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Abstract—Based on the piecewise linear recursive convolution
(PLRC) technique, FDTD modeling of Arbitrary linear lumped
networks is studied in this paper, including one-port networks and
two-port networks. Their general FDTD iterative formulations are
obtained. Firstly, the admittance parameters in Laplace domain
of lumped network are written as a summation form of several
rational fractions; then the time domain admittance parameters can
be obtained by means of inverse Fourier transform technique. Finally
the time domain results are directly incorporated into the Maxwell-
Ampere’s difference equation using the PLRC technique. It is worth
pointing out that this approach preserves the second-order accuracy
and the explicit nature of the conventional FDTD method. The
proposed technique can be extended to model arbitrary linear multi-
port lumped networks. To show the validity of the proposed algorithm,
we analyze two microstrip circuits including lumped networks. The
results are compared with those obtained from the Z-transform
technique and the good agreement is achieved.
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1. INTRODUCTION

Analysis of microwave hybrid circuits including passive and active
elements is not an easy work, because the electromagnetic interaction
among passive and active elements of the circuits must be
accurately modeled to predict the overall performance. The
global electromagnetic simulators are indispensable for such circuits,
and among the currently available techniques for global-domain
electromagnetic analysis, the finite-difference time-domain (FDTD)
method seems to be the best candidates [1], because lumped circuit
elements can be incorporated and wide frequency-band performance
can be obtained with only one FDTD run.

For the FDTD method, the focus is placed on how to introduce a
lumped element into a FDTD cell. Much work has been reported in
recent ten years. The lumped-element FDTD (LE-FDTD) is earlier
proposed [2–5], which can include single passive elements such as
resistors, inductors and capacitor, and also nonlinear or active devices
such as diodes and transistor [9–11]. The main limitation of LE-FDTD
is that it cannot easily and accurately account for two-terminal circuits
consisting of the arbitrary connection of several lumped elements.
Then the so-called lumped-network FDTD (LN-FDTD) is presented
[12], which is an improvement of the LE-FDTD technique and allows
a systematic and simple incorporation of arbitrary linear RLC one-
port lumped networks into a single FDTD cell by using Z-transform
signal-processing technique [9–11]. This approach can also be extended
to model two-port lumped circuits, and it is often referred to as the
TP-LN-FDTD method [12]. Based on Z-transform technique, the LN-
FDTD or TP-LN-FDTD method can easily and accurately analyze
arbitrary linear lumped networks.

The piecewise linear recursive convolution (PLRC) technique
[13, 14], as an alternative technique, can also be applied to model
arbitrary linear lumped networks. In [14], linear lumped loads are
modeled using PLRC technique, and numerical results show that
this technique need saving fewer field variables than Z-transform
technique, but it can only simulate the lumped loads consisting of
parallel combination of series RLC circuits, and cannot model arbitrary
linear lumped networks and do not also have a general formula for
arbitrary high-order linear network. In this paper, we apply the PLRC
technique to simulate one-port high-order linear networks consisting
of the arbitrary connection of several lumped elements, and obtain a
general FDTD formula. Firstly, the admittance parameters in Laplace
domain of lumped network are written as a summation form of several
rational fractions; then the time domain admittance parameters can
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be obtained by means of inverse Fourier transform technique. Finally
the time domain results are directly incorporated into the Maxwell-
Ampere’s difference equation using the PLRC technique. Then this
technique is extended to arbitrary two-port lumped network. Though
only one-port and two-port networks are discussed, this technique is
also proper to multi-port linear networks. It is worth pointing out that
this approach preserves the full explicit nature of the standard FDTD
method. To validate this technique, two microwave circuits including
lumped networks are considered and numerical results show that it
have the same speed and accuracy as Z-transform technique.

2. THEORY ANALYSIS

2.1. One-port Network

Assuming that the lumped network is connected at the node Ez and
along the z-direction, at time step t = n + 1/2, we write Maxwell’s
curl-H equation as:

ε
En+1

z − En
z

∆t
= [∇× H]n+1/2

z − Jn+1/2
z (1)

Jz denotes the current density flowing through the lumped network.
Assuming the admittance of the one-port lumped network is Y ,

we can obtain the current-voltage relationship at time domain:

Iz(t) = Y (t) ⊗ Vz(t) (2)

where ⊗ denotes the convolution operation.
According to the PLRC technique, define two variables as:

χm =

(m+1)∆t∫
m∆t

Y (τ)dτ (3)

ξm =
1

∆t

(m+1)∆t∫
m∆t

(τ − m∆t)Y (τ)dτ (4)

If the variables meet the following relationship

ρ =
χm

χm−1
=

ξm

ξm−1
(5)
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the time-domain current In
z can be updated using recursive equation:

