results of the present
formulation are compared with those of the conventional RTMA [9]
for the scattering from a finite number of cylinders. When the number
of cylinder is denoted by M , the conventional RTMA requires the
inversion of M (2N + 1) × M (2N + 1) matrix though the present
formulation deals with (2N + 1) × (2N + 1) matrices only. From the
physical point of view, if the number of cylinders is large enough,
one can expect that the fields near the line source are not noticeably
different in both methods. Here we consider 81 cylinders located at
(x, y) = (md, 0) for m = 0,±1, . . . ,±40, and the intensity of the total
field at (x, y) = (0,−d) is calculated by the conventional RTMA. The
obtained values are 0.2783 for TE polarization and 0.4076 for TM
polarization, which are in very good agreement with the results of the
present formulation.

3.3. Hermite-Gaussian Beam Incidence

Next, we consider a two-dimensional Hermite-Gaussian beam
incidence. The commonly used expression of the Hermite-Gaussian
beam is derived by using a para-axial approximation and does not
satisfy the Helmholtz equation (8). Hence, we use the expression
in terms of a superposition of a finite number of complex source



254 Watanabe and Yasumoto

(a) TE polarization

(b) TM polarization

Figure 5. Distribution of the total field intensity outside the periodic
array layer for a line source located at (x0, y0) = (0, 2d).
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Figure 6. Scattering pattern of a periodic cylinder array for a line
source located at (x0, y0) = (0, 2d). The solid and the dotted curves
denote the results for the TE and the TM polarizations, respectively.
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Figure 8. Geometry of the Hermite-Gaussian beam illuminating a
periodic cylinder array.

point multipole fields [15], which satisfies the Helmholtz equation (8).
The lth-order Hermite-Gaussian beam under consideration propagates
along a direction perpendicular to the z-axis and the fields are uniform
in the z-direction. The beam waist is located at (x, y) = (x0, y0), and
we denote the spot size at the beam waist by w0 and the propagation
angle by θ (Fig. 8). We write b = ksw0

2/2, and consider the radiated
fields from a complex source point (x′0, y

′
0) = (x0 − i b cos θ, y0 −

i b sin θ). The beam expression is given by

ψ(i)(x, y) = (−1)l ks
4

√
π

2

√
l!w0

2
e−ks b

×
[l/2]∑
m=0

2−mw0
l−2 m

m! (l − 2m)!
g(l−2m)(x− x′0, y − y′0) (42)

with

g(m)(x, y) =
(
− sin θ

∂

∂x
+ cos θ

∂

∂y

)m

H
(1)
0 (ks ρ(x, y)) (43)

where [l/2] is l/2 or (l − 1)/2 depending on whether l is even or odd,
respectively. The complex distance ρ(x, y) is defined by Eq. (34) where
the branch is chosen so as that its real part is not negative. The
wavy line in Fig. 8 is the branch cut. Here the beam is supposed to
illuminate the periodic array from the upper side (y0 > a + b |cos θ|
and 0 < θ < π). The Hankel function of the first kind of order zero
is also expressed by Eq. (35). Then the multipole field g(m)(x, y) for
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y < 0 can be rewritten as

g(m)(x, y)=
(−i)m

π

∫ ∞

−∞

(
η sin θ+

√
ks

2−η2 cos θ
)m

√
ks

2 − η2
e
i
(
ηx−

√
ks

2−η2y
)
dη,

(44)

and the Rayleigh coefficients of the transformed incident field are
derived as follows:

a(−)
s,n (ξ,+0) =

il ks
4
√

2π
√
l!w0

d βs,n(ξ)
e−ks b−i(αn(ξ) x′

0−βs,n(ξ) y′
0)

×
[l/2]∑
m=0

(−2)−m [w0 (αn(ξ) sin θ + βs,n(ξ) cos θ)]l−2m

m! (l − 2m)!
(45)

a(+)
s,n (ξ,−0) = 0. (46)

