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Abstract—By means of evaluating impedance of a slot by spectral
domain analysis, the radius of the equivalent cylindrical dipole is found
in terms of slot parameters. The analysis proceeds from the integral
equation for the surface current density induced on a planar strip.
Explicit expressions for real and imaginary parts of impedances are
derived in visible and invisible regions respectively.

1. INTRODUCTION

Waveguide fed slot arrays are used in many radar and communication
systems. Considerable investigations have already been carried out on
the evaluation of admittance of radiating slot using variational [1–3]
as well as moment method [4] formulations. The specific advantage of
variational formulation is that it enables evaluation of the parameters
of the complex equivalent circuit [1, 3]. As a result the entire problem
reduces to a simple circuit analysis problem, which is necessary for
slot radiator using multilayered junctions [5]. In many cases [14–
16] it is convenient to replace the slot by an equivalent planar or
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cylindrical dipole for analysis [17, 18]. Hallen [10] has found the radius
of the equivalent cylindrical dipole using static field considerations.
Warne et al. [13] evaluated the equivalent radius for narrow slots in
terms of the solution to the Hallen’s integral equations [10, 19, 20]
using Galerkin method with piecewise sinusoidal function. Rhodes
[8] has established the equivalence between a planar and cylindrical
dipole using spectral domain approach. This paper aims at developing
a simple analytical procedure for determining the radius of the
equivalent cylindrical dipole for a radiating slot which is based upon
the impedance considerations.

The expression for the complex radiated power in the numerator
of the variational formula appears in the form of an integral basically
in the spatial domain. The formula contains half-space dyadic Green’s
function [2]. A close form expression for the quadruple integral has
been derived [2] for slots resonating near half wavelength making
considerable simplifying approximations.

The same integral has also been evaluated by transforming it to
the spatial domain [6–8] employing Fourier Transform of Maxwell’s
equation. The complete input impedance i.e., real and imaginary parts
have been found by analytical extension of the Poynting vector method
by evaluating the integrals in the visible

(
k2

x + k2
z ≤ k2

)
and invisible(

k2
x + k2

z ≥ k2
)

regions of the entire wavenumber plane.
In the present work, complex radiated power from the aperture is

determined from the Fourier Transform of the electric field distribution
in the aperture. This Fourier Transform gives the angular spectrum
of the plane waves. The plane wave spectrum in visible and
invisible regions determines the radiated and reactive power stored
in the aperture respectively. The aperture admittance is obtained
by the analytical expression of Poynting vector method and from
the expression of aperture admittance; equivalent planar dipole
impedance is calculated using Bookers relation. By comparison of
these expressions to that of thin cylindrical dipole antenna obtained
by induced emf method [12], radius of the equivalent cylindrical dipole
is obtained.

2. ANALYSIS

Consider a slot fed by a waveguide as shown in Fig. 1. The complex
power radiated from the slot on one side of the surface is given by

P =
1
2

∫∫
S

�E × �H∗ · ûydzdx (1)
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Figure 1. A slot of length 2L and width 2w fed by a rectangular
waveguide.

The magnetic field �H has been expressed in the form of a double
integral in terms of half-space dyadic Green’s function [2]. The
integration of the quadruple integral, so obtained, has been reduced
to a closed from expression containing summation of sine and cosine
integrals using simplifying approximation. The electric field �E in the
aperture plane of the slot of Fig. 1 can by regarded as equivalent to a
magnetic current �M [1]. The relation between �M and �E is of the form

�M = �E × n̂ (2)

From the image theory, it is found that a magnetic current on the
surface of an infinite ground plane results in magnetic having strength
twice that given by Eq. (2). Hence total effective magnetic current �Mt

is given by

�Mt = 2 �M = 2 �E × n̂ (3)

Self reaction of the magnetic current is

〈a, a〉m = −
∫∫
s

�Ha · �Mtds = −2
∫∫
s

�Ha · �E × ûzds = 2
∫∫
s

�E · �Hads

(4)

where �Ha is the magnetic field in the aperture plane produced by
magnetic current.