In+1
z = (χ0 − ξ0) V n+1

z + ξ0V n
z + ρIn

z (6)

The details regarding PLRC formulation can be found in [13].
For a one-port lumped network consisting of the arbitrary

connection of several linear lumped elements, in order to easily apply
the PLRC technique, we can express its admittance in Laplace domain
as:

Y (s) =
N∑

i=1

ci

s − ai
+ g + sh =

N∑
i=1

Yi(s) + Yo(s) (7)

where the residues ci and poles ai are either real quantities or come in
complex conjugate pairs, while g and h are real. According to (2) and
(7), the discrete time-domain current can be expressed as:

In+1/2
z =

N∑
i=1

I
n+1/2
z,i + In+1/2

z,o (8)

We discuss the two right terms of the above formulation in detail.
1. If the residues ci and poles ai are real quantities, Yi(s) = ci

s−ai
is

converted to the time-domain by inverse Fourier transform technique

Yz(t) = cie
ai∆tu(t) (9)

u(t) is the unit step function. By introducing (9) into (3) and (4), we
can get:

χm,i = − ci

ai

(
1 − eai∆t

)
emai∆t (10)

ξm,i = − ci

a2
i ∆t

[
(1 − ai∆t) eai∆t − 1

]
emai∆t (11)

Obviously, (5) can be met

ρi =
χm,i

χm−1,i
=

ξm,i

ξm−1,i
= eai∆t (12)

In this case, the time-domain current In
zi can be updated using recursive

equation:

In+1
z,i = (χ0,i − ξ0,i) V n+1

z + ξ0,iV
n
z + ρiI

n
z,i (13)
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2. If ci and ci+1, ai and ai+1 are complex conjugate pairs, the
Equations (9)–(13) are yet satisfied, but they can be simplified. From
the definition of (3)–(5), we can prove that χm,i and χm,i+1, ξm,i and
ξm,i+1, ρi and ρi+1 are all complex conjugate pairs, so In+1

z,i and In+1
z,i+1

are also complex conjugate pairs and their sum is a real quantity.

In+1
z,i + In+1

z,i+1 = 2Re
(

In+1
z,i

)
=2

{
Re (χ0,i − ξ0,i)·V n+1

z + Re (ξ0,i)·V n
z

+Re
(
ρiI

n
z,i

)}
(14)

So only one complex of a complex conjugate pair is needed. In other
words, if ci and ai contain 2Ng conjugate complex, only Ng variables
need to be saved.
3. Substituting Yo(s) = g + sh into (2), we can obtain Iz,o(s) =
(g + sh)Vz(s). Applied the transformation of s → ∂/∂t, the following
central-difference formulation can be achieved

In+1/2
z,o = (g/2 + h/∆t) V n+1

z + (g/2 − h/∆t) V n
z (15)

Finally, substituting (13)–(15) into (8) and assuming ci and ai are
composed of Nr real quantities and Ng pairs of conjugate complex
(total number N = Nr + 2Ng), we can write the total current as:

In+1/2
z = (χ0,t − ξ0,t + g/2 + h/∆t) V n+1

z + (ξ0,t + g/2 − h/∆t) V n
z + In

t
(16)

where

χ0,t =
1
2

Nr∑
i=1

χ0,i +
Nr+Ng∑
i=Nr+1

Re (χ0,i)

ξ0,t =
1
2

Nr∑
i=1

ξ0,i +
Nr+Ng∑
i=Nr+1

Re (ξ0,i)

In
t =

1
2

Nr∑
i=1

(ρi + 1) In
z,i +

Nr+Ng∑
i=Nr+1

Re
[
(ρi + 1) In

z,i

]
The relationships of the voltage with the electric field and the current
intensity with the current density are approximately expressed as

V n
z =

∫
En

z dz ≈ En
z ∆z (17)

In+1/2
z =

∫∫
J

n+1/2
d xdy ≈ Jn+1/2

z ∆x∆y (18)
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Replacing (17) and (18) into (1), we can obtain the FDTD iterative
formulation of electric field at the loaded node as follows:

En+1
z =

(ε/α + h)/∆t − (ξ0,t + g/2)
(ε/α + h)/∆t + (χ0,t − ξ0,t + g/2)

En
z

+
1/α

(ε/α+h)/∆t+(χ0,t−ξ0,t+g/2){[
∇× �H

]n+1/2

z
− 1

∆x∆y
In
t

}
(19)

where α = ∆z/∆x∆y. The rest electromagnetic fields can be
calculated using the standard FDTD method.