We show numerical results of the second-order Hermite-Gaussian
beam illuminating the same array of circular cylinders as in the
previous subsection. The parameters for the incident beam are chosen
as follows: (x0, y0) = (3 d, 3

√
3 d), w0 = 1.5λ0, and θ = 60◦. Figure 9

gives the ξ-dependence of the transformed field at an observation point
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Figure 9. Transformed field at (x, y) = (0,−d) for the second-
order Hermite-Gaussian beam incidence as function of the normalized
transform parameter ξ d/(2π).
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Figure 10. Calculated intensity of the total field at (x, y) = (0,−d)
for the second-order Hermite-Gaussian beam incidence as function of
the number of integration segments L.

(x, y) = (0,−d), computed with the truncation order N = 10. The
spectrum of beam field is concentrated on a narrow band and then the
values are small for 0 < ξ d/(2π) < 0.3. The Wood-Rayleigh anomalies
are found at ξ d/(2π) = ±0.2 (the non-smooth point for ξ d/(2π) = 0.2
can be observed by enlarging the scale), and the integration interval
for the inverse transform should be split at these points. We apply
the Gauss-Legendre method for each subintervals as same as in the
previous subsection and Fig. 10 shows the calculated intensity of the
total field at (x, y) = (0,−d) as function of the number of integration
segments L. The results show that 0.1 % accuracy is achieved with
L = 46 for TE polarization (the referred value is 343.22) and L = 40
for TM polarization (the referred value is 290.837). The total field
intensities outside the periodic array layer are computed with N = 5
and L = 60, and shown in Fig. 11. Also, the scattering patterns
computed with N = 5 are shown in Fig. 12. The second-order Hermite-
Gaussian beam consists of three beam lobes, and we can observe the
transmitted and the reflected beams in the 0th- and the −1st-order of
diffraction.
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(a) TE polarization

(b) TM polarization

Figure 11. Distribution of the total field intensity outside the periodic
array layer for the second-order Hermite-Gaussian beam incidence.
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Figure 12. Scattering pattern of a periodic cylinder array for the
second-order Hermite-Gaussian beam incidence. The solid and the
dotted curves denote the results for the TE and the TM polarizations,
respectively.

4. APPLICATION EXAMPLE II: LAMELLAR GRATING

4.1. Computational Details

For the second example of periodic structures, a lamellar grating
schematically shown in Fig. 13 is considered in this section. The
grating grooves are ruled on a linear isotropic substrate described by
the permittivity εc and the permeability µc, and parallel to the z-axis.
The direction of periodicity is parallel to the x-axis, and we denote the
grating period by d, the grating depth by h, and the groove width by
g. The cover region is filled with a lossless, homogeneous, and isotropic
material described by the permittivity εs and the permeability µs. The
incident field is supposed to propagate downward in the cover region.

All the components of the transformed electromagnetic fields for
each ξ are pseudo-periodic functions of x, and thus the scattering-
matrix can be obtained by the rigorous coupled-wave method (RCWM)
[16, 17]. This method expands the pseudo-periodic field components
in the generalized Fourier series, and the Maxwell equations yield a
coupled differential-equation set for the Fourier coefficients of field
components. For the lamellar gratings, the coefficient matrix of the
coupled differential-equation set is constant in the groove region, and
the general solution is obtained by solving an eigenvalue problem.
The electromagnetic fields outside the groove region are also expressed
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Figure 13. Geometry of a lamellar grating.

by the Rayleigh expansions. The solution obtained inside the groove
region is matched to the Rayleigh expansions at the top and the bottom
of the grooves and the scattering-matrix can be calculated. Many
formulations of the method have been proposed by many researchers.
Our formulation used to derive the scattering-matrix for each ξ is
described in Ref. [18].