If �E and �H are the electric and magnetic fields in the spectral
domain, they satisfy the following equations, which are Fourier
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transforms of Maxwell’s equations [6, 7, 21]

�H (kx, kz) =
1
ωε
�E (kx, kz) × �k =

1
ωµ

�H (kx, kz) × �k (5)

where

�k · �E = 0 and �k · �H = 1 (6)

Using Perseval’s relation, the double integral in (1) is expressed in the
spectral domain as [6, 7]

P =
1
2

+∞∫
−∞

+∞∫
−∞

�E × �H · ûydkxdkz (7)

From (2)–(6), it is found that

P =
1

2kη

+∞∫
−∞

+∞∫
−∞

k2 − k2
z

k∗y

∣∣∣�E∣∣∣2dkxdkz (8)

where

�E = ûxEx =
1
2π

∫∫
S

Ex(x, z) · ej(kxx+kzz)dxdz (9)

Since the electric field in the aperture plane of the slot of Fig. 1 is x-
directed, it is reasonable to assume that the electric field in the aperture
plane of the slot of Fig. 1 can be represented by an expression of the
form [1]

Ex (x, z, 0) = E0 cos
(πx

2L

)
(10)

Substituting (10) in (9)

Ex =
E0 · 2w
π

· (π/2L) cos (kzL)
(π/2L)2 − k2

z

· sin (kxw)
kxw

(11)

The electric field in the aperture plane of the slot has been
expressed as the summation of an infinite number of plane waves
having propagation constants kx, ky, kz in the x, y, and z directions
respectively. The propagation constants of the plane waves satisfy the
relation

k2
x + k2

y + k2
z = k2 (12)
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From (8), (11) and (12), it is found that the complex radiated
power satisfies the relation

P=
(E0w)2

4kηL2
·

+∞∫
−∞

+∞∫
−∞

[
sin (kxw)
kxw

]2

× cos kzL[(
π
2L

)2−k2
z

]2

k2−k2
z√

k2−k2
x−k2

z

dkxdkz

(13)

P is complex and may be represented as P = Pr + jPj , where Pr is
the real part and is obtained for k2

x + k2
z ≤ k2 and Pj is the imaginary

part and is obtained for k2
x + k2

z ≥ k2.
The aperture admittance is obtained on dividing the expression

(13) for P, the complex radiated power by the square of the voltage at
the centre of the slot, when its length is near λ/2.

∆V = E02w (14)

Hence, Dividing (13) by the square of (14), the aperture admittance
Ya is obtained as

Ya =
8wL
π4kη

+∞∫
−∞

+∞∫
−∞

k2−k2
z√

k2−k2
x−k2

z

[
sin (kxw)
kxw

]2

× cos2(kzL){
1−

(
2Lkz

π

)2
}2dkxdkz

(15)

For the purpose of integration, the following substitution are made

kx = t cosφ, kz = t sinφ⇒ dkxdkz = tdtdφ (16)

Further, for integration in the visible region, the following substitutions
are made

t = k sin θ, dt = k cos θdθ (17)

where the limits of t for the visible region are t = 0 and t = k. From
(15)–(17), it is found that

Ga =
8wLk2

π4η

π/2∫
θ=0

2π∫
φ=0

(
1 − sin2 θ sin2 φ

)
· sin2 (wk sin θ cosφ)

(wk sin θ cosφ)2

× cos2 (kL sin θ sinφ)[
1 −

(
2kL sin θ sin φ

π

)2
]2 sin θdθdφ (18)
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For integration in the invisible region, the following substitution is
made

t = k cosh θ, dt = k sinh θdθ (19)

where the limits of integration are from t = k to t = ∞. From (14),
(15) and (19), the imaginary part assumes the form

Ba =
8wLk2

π4η

π/2∫
θ=0

2π∫
φ=0

(
1 − cosh2 θ sin2 φ

)sin2 (wk cosh θ sinφ)
(wk cosh θ sinφ)2

× cos2 (kL cosh θ sinφ)[
1 −

(
2kL cosh θ sin φ

π

)2
]2 cosh θdθdφ (20)

