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Abstract—The transmission line transfer matrix method (TLTMM)
is presented for the analysis of multilayer electric structures as
frequency selective surfaces (FSS), whereby the reflection, transmission
and absorption coefficients, field distribution and power flow may be
computed inside and outside of the layers. The TLTMM formulation
may be developed for any arbitrary angle of incidence, any polarization
(linear TE or TM, circular, elliptical) of the incident plane wave,
at any frequency of operation (microwave, millimeter wave, optical),
any number dielectric layers with arbitrary thicknesses, lossless or low
loss dielectric media, inclusion of dispersion relation, etc. A general
formulation is given for both the TE and TM polarization of the
incident wave. Several practical situations are treated by TLTMM
namely, anti-reflection coatings, high reflection surfaces, computation
of the axial ratio of the reflected and transmitted plane waves,
distributed brag reflector (DBR), a narrow band filter consisting of two
Fabry-Perot resonators, cantor superlattices in optics, field distribution
and power flow for a multilayer structure. Consequently, it is verified
that TLTMM is capable of analysis a variety of practical multilayer
dielectric structures.

1. INTRODUCTION

Frequency selective surfaces (FSS) for microwave and optical systems
are usually realized by printed circuit technology, whereby their
frequency selective characteristics are determined by the shape and
periodic spacing of conducting patches. Theoretical and experimental
investigations on FSS were first conducted on dipoles, tripoles, crossed
dipoles, rings and square loops [1] and then were concentrated on more
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complex structures [2–4] in order to decrease the size of elements.
Although, the metallic FSS works well in the microwave frequencies,
their application in the millimeter wave (MMW) and optical frequency
ranges suffer from increased power losses and limitations of conducting
surface thickness.

Structures consisting of periodic dielectric rods with permittivities
ε1 and ε2 have been proposed for FSS in MMW frequency ranges [5].
Although, such structures provide reasonable transmission bandwidths
for incident TE waves, their reflection bandwidths are drastically
narrow (less than 2.5%), which leads to their limited applications. Such
limitations have been removed by multilayer dielectric structures [6, 7].
Multilayer dielectric structures not only increase the bandwidths,
but also provide identical amplitude responses for both TE and TM
incident waves. However, their phase responses for TE and TM waves
are usually different which adversely affect the incident circularly and
elliptically polarized waves.

Multilayer dielectric structures have a variety of applications in
the microwave [8], MMW [9] and optical frequencies [10], such as
Radom anti-reflection coverings, high reflection layers, analysis of
signal scattering from underground layers for oil and other mineral
explorations, thin film optical filters, edge filters, dielectric mirrors in
Fabry-Perot lasers, optical polarizer and shielding in optical bands,
etc. The main advantage of dielectric structures compared with
metallic surfaces is their less absorption losses in the MMW frequencies.
However, in order to decrease losses, weight and volume of FSS
structures, the number of layers in the microwave, and MMW
frequencies should be limited.

Dielectric structures such as FSS have been introduced in the
literature [5–7, 11–14] and have been analyzed by different methods.
The multilayer dielectric FSS structures were first introduced in [6, 7]
and were analyzed by the ABCD matrix method, and also in [15].
The ABCD matrix method calculates the reflection and transmission
coefficients. They were also analyzed by a full-wave propagation
method leading to a closed-form solution [16] that has also been
used for the multilayer metamaterial structures [17]. In the full-
wave method, the boundary conditions on two consecutive boundary
surfaces are invoked to obtain a relation between the fields on them.
Accordingly, a recursive relation is obtained to compute the reflection
and transmission coefficients. In a matrix method [18, 19] the boundary
conditions are invoked simultaneously at all boundaries, and the
resulting matrix equation is solved for the reflection and transmission
coefficients. In the iterative method [20], in each iteration a layer of the
structure is removed and its effect on the reflection and transmission
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coefficients is considered at the surface of structure. This process is
continued until the overall coefficients of structure are calculated. The
iterative method is also used for the metamaterial multilayer structures
[21]. In the transfer matrix method (TMM) [22], the whole structure
is divided into smaller elements and the system transfer matrix is
obtained by using the properties of ABCD matrices. Consequently, the
outgoing wave from the structure is computed from the incident wave
by the transfer matrix. The transfer matrix method has been used for
the calculation of reflection and transmission coefficients due to optical
filters and metallic photonic band gaps (PBG). In the transmission line
method [23], the reflection coefficient at the surface of the first layer
is obtained by starting the calculations from the last layer using the
impedance matching concept.