4.2. Metallic Grating with Line Source Excitation

This subsection provides numerical results of a specific example of
metallic grating for a line source excitation. The grating parameters
are chosen as follows: d = 0.6λ0, g = 0.4 d, h = 0.5λ0, εc =
(1.3 + i 7.6)2 ε0, εs = ε0, and µc = µs = µ0. The line source is
parallel to the z-axis and located at (x0, y0) = (0, 2 d). The transformed
scattered field at an observation point (x, y) = (0, d) are calculated
with the truncation order N = 25, and plotted as functions of the
normalized transform parameter ξ d/(2π) in Fig. 14. The Wood-
Rayleigh anomalies are found at ξ d/(2π) = ±0.4 and, to apply
numerical integration, the integration interval for the inverse transform
should be split at these points. Figure 15 shows the calculated results of
the field intensity at the observation point as function of the number
of integration segments L. The solid curves are the results of the
Gauss-Legendre method, and show slow convergence. The reason
of slow convergence is thought to be the strong singularity at the
anomalies, and the double exponential method given by the dotted
curves provides better convergence. The most reliable values calculated
with N = 25 and L = 200 are used as the reference values (0.543195
for TE polarization and 0.48585 for TM polarization). The results of
the double exponential method show that 0.1 % accuracy is achieved
with L = 63 for TE polarization and L = 58 for TM polarization.
The convergence with respect to the truncation order N is shown in



262 Watanabe and Yasumoto

Fig. 16. It is well known that RCWM for TM polarization and metallic
gratings requires large truncation order, and the results show that 0.1 %
accuracy is achieved with N = 7 for TE polarization and N = 17 for
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Figure 14. Transformed scattered field at (x, y) = (0, d) for a line
source excitation as function of the normalized transform parameter.
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Figure 16. Calculated intensity of the total field at (x, y) = (0, d) for
a line source excitation as function of the truncation order N .

TM polarization. The field intensity near the grating is calculated
with N = 20 and L = 80 by changing the observation point, and
plotted in Fig. 17. The position of grating surface is indicated by the
white dashed line. Since the substrate is assumed to be a conducting
material, the fields decay rapidly inside the substrate. The field for
TE polarization does not propagate into the grooves because of the
cutoff. As the result, the field distribution for TE polarization seems
to be similar to that near the metallic plate. On the other hand,
the field distribution for TM polarization shows strong effects of the
grooves. Also, Fig. 18 shows the absolute values of the scattering
pattern function p(φ) calculated with N = 20. The pattern shows
abrupt changes in intensity at the anomalies, and the changes for TM
polarization is much more noticeable than those for TE polarization.

4.3. Lossless Grating with Hermite-Gaussian Beam
Incidence

For a lamellar grating made of a lossless material with a Hermite-
Gaussian beam incidence, the transformed scattered field at an
observation point is shown in Fig. 19. The grating parameters are
chosen as follows: d = 0.6λ0, g = 0.4 d, h = 0.5λ0, εc = 1.52 ε0,
εs = ε0, and µc = µs = µ0. The incident field is the first-
order Hermite-Gaussian beam and the beam parameters are chosen
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(a) TE polarization

(b) TM polarization

Figure 17. Field intensity near a lamellar grating with a line source
excitation.
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Figure 18. Scattering pattern of a lamellar grating for a line source
excitation. The solid and the dotted curves denote the results for the
TE and the TM polarizations, respectively.
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Figure 19. Transformed scattered field at (x, y) = (0, d) for a first-
order Hermite-Gaussian beam incidence as function of the normalized
transform parameter.

as follows: (x0, y0) = (2 d, (4 + 2
√

3)d), w0 = 1.5λ0, and θ = 75◦. The
transformed scattered fields at (x, y) = (0, d) are calculated with the
truncation order N = 15. The Wood-Rayleigh anomalies are not
noticeable, but we can find them at the same positions ξ d/(2π) = ±0.4
(non-smooth points are clearly observed by enlarging the scale) because
the dielectric constants in the cover region and the grating period are
same with those in Fig. 14. In this example, there exist also the Wood-
Rayleigh anomalies associated with the diffracted fields in the substrate
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for a first-order Hermite-Gaussian beam incidence as function of the
number of integration segments L.
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Figure 21. Calculated intensity of the total field at (x, y) = (0, d)
for a first-order Hermite-Gaussian beam incidence as function of the
truncation order N .
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(a) TE polarization