2.2. Two-port Network

Assuming the two ports of lumped network are associated to the two
electric field component Ez1 and Ez2. At the two nodes, the Maxwell-
Ampere’s equation is expressed in following discrete form:


ε

En+1
z1 − En

z1

∆t
=

[
∇× �H

]n+1/2

z1
− J

n+1/2
1

ε
En+1

z2 − En
z2

∆t
=

[
∇× �H

]n+1/2

z2
− J

n+1/2
2

(20)

The performance of two-port network can be characterized by its
admittance matrix in Laplace domain[

I1(s)
I2(s)

]
=

[
Y11(s) Y12(s)
Y21(s) Y22(s)

] [
V1(s)
V2(s)

]
(21)

where Vp and Ip(p = 1, 2) denote the voltage and current at the two
ports.

Introducing four auxiliary current intensities Ipq(s)(p, q = 1, 2),
we express (21) as

Ip(s) =
∑

q=1,2

Ipq(s) p = 1, 2 (22)

where

Ipq(s) = Ypq(s)Vq(s) (23)

Similarly, to a two-port lumped network consisting of the arbitrary
connection of several linear lumped elements, each entry of its
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admittance matrix can be expressed as follows:

Ypq(s) =
N(p,q)∑
i=1

c
(p,q)
i

s − a
(p,q)
i

+ g(p,q) + sh(p,q) (24)

where the residues c
(p,q)
i , and poles a

(p,q)
i , are either real quantities or

complex conjugate pairs, while g(p,q) and h(p,q) are real.
According to (16) in the above section, we can obtain the recursive

equation of Ipq from (23)

In+1/2
pq = ApqV n+1

q + BpqV n
q + In

pq,t (25)

where

Apq =
(

χ
(p,q)
0,t − ξ

(p,q)
0,t + g(p,q)/2 + h(p,q)/∆t

)
Bpq =

(
ξ
(p,q)
0,t + g(p,q)/2 − h(p,q)/∆t

)

χ
(p,q)
0,t =

1
2

N
(p,q)
r∑
i=1

χ
(p,q)
0,i +

N
(p,q)
r +N

(p,q)
g∑

i=N
(p,q)
r +1

Re
(

χ
(p,q)
0,i

)

ξ
(p,q)
0,t =

1
2

N
(p,q)
r∑
i=1

ξ
(p,q)
0,i +

N
(p,q)
r +N

(p,q)
g∑

i=N
(p,q)
r +1

Re
(

ξ
(p,q)
0,i

)

In
pq,t =

1
2

N
(p,q)
r∑
i=1

(
ρ
(p,q)
i +1

)
In
pq,i+

N
(p,q)
r +N

(p,q)
g∑

i=N
(p,q)
r +1

Re
[(

ρ
(p,q)
i +1

)
In
pq,i

]
(26)

χ
(p,q)
0,i = − c

(p,q)
i

a
(p,q)
i

(
1 − ea

(p,q)
i ∆t

)

ξ
(p,q)
0,i = − c

(p,q)
i(

a
(p,q)
i

)2
∆t

[(
1 − a

(p,q)
i ∆t

)
ea

(p,q)
i ∆t − 1

]

ρ
(p,q)
i = ea

(p,q)
i ∆t

In+1
pq,i =

(
χ

(p,q)
0,i − ξ

(p,q)
0,i

)
V n+1

q + ξ
(p,q)
0,i V n

q + ρ
(p,q)
i In

pq,i (27)

At each port, the relationships of the voltage with the electric field
and the current intensity with the current density are same as (17) and
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(18), i.e.,

V n
q =

∫
En

zqdz ≈ En
zq∆z (28)

In+1/2
p =

∫∫
Jn+1/2

p dxdy ≈ Jn+1/2
p ∆x∆y (29)

From (22), the time-domain current at each port can be expressed as

In+1/2
p =

∑
q=1,2

In+1/2
pq p = 1, 2 (30)

Finally, substituting (28)–(30) and (25) into (20), we can obtain the
FDTD formulation of the electric field at each port[

En+1
z1

En+1
z2

]
=

1
α

[
A11 + ε/α∆t A12

A21 A22 + ε/α∆t

]−1 [
T n

1

T n
2

]
(31)

where

α =
∆z

∆x∆y
,

T n
p =

ε

∆t
En

zp +
[
∇× �H

]n+1/2

zp
−

∑
q=1,2

(
αBpqEn

zq +
1

∆x∆y
In
pq,t

)

From (19) and (31), we can find that this approach preserves
the full explicit nature of the standard FDTD method. For two-port
lumped network, the resulting algorithm has the following steps in each
time iteration.
Step 1: The magnetic field �Hn+1/2 is updated by using the standard
FDTD method.
Step 2: The electric field at the two ports En+1

z1 and En+1
z2 are be

updated by (31).
Step 3: Each of auxiliary current In+1

pq,i and In+1
pq,t is updated by using

(26) and (27).