In this paper, we present a general formulation for the analysis of
multilayer dielectric layers namely Transmission Line Transfer Matrix
Method (TLTMM) combining the transmission line model and transfer
matrix method. This formulation is equally applicable for both TE
and TM incident wave polarizations. Consequently, the computer
simulation of both cases may be combined so that the general elliptical
polarization of the incident wave (including the circular polarization)
may be readily treated by the proposed method. The field solutions
are obtained in the inside and outside of layers.

2. FORMULATION OF THE PROBLEM

Consider an isotropic and homogeneous multilayer medium with
boundary surfaces at z = d1, d2, ..., dN as shown in Fig. 1.

Each layer is homogeneous with electric and magnetic constants
ε�, µ�, σ�. The 0’th and (N+1)’th media are half spaces which may
have different characteristics. A plane wave is incident at an angle
θ0 on the multilayer structure from the 0’th medium. The plane of
incidence is parallel with the y-z plane. The field components depend
on y and z but are independent of x (i.e. ∂/∂x = 0). The fields in each
layer are decomposed into TE and TM polarization plane waves, and
are expressed in terms of field components E�x and H�x, respectively.

For the TE plane wave, the incident electric field is denoted as−→
Ei = x̂E0e

−(γyy+γzz), and the other field components may be obtained
from the Maxwell’s equations as:(

∂2

∂y2
+

∂2

∂z2
+ ω2µ�ε�

)
E�x = 0

H�y =
1

jωµ�

∂E�x

∂z
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Figure 1. A multilayer dielectric structure as an FSS.

H�z =
−1
jωµ�

∂E�x

∂y
(1)

Consequently,

E�x = (E+
� e−γ�zz + E−

� e+γ�zz)e−γ�yy

H�y = − γ�z

jωµ�
(E+

� e−γ�zz − E−
� e+γ�zz)e−γ�yy

H�z = − γ�y

jωµ�
(E+

� e−γ�zz + E−
� e+γ�zz)e−γ�yy (2)

For the TM plane wave, the incident magnetic field is denoted as−→
Hi = x̂H0e

−(γyy+γzz), and the other field components may be obtained
from the Maxwell’s equations or they may be obtained by duality using
the replacements ε� → µ�,

−→
E� →

−→
H�,

−→
H� → −−→

E�, in Eq. (1).
The boundary conditions on the tangential electric and magnetic

field components on the boundary surfaces require the imposition of



Progress In Electromagnetics Research, PIER 74, 2007 221

phase matching. However for low loss media assumed here, the factors
e−γ�yy may be combined with coefficients E±

� and are not consider
explicitly. Therefore the transverse field components Eq. (2) and their
duality may be written for a constant y as:

for a TE plane wave

E�x = (E+
� e−γ�zz + E−

� e+γ�zz)

H�y = − 1
ZTE

0�

(E+
� e−γ�zz − E−

� e+γ�zz) (3)

and for a TM plane wave

H�x = (H+
� e−γ�zz + H−

� e+γ�zz)

E�y = ZTM
0� (H+

� e−γ�zz −H−
� e+γ�zz) (4)

Now, due to the resemblance of Eq. (1) and its dual to the
transmission line relations, we may model the �’th layer by a section
of transmission line with propagation constant γ�z (which is the same
for both TE and TM polarizations)

γ�z = γ� cos θ�

γ� = jω
√
µ�ε�

ε� = ε
′ − j

(
ε′′ +

σ

ω

)
(5)

and characteristic impedances ZTE
0� and ZTM

0� which are the same as
the wave impedances for TE and TM plane waves, respectively, are

ZTE
0� =

jωµ�

γ�z
= η� sec θ�

ZTM
0� =

γ�z

jωε�
= η� cos θ� (6)

The intrinsic impedance of the �’th layer is η� =
√

µ�/ε� and the
incident angle in the �’th layer is θ�. The Snell’s law between two
adjacent layers � and (� + 1) is

γ� sin θ� = γ(�+1) sin θ(�+1) (7)

Consequently, the equivalent transmission line model in Fig. 2 will
be analyzed for the plane wave oblique incidence on the multilayered
medium in place of the multilayer structure in Fig. 1.