The double integrals in (18) and (20) are evaluated using the
Simpson’s formula for double integration. However if 2L ∼ λ/2 i.e., in
the immediate vicinity of the λ/2 it is possible to derive closed form
expressions for these integrals with the help of some approximations
[6–8]. With these simplifications the expressions in (18), (20) reduces
to,

Ga =
w

30aπ2

∞∑
n=0

(−1)n (wk)2n

(2n+ 2)(2n+ 1) (n!)2

·
[
Cin(2kL) +

(
Cin(2kL) − 1

2
Cin(4kL)

)
cos(2kL)

−
(
Si(2kL) − 1

2
Si(4kL)

)
sin(2kL)

]
(21)

and

Ba =
w

240aπ2
·
[
Si(2kL) +

(
Si(2kL) − 1

2
Si(4kL)

)
cos(2kL)

−
(
Cin(2kL) − 1

2
Cin(4kL) − ln

(
e3/2L

2w

))
sin(2kL)

]
(22)

Using Booker’s relation the impedance for the complimentary planar
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dipole differs only by proportionality constant.

R =
35530.L
30aπ2

∞∑
n=0

(−1)n (wk)2n

(2n+ 2)(2n+ 1) (n!)2

·
[
Cin(2kL) +

(
Cin(2kL) − 1

2
Cin(4kL)

)
cos(2kL)

−
(
Si(2kL) − 1

2
Si(4kL)

)
sin(2kL)

]
(23)

and

X =
35530.L
240aπ2

·
[
Si(2kL) +

(
Si(2kL) − 1

2
Si(4kL)

)
cos(2kL)

−
(
Cin(2kL) − 1

2
Cin(4kL) − ln

(
e3/2L

2w

))
sin(2kL)

]
(24)

Comparing the closed form expressions of input reactance obtained
here with that of cylindrical dipole antenna [11] with a radius r,
it is noted that both expressions give exactly the same result if
r = 2w

e3/2 ≈ 2w
4.48 . This result is quite near to result obtained based

on static field considerations by Hallen [10], r = 2w/4 and is in exact
agreement to the one predicted by Rhodes [8].

3. NUMERICAL RESULTS AND DISCUSSION

The results for the radiation resistance and input reactance of a
planar dipole antenna of width 2w and length 2L computed from the
numerical evaluation of integration in (18) and (20) where standard
X-band waveguide parameters have been taken is shown in Fig. 2. It
is worthwhile to point out that both the integrals are evaluated as
a function of 2L/λ for f = 9.37 GHz with 2w/λ as parameter. The
values obtained are in perfect agreement with those obtained for a
dipole antenna using induced emf method [12]. Further, for 2L = λ/2,
one of the factors, assumes 0/0 form when φ is odd multiple of π/2,
for θ = π/2 in (18) and θ = 0 in (20). In the process of the evaluation
of the integrals, the limiting value of 0/0 form is evaluated using L
Hospital’s theorem.

From Eq. (25) it is concluded that the equivalent radius of
the cylindrical dipole antenna is 2w/e3/2. This equivalent radius
obtained from impedance considerations is different from but close to
(within 10 percent), the equivalent radius 2w/4 obtained from static
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field considerations [10]. It is usually assumed that the static field
equivalence will lead to correct impedance but it is demonstrated
that the static field equivalence may not apply exactly to impedance
calculations. Further it provides a way to account for the finite
slot thickness while equivalent dipole radius being calculated by
variational method. The effect of slot thickness can be accounted using
transmission line representation of the equivalent network parameters
and the comparable dipole of similar length but correction factor
included in the radius may be chosen to represent the slot with finite
thickness.

Figure 2. The radiation resistance and input reactance of a planar
dipole antenna of width 2w and length 2L computed from the
numerical evaluation of integration in (18) and (20).
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4. CONCLUSION

Integral equations have been developed. These equations have been
solved employing spectral domain approach. Numerical results for the
radiation resistance and input reactance of a planar dipole antenna of
width 2w and length 2L computed from the numerical evaluation of
integration in (18) and (20) for standard X-band waveguide parameters
have been presented. A method to account for the finite slot thickness
in equivalent dipole radius is discussed. To arrive at a closed form
expression for thickness correction the problem is being investigated
further.
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