3. NUMERICAL RESULTS

To illustrate the validity of the proposed approach described above, we
consider two microstrip circuits including one-port network and two-
port network, respectively. In both cases, the terminal voltages are
computed by the proposed approach and LN-FDTD or TP-LN-FDTD.
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Figure 1. Structure of microstrip circuit including a lumped load.

3.1. One-port Network

Firstly, we analyze a microstrip circuit with lumped loads, which
structure is showed in Figure 1. The parameters of the microstrip
line used for our computations are thickness of the substrate (H =
0.81 mm), width of the metal strip (W = 2.4 mm), length of the metal
strip (L = 32 mm), dielectric constant of the substrate (ε = 2.2),
and thickness of the metal strip (zero), which corresponds to the
characteristic impedance of the microstrip line (50 Ω). In FDTD
simulation, the space steps are ∆x = 0.4 mm, ∆y = 0.4 mm and
∆z = 0.27 mm . The total mesh dimensions are 60∆x× 90∆y × 20∆z.
The first-order Mur’s absorbing boundary condition is adopted to
truncate the computing region, except the boundary of z = 0. A
sinusoidal voltage source with frequency (20 GHz) and amplitude (1v)
is used at one termination of the strip, and the other termination is
connected with two different lumped loads which circuit diagrams are
illustrated in Figure 2 and Figure 3. The time step is ∆t = 0.5 ps. The
simulation is performed for 800 time steps.

Figure 2. Circuit diagram of lumped load (a).
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Applying the proposed approach and LN-FDTD to analyze this
microstrip circuit, we obtain the results of the voltages across the two
different lumped loads, which are showed in Figure 4 and Figure 5,
respectively. The two approaches have the same speed, and the
computation time is approximately 32 sec and 33 sec for the two lumped
loads. Furthermore, it can be found from Figure 4 and Figure 5 that
the results obtained by the two approaches have an unexceptionable
agreement, so the two approaches have the same accuracy.

Figure 3. Circuit diagram of lumped load (b).

Figure 4. Voltage across lumped load (a).

3.2. Two-port Network

Secondly, we consider a microstrip circuit including two-port lumped
networks, which structure is showed in Figure 6. The parameters of the
microstrip line are thickness of the substrate (H = 0.254 mm), width
of the metal strip (W = 0.79 mm), dielectric constant of the substrate
(ε = 2.17), which corresponds to the characteristic impedance of the
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Figure 5. Voltage across lumped load (b).

Figure 6. Structure of microstrip circuit including a two-port
network.

microstrip line (50 Ω). Two metal strips have the same dimension with
length (L = 4 mm) and thickness (zero). In FDTD simulation, the
space steps are ∆x = 0.079 mm, ∆y = 0.1 mm and ∆z = 0.0846 mm.
The total mesh dimensions are 60∆x × 105∆y × 30∆z. The first-
order Mur’s absorbing boundary condition is adopted to truncate
the computing region, except the boundary of z = 0. A sinusoidal
voltage source with an internal resistor (50 Ω), frequency (20 GHz) and
amplitude (1v) is excited at one termination of the strip, and the other
termination is truncated by a resistor load with a resistance (50 Ω).
Two different lumped two-port networks are placed on the microstrip
gap with span length (0.5 mm), as shown in Figure 6. The time step
is ∆t = 0.16 ps, and the simulation is performed for 1200 time steps.

The proposed approach and TP-LN-FDTD are used to simulate
this microstrip circuit, respectively, and two terminal voltages, i.e.,
source and load termination, are obtained. The computation time of
the two approaches is equal. The simulation results of two different
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Figure 7. Circuit diagram of two-port network (a).

Figure 8. Circuit diagram of two-port network (b).

Figure 9. Voltage across source termination with network (a).
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Figure 10. Voltage across load termination with network (a).

Figure 11. Voltage across source termination with network (b).

Figure 12. Voltage across load termination with network (b).
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networks are showed in Figures 9–10 and Figures 11–12, respectively.
From Figures 9–12, we can see that the two approaches also have the
same computational accuracy.

4. CONCLUSION

The FDTD method is one of the best candidates to provide an efficient
and powerful global electromagnetic tool, which can accurately predict
the electromagnetic interaction among passive and active elements of
microwave integrated circuits. In recent years, this technique is widely
studied. How to introduce a lumped element or network into a FDTD
grid is the key. In this paper, an approach of FDTD combining
the PLRC technique is studied to model arbitrary linear lumped
network, including one-port network and two-port network, and the
general FDTD formulations are derived. This approach preserves the
full explicit nature of the standard FDTD method. Compared with
the accurately LN-FDTD and TP-LN-FDTD method, the proposed
approach has the same speed and accuracy. It provides an alternative
electromagnetic analysis tool. Furthermore, the proposed technique
can also be extended to model multi-port linear lumped network.
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