The voltages, currents, propagation constant, and characteristic
impedances of the equivalent transmission line model are defined in
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Figure 2. The equivalent transmission line circuit model for a
multilayer dielectric structure.

Eqs. (3)–(6). In the equivalent transmission line model, the multiple
reflected waves in the multilayered structure are combined as forward
and backward traveling waves.

Now, we may define r and t as the total reflected and transmitted
coefficients of structure, respectively, according to

r =
E−

0

E+
0

in � = 0 (8)

t =
E+

(N+1)

E+
0

in � = N + 1 (9)

Also, we may define reflectance, transmittance and absorption as
follows:

R = rr∗ (10)
T = tt∗ (11)
A = 1 − (R + T ) (12)

The wave amplitude transmission matrix of a layer and
discontinuity transfer matrix may be defined with reference to Fig. 3
as: [

E+
(�+1)

E−
(�+1)

]
= [L ](�+1)

E
′+
(�+1)

E
′−
(�+1)

 (13)

E
′+
(�+1)

E
′−
(�+1)

 = [ I ](�+1)�

[
E+

�

E−
�

]
(14)

where E± and E
′± are the forward and backward traveling waves at

the end and beginning of each layer, respectively, [L](�+1) is the wave
amplitude transmission matrix of the (�+1)’th line section, and [I](�+1)�
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is the transfer matrix of the discontinuity between the �’th and (�+1)’th
layer. Therefore [

E+
(�+1)

E−
(�+1)

]
= [L ](�+1) [L ](�+1)

[
E+

�

E−
�

]
(15)

and the transfer matrix of a layer may be defined as:

[T ](�+1)� = [L ](�+1) [ I ](�+1)� , � = 0, 1, ..., N − 1 (16)

Consequently, the waves on the two outer sides of the multilayered
medium between the 0’th and (N + 1)’th layers are related as:[

E+
(N+1)

E−
(N+1)

]
= [T ](N+1)0

[
E+

0

E−
0

]
(17)

where

[T ](N+1)0 = [T ](N+1)N [T ]N(N−1) ... [T ](�+1)� ... [T ]10 (18)

Now, Eq. (17) is divided by E+
0[

t
0

]
= [T ](N+1)0

[
1
r

]
(19)

which is expressed in terms of r and t according to the definitions
of Eqs. (8) and (9). The outer half space is assumed matched
(E−

(N+1) = 0).
Consequently, r and t may be obtained from Eq. (19).

Figure 3. The forward and backward traveling waves inside two
adjacent layer, where the wave is incident from �’th layer onto (�+1)’th
layer.
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Referring to Fig. 3, matrix [L ](�+1) is

[L ](�+1) =
[
e−γ(�+1)zh(�+1) 0

0 eγ(�+1)zh(�+1)

]
(20)

and matrix [I](�+1)� is obtained for TE and TM polarizations,
respectively.

For TE polarization, with reference to Fig. 3, we may write

E−
� = rTE

(�+1)�E
+
� + tTE

�(�+1)E
′−
�+1

E
′+
�+1 = tTE

(�+1)�E
+
� + rTE

�(�+1)E
′−
�+1 (21)

where subscript x is deleted. rTE
(�+1)� and tTE

�(�+1) are the Fresnel

reflection and transmission coefficients of the −→
E field between the �’th

and (� + 1)’th layers as [24]:

rTE
(�+1)� =

E−
�

E+
�

=
η(�+1) sec θ(�+1) − η� sec θ�

η(�+1) sec θ(�+1) + η� sec θ�
,

rTE
�(�+1) = −rTE

(�+1)� (22)

tTE
(�+1)� =

E+
(�+1)

E+
�

= 1 + rTE
(�+1)� (23)

Matrix [I](�+1)� for TE polarization may be obtained by combining
Eqs. (14), (21), (22) and (23).