(b) TM polarization

Figure 22. Field intensity near a lamellar grating with a Hermite-
Gaussian beam incidence.
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Figure 23. Scattering pattern of a lamellar grating for a Hermite-
Gaussian beam incidence. The solid and the dotted curves denote the
results for the TE and the TM polarizations, respectively.

region. Let λc and kc be the wavelength and the wavenumber in the
substrate region. Then the position of the anomalies are given by

ξ = ±kc − v
2π
d

(47)

where v is the closest integer number of ±d/λc, and we can find the
anomalies at ξ d/(2π) = ±0.1 in Fig. 19. Of course, the Wood-Rayleigh
anomalies associated with the substrate region are not noticeable when
kc is far from the real-axis, and this is the reason why we did not find
them in the metallic grating shown in the previous subsection. Anyway,
we split the integration interval for the inverse transform into four
subintervals at the Wood-Rayleigh anomalies, and apply numerical
integration schemes. Figure 20 shows the convergence of field intensity
computed by the Gauss-Legendre and the double exponential methods
with N = 15. As shown in Fig. 19, the singularity of the endpoints
are not strong for each subinterval, and therefore the Gauss-Legendre
method shows faster convergence. The most reliable values calculated
with N = 15 and L = 100 are used as the reference values (117.24
for TE polarization and 115.25 for TM polarization), and the Gauss-
Legendre method show that 0.1 % accuracy is achieved with L = 16
for TE polarization and L = 19 for TM polarization. Also, Fig. 21
provides the convergence with respect to the truncation order N , and
the numerical results shows that 0.1 % accuracy is achieved with N = 2
for TE polarization and N = 3 for TM polarization. The field intensity
near the grating is calculated with N = 5 and L = 30 and plotted in
Fig. 22. Also the scattering pattern calculated with N = 5 is given by
Fig. 23. The first-order Hermite-Gaussian beam consists of two beam
lobes, and Fig. 23 shows that the scattering field in the cover region
y > 0 is mainly composed by the reflection beam in the zeroth-order of
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diffraction. Hence, the pattern stripes in the cover region are parallel
to the grating surface.

5. CONCLUSION

This paper has proposed PPFT that is an idea to approach the
electromagnetic scattering problems from the periodic structures with
non-plane incident waves. PPFT makes arbitrary functions pseudo-
periodic and the conventional approaches based on the Floquet
theorem become applicable. We have shown numerical results of two
periodic structures. The first is a periodic array of circular cylinders
and RTMA is applied for the problems with a line source excitation
and a Hermite-Gaussian beam incidence. The second example is a
lamellar grating and RCWM is applied for scattering problems from a
metallic grating with a line source excitation and from a lossless grating
with a Hermite-Gaussian beam incidence. The numerical results of
periodic cylinder array with line source excitation are validated by
comparing with the scattering from an array of large number of
cylinders and also shown that the reciprocal property for the line
source excitation is completely satisfied in the sense of numerical
analysis. The near field analysis requires a numerical integration
with respect to the transform parameter over a finite interval. The
integrand function is generally non-smooth at the Wood-Rayleigh
anomalies, which are degenerated due to PPFT, and we should split the
integration interval into several subintervals for numerical integration.
Also, the convergence of numerical integration is shown to be depend
on the endpoint singularity of each subinterval. In this paper, we dealt
with periodic structures in which the surface wave cannot propagate
along the periodic direction. However, the analyses for such structures
may require a consideration of the Wood-resonance anomalies and are
left for the future works.
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