[I]TE
(�+1)� =

1
1 − rTE

(�+1)�

[
1 −rTE

(�+1)�

−rTE
(�+1)� 1

]
(24)

Similarly for TM polarization, we have

H−
� = rTM

(�+1)�H
+
� + tTM

�(�+1)H
′−
�+1

H
′+
�+1 = tTM

(�+1)�H
+
� + rTM

�(�+1)H
′−
�+1 (25)

where subscript x is deleted. rTM
(�+1)� and tTM

(�+1)� are the Fresnel

reflection and transmission coefficients of the −→
H field between the

�’th and (� + 1)’th layers. The reflection and transmission coefficients
between two layers (for both TE and TM polarizations) are defined in
terms of the electric field as [24]:

r
′TM
(�+1)� =

E−
�y

E+
�y

=
η(�+1) cos θ(�+1) − η� cos θ�

η(�+1) cos θ(�+1) + η� cos θ�
,
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r
′TM
�(�+1) = −r

′TM
(�+1)� (26)

t
′TM
(�+1)� =

E+
(�+1)y

E+
�y

= (1 + r
′TM
(�+1)�)

cos θ�

cos θ(�+1)
(27)

The reflection and transmission coefficients with respect to the −→
H field

between two media may be related to those with respect to the −→
E field

according to the following relations:

rTM
(�+1)� =

H−
�x

H+
�x

=

−E−
�y

η�

E+
�y

η�

= −
E−

�y

E+
�y

= −r
′TM
(�+1)� (28)

tTM
(�+1)� =

H+
(�+1)x

H+
�x

=

E+
(�+1)y

η(�+1)

E+
�y

η�

= −
E−

�y

E+
�y

= (1 − r
′TM
(�+1)�)

η� cos θ�

η(�+1) cos θ(�+1)
(29)

Equations (26) and (27) are substituted into Eqs. (28) and (29)
and then in Eq. (25) to get

[I]TM
(�+1)� =

1

(1 + rTM
(�+1)�)

η(�+1) cos θ(�+1)

η� cos θ�

[
1 −rTM

(�+1)�

−rTM
(�+1)� 1

]
(30)

Defining new variables

pTE
(�+1)� =

η(�+1) sec θ(�+1)

η� sec θ�
,

pTM
(�+1)� =

η� cos θ�

η(�+1) cos θ(�+1)
(31)

leads to the following unified notation for both TE and TM
polarizations.

[I]TE/TM
(�+1)� =

1
2

 1 + p
TE/TM
(�+1)� 1 − p

TE/TM
(�+1)�

1 − p
TE/TM
(�+1)� 1 + p

TE/TM
(�+1)�

 (32)
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Such formulation of the problem simplifies the computer
simulation. Some observations are noteworthy.

First, since the incident plane coincides with the y-z plane,
TE and TM polarizations have the field components (Ex, Hy, Hz)
and (Hx, Ey, Ez) respectively, the forward and backward propagation
powers may be computed by Ex for TE and Hx for TM polarizations.

Second, with reference to Fig. 1, Eq. (17) may be used to
compute the forward and backward traveling waves in the �’th layer
(� = 1, 2, ..., N) and then the reflection and transmission coefficients in
each layer, according to the following relation:[

E+
�

E−
�

]
= [T ]�(�+1) ... [T ]10

[
1
r

]
(33)

Third, in case the medium in a layer is inhomogeneous, it may
be subdivided into stepwise homogeneous layers with constants ε, µ, σ
and then the proposed formulation may be applied.

Fourth, the incident wave with the general elliptical polarization
(as a combination of TE and TM plane waves) may be treated and
the reflected and transmitted waves from the multilayered medium are
properly characterized.

3. NUMERICAL IMPLEMENTATION

The computer simulation of the proposed algorithm is performed
according to the following flow chart using the aforementioned
formulas. The computer input is the type of polarization of the incident
wave (TE, TM, linear, circular, elliptical), angle of incidence (θi),
operating frequency (f), number of layers (N), thicknesses of layers
(H�), constants of each layer (εr�, µr�, σr�, tan δ�), dispersion relations,
etc. Then the transmission matrix [L](�+1) of layers is computed by

(20), variable pTE/TM and discontinuity transfer matrices [I]TM/TM
(�+1)�

are computed by Eqs. (31) and (32), respectively. Now calculations
proceed for the elliptic, circular, linear, TE and TM polarization,
as the case may be. The transfer matrix [T ](�+1)� of each layer is
computed by Eq. (16). Then, the overall transfer matrix [T ](N+1)0 of
the whole multilayer structure is computed by Eq. (18). The reflection
and transmission coefficients (r, t) are computed by Eq. (19) and the
reflectance, transmittance and absorption coefficients are computed by
Eqs. (10), (11) and (12). The field and power variations may be plotted
against frequency and angle of incidence.
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4. EXAMPLES AND DISCUSSIONS

Several examples of oblique and normal incidence on different
multilayered media are given below. There are N pairs of layers with
high/low relative dielectric constants εH/εL. For example, (HL)NH,
indicates 2N + 1 layers where the first layer has relative dielectric
constant εH , the second one εL, etc.

4.1. Anti-reflection Coating

The quarter wavelength and half wavelength multilayer structures
may be designed to make the reflection coefficient zero at a specified
frequency and angle of incidence [24].

Figure 4. Frequency dependence of reflectance due to air-glass
interface with and without coatings for reduction of reflection for
visible light.

In order to achieve anti-reflection effect over a frequency
bandwidth and range of incidence angles, a multilayered dielectric
medium is required. In Fig. 4 reflectance is plotted against the
wavelength for the following cases: air-glass (A|G) without coating,
(A|1.4884|G) with a single quarter wavelength layer (with εr=1.4884),
(A|1.9044|2.8561|G) with two layers of quarter wavelength thickness
(with εr=1.9044, εr=2.8561), and (A|1.9044|4.8400|2.8561|G) with
three layers with quarter-half-quarter wavelength thicknesses for
normal incidence in the range of visible light (for glass εr=2.8). The
results of the proposed method are compared with those of ABCD
method [15] and full-wave propagation method [16]. It is observed
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that the reflection from the double layer case is not better than that
of the single layer case. However, addition of a half wavelength layer
(with εr=4.84) has decreased reflection in the frequency range (450–
700) nm. Reflection is a function of material and thickness of layers,
frequency, angle of incidence and wave polarization. The reflection may
be minimized or maximized with respect to the dielectric constant (εr�)
and thickness of layers (h�) over a frequency bandwidth and incident
angles.

4.2. High Reflection Coating

A multilayer dielectric medium with high reflection consists of an
odd number of layers with periodic high/low permittivities of quarter
wavelength thicknesses. The first layer has high εH . In optics, such a
structure is called dielectric mirror or Bragg reflector.

In Fig. 5, the transmittance of a 21 layer high reflection structure
with (HL)10H for TE and TM polarizations is plotted against
frequency. It is located in air. The incidence angle is 0◦ and 40◦
and the frequency range is 100–300 GHz. The dielectric constants of
layers are 5.0562 and 2.1025 and the thicknesses of the layers are equal
to the quarter wavelength of the center frequency. The results are
compared with the iterative method [20]. The transmittance depends
on the angle of incidence. It becomes oscillatory and approaches zero
out of the band. The transmittance characteristic is the same for both
TE and TM polarizations.

4.3. Axial Ratio of Reflected and Transmitted Waves

The amplitude and phase responses of multilayer structures are
different for waves with TE and TM polarizations, which causes the
reflected and transmitted waves to become elliptically polarized for
any linear, circular or elliptical polarization of the incident wave.
Therefore, any incident wave may be decomposed into TE and TM
polarized waves, and their behavior may be treated separately. Then
they may be combined according to the superposition principle, to
obtain the overall response. Fig. 6 shows the axial ratio of the dielectric
structure with 9 layers (LH)4L with materials RT/Duroid 6010.5
(εH = 10.5[1 − j0.0023]) and RT/Duroid 5880 (εL = 2.2[1 − j0.0009])
for incident angles 20◦, 25◦, 30◦ at operating frequency 40 GHz. It
is seem that in the indicated frequency range, with the decrease in
the angle of incidence, the polarization of incident wave is maintained
with little deviation. The axial ratio is calculated by Eq. (34) and is
expressed in dB. The values of AR up to 6 dB, approximately denote
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(a)

(b)

Figure 5. Frequency dependence of transmittance for a 21 dielectric
layer FSS structure. The thickness of layers is equal to a quarter
wavelength at f0 = 200 GHz. εr = 5.0562 for the first layer and 2.1025
and 5.00652 periodically for the succeeding layers; (a) TE polarization,
(b) TM polarization.
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(a)

(b)

Figure 6. Axial ratio of the reflected and transmitted waves for a
9 layer FSS structure with the following specifications: d1 = d9 =
3.139 mm, d2 = d8 = 0.55 mm, d3 = d7 = 1.269 mm, d4 = d6 =
0.497 mm, d5 = 1.666 mm, εr(2�+1) = 2.2, εr(2�) = 10.5, (n =
0, 1, ..., 4), f0 = 40 GHz; (a) transmitted wave axial ratio, (b) reflected
wave axial ratio.

circular polarization.

AR = 20 log
(
Emax

Emin

)
(34)

4.4. Distributed Bragg Reflector (DBR)

Distributed Bragg reflector consists of several pairs of layers, wherein
each pair is made of different materials with different dielectric
constants. DBR exhibits high reflection inside the Bragg regime which
has applications in waveguides such as optical fibers.

Fig. 7 shows the reflectance of a high reflection structure consisting
of 40 layers (HL)20 as a DBR. The incident wave is normal at
wavelength λ0. The pair of layers is characterized by εH = 4(1 −
j0.001), µH = 1.02(1 − j0.001), εL=1 and µL = 1. The thickness of
a pair is p and that of the high εH is qp with 0 < q < 1. Curves are
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(a)

(b)

Figure 7. Reflectance of a 20 pair multilayer DBR with εH =
4(1− j0.001), µH = 1.02(1− j0.001), εL = 1 and µL = 1; (a) q = 0.5,
(b) q = 0.7.
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drawn in Fig. 7 for two values of q = 0.5 and q = 0.7. It is seen that
as the value of q increases, the width of Bragg regime decreases and
shifts towards the longer wavelength. The results agree well with Ref.
[25].

4.5. A Narrow Band Filter Consisting of Two Fabry-Perot
Resonators

Narrow band filters comprising of two Fabory-Perot filters are used
in thin film technologies, fiber Bragg gratings, WDM multiplexers,
narrow band laser sources (λ0 = 1550 nm), distributed feedback lasers,
etc.

(HL)N structures make up a dielectric mirror which produces
very high reflection coefficients. In such cases, H and L can have
an arbitrary thickness, which is taken to be equal to a quarter
wavelength here. The structure of (HL)NL makes up a Fabry-Perot
resonator (FPR). If the structure of (HL)NL(HL)NL is sandwiched
between identical substrates such as glass (εr = 2.25) in the form of
G|(HL)NL(HL)NL|G, it will behave as a narrow band transfer filter at
frequency λ0. As N increases, the transfer range becomes narrower. An
FPR with an odd number of layers with an extra layer of L at the end,
such as G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|(HL)N3L(HL)N3L|G
or an FPR with an even number of layers FPR without an extra layer
of L, such as G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|G may be used for
a narrow band transfer filter [26, 27].

Fig. 8 shows the transmittance for two types of FPR in the form of
G|(HL)N1L(HL)N1|(HL)N2L(HL)N2|G for two cases of N1 = N2 = 8
and N1 = N2 = 9. Layer thickness equal to a quarter wavelength at
λ0 = 1550 nm and normal incidence are considered. Fig. 8(a) shows the
response in the range of wavelengths [1200–2000] nm for N1 = N2 = 8
and Fig. 8(b) shows it in [1549–1551] nm. It is seen that the transfer
band is very narrow, and its bandwidth decrease as N increases.

4.6. Cantor Superlattice in Optics

Cantor superlattices have wide application in thin film transistors, laser
technology, infrared photodetectors, etc.

Fig. 9 shows a cantor as pseudo periodic dielectric structure with
a fractal dimension ln 2/ln 3 [28]. In this figure, the structure consists
of two layers A and B with equal thicknesses (dA = dB1). The
integer n indicates the order of generation, wherein the thickness
of layer A is given by dBn = 3n−1dB1 and the number of layers is
Nn = 2N(n−1) − 1, (n = 1, 2, ...). Here dB1 is the thickness of first
layer and N0 = 1.
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(a)

(b)

Figure 8. A narrow pass band filter composed of two FPR; (a)
pass band filter characteristics in the [1200–2000] nm, (b) filter
characteristics around λ0 = 1550 nm.
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Figure 9. A pseudo periodic dielectric multilayer cantor superlattice
with fractal dimension ln 2/ ln 3.

Fig. 10 shows reflectance and transmittance of two cantors with
13 layers and n = 3, and 31 layers with n = 4. In this figure
layers A and B are composed of GaAs and SiO2, respectively, with
the following physical parameters: relative permittivity of layer B is
assumed independent of frequency εrB = 12.26 and that of layer B is
assumed to follow the plasma dispersion relation

εrA(ω) = ε∞A(1 − ω2
PA

ω(ω + jΓA)
) (35)

where ε∞A = 12.9, and ωPA = 4.04 × 1012 Hz and ΓA = 0 are the
plasma angular frequency and attenuation constant, respectively. The
thickness of layer A and B is equal to 40 nm, the incidence angle is 30◦
and the polarization is TM. The abscissa is the normalized frequency
ω/Ω, with respect to

Ω =

√
nAe2

m∗ε0ε∞AdA
= 2.294 × 1013 (36)
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(a)

(b)

Figure 10. Frequency response of reflectance and transmittance of a
cantor superlattice with the specification given in the text of paper;
(a) third generation, (b) fourth generation.
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(a)

(b)

Figure 11. Forward and backward traveling fields and power in
a 5 layer structure with TM polarization, angle of incidence 45◦,
frequency 30 GHz, εr = 10.5(1 − j0.0023) for the first layer and
2.2(1 − j0.0009) and 10.5(1 − j0.0023) periodically for the succeeding
layers and σH/(ε0ε

′
H) = σL/(ε0ε

′
L) = 0.3, 0.03 for all layers; (a) filed

of Hx, (b) propagated power in z direction.
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where carrier density is nA = 6 × 1015 m−2, e = 1.602 × 10−19 C and
m∗ = 6.4 × 10−32 Kg. Comparison of Figs. 10(a) and 10(b) shows
that the increase of the generation order (n), the number of maxima
increase and their frequency separations decrease. These results agree
with those of [28].

4.7. Field Distribution and Forward and Backward Power
Flow

Since the transmission line model is used for the multilayer dielectric
structure, it is possible to obtain the field and also the forward and
backward propagating powers insides the layers, as a function of
position. Some of the other methods mentioned in the introduction
do not possess such a capability, which may be considered as one of
the advantages of the proposed method.

For example, Fig. 11(a) shows the real and imaginary parts of
Hx field components and Fig. 11(b) shows the forward and backward
propagating power in the direction for TM polarization inside and
outside the layers. Fig. 11 is computed for the frequency 30 GHz, the
normal incident, angle of incidence 45◦, εH = 10.5(1 − j0.0023), εL =
2.2(1 − j0.0009), two cases of σH/(ε0ε

′
H) = σL/(ε0ε

′
L) = 0.3, 0.03 and

a structure of 5 layers (LH)2L and layer thickness equal to a quarter
wavelength. Continuity of the tangential magnetic field component
Hx is evident in Fig. 11(a). It may be observed in Fig. 11(b) that
due to the lossy nature of the layers, the propagating power in the z
direction decreases. The incident, reflected, transmitted and dissipated
powers in the layers are related by Eq. (12). The discontinuity in the
power propagating in the z direction at the boundary between two
adjacent layers is due to the change of direction of wave propagating
in consecutive layers, which is obtained from Eq. (7). In Fig. 11(b),
larger values of σ lead to high losses.

5. CONCLUSIONS

Multilayer dielectric structures behave as frequency selective surfaces
(FSS) in front of incident waves. The frequency responses of reflected
and transmitted waves due to such structures depend on frequency,
angle of incidence, incident wave polarization, physical parameters of
stratified media, and dispersion relation of materials. The proposed
method namely Transmission Line Transfer Matrix Method (TLTMM)
in this paper for their analysis uses the transmission line model, and the
transfer matrix method and achieves exactly the same results obtained
by several available methods. A unified formulation is derived for both
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TE and TM polarizations, which facilitates the computer simulations.
The generalized formulation may be used to treat any elliptically
polarized incident wave. The field distribution and the propagating
powers in the positive and negative z directions inside and outside
layers may be readily computed and plotted. The proposed method
is also capable of treating multilayer dielectric layer structure which
are inhomogeneous in the direction normal to the layer faces. The
TLTMM method may be used for multilayer metamaterial structure
and also for obtaining optimum frequency selective structures.
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