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Abstract—Electromagnetic scattering by electrically large scatterers
usually requires a large number of unknowns. To reduce the matrix
size, one expects to choose a small sampling rate for the unknown
function. In the method of moments (MoM) scheme, this rate is
about 10 unknowns per wavelength for electrically small or medium
scatterers. However, this rate may not work well for electrically large
scatterers with a concave surface. The concave area on the scatter
is observed to be the oscillatory part in the solution domain. The
oscillation property requires more samplings to eliminate the numerical
noises. The multiscalets with a multiplicity of two are higher-order
bases. It is shown that the multiscalets are more suitable to represent
the unknown function with oscillatory characteristic. Furthermore,
the testing scheme under the discrete Sobolev-type inner product
allows the MoM have the derivative sampling which enhances the
tracking quality of the multiscalets further. Numerical Examples of
scattering by 1000 and 1024 wavelength 2D scatterers demonstrate that
the use of multiscalets in the MoM can keep the same discretization
size for electrically large scatterers as for electrically small scatterers
without losing the accuracy of the solution. In contrast, the traditional
MoM and Nyström method require the finer discretization scheme if
achieving a stable solution.
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1. INTRODUCTION

Method of moments (MoM) is one of the most widely used numerical
methods in solving electromagnetic (EM) integral equations for EM
scattering problems [1–3]. In the MoM scheme, it is commonly
recognized that the discretization for an electrically small or medium
geometry is about ten unknowns per wavelength if the general basis
functions such as pulse and triangular shape functions are used.
However, when the electrical size of a scatter increases due to the
increase of the operating frequency and reaches a very large size, say
1000 wavelengths, the numerical solution may not be good enough.
There exist big numerical noises in the convex area and unsmooth
oscillations can be seen in the concave area in the solution domain.
For such scattering problem, the conventional MoM may not provide
an acceptable solution if still using the usual discretization scheme and
finer meshes are usually needed.

Fast Multiple Method (FMM) is thought of as a very robust
numerical approach in dealing with electrically large problems [4–9].
The FMM can solve a matrix equation with 20 million unknowns on a
common workstation [7]. However, the FMM is based on the system
matrix produced by the MoM, which implies that the FMM is a matrix
solver instead of matrix producer. If the resulting MoM matrix cannot
represent the original problem in a good approximation due to the
insufficient sampling on the unknown function, the FMM may not
yield a good solution. Furthermore, the FMM is not easy to implement
although it can greatly save memory usage and CPU time.

Nyström method is also a potential numerical scheme to solve
electrically large problems [8–10]. Unlike the MoM, the Nyström
method applies a numerical quadrature rule to discretized integral
equations directly if the integral kernels are smooth. The values of the
unknown function at the corresponding quadrature points are selected
as the unknowns to be solved. Therefore, most of matrix entries can
be produced in an easier and more direct style and the matrix filling
time is dramatically reduced. If the integral kernels are singular, a local
correction scheme is needed to generate corresponding diagonal matrix
entries [10]. This will prevent the method from being used sometimes.
Also, Nyström method requires a larger number of unknowns than
MoM because the unknowns are defined on each of quadrature points
and there are multiple points on each meshed element.

Wavelet based algorithms have been developed and widely used in
solving EM problems recently [13–17]. If the multiscalets are used as
basis functions and the testing procedure defined in the Sobolev space
is implemented in the MoM, the hybrid algorithm, multiscalet based
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moment method (MBMM), exhibits a very attractive performance
[14, 15]. These attractive qualities come from the higher-order property
of the multiscalets with a multiplicity of two and the derivative tracking
for the unknown functions. The resulting algorithm is specially suitable
for solving electrically large problems because it can be used in the
same way as in the small problems without increasing the density
of discretization and other complexity. The numerical solution is
continuously stable from the small-size scatter to the large-size scatter,
differing from the conventional MoM.

In the following sections, we briefly introduce the MBMM and
the implementation for 2D scattering problems. As a comparison, we
also present the implementing formulations of Nyström method. Two
numerical examples are used to illustrate the difference between the
MBMM, the conventional MoM and Nyström method.

2. MULTISCALETS AND MBMM

Multiscalets are the matrix-vector version of the regular scalets. If the
regular scalet is defined as

φ(t) =
∑
k

hkφ(2t− k) (1)

where hk is the lowpass filter coefficient, the corresponding multiscalet
is then defined as

|φ(t)〉 =
∑
k

Ck|φ(2t− k)〉 (2)

where Ck = [Ck]r×r is the lowpass coefficient matrix of r × r, |φ(t)〉 =
[φo(t), φ1(t), · · · , φr−1(t)]T is the multiscalet vector of r × 1, and r is
the multiplicity. In the above matrix-vector dilation equation, the only
nonzero lowpass coefficients are C0, C1, and C2, leading to a compact
support [0, 2] for |φ(t)〉. The multiscalet can be easily derived either
by numerical iteration or by the analytical approach. For r = 2, the
derived explicit form of the multiscalet is

φ0(t) =

{
3t2 − 2t3 t ∈ [0, 1]
3(2 − t)2 − 2(2 − t)3 t ∈ [1, 2]

φ1(t) =

{
t3 − t2 t ∈ [0, 1]
−(2 − t)3 + (2 − t)2 t ∈ [1, 2].

(3)

The multiscalets satisfy the Sobolev orthogonality at the zeroth scaling
level which is defined in a discrete Sobolev inner product space. The
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Sobolev orthogonality of the multiscalets implies

〈φi(t−m), φk(t− n)〉 =
r−1∑
j=0

∑
p∈Z

φ
(j)
i (p−m)φ(j)

k (p− n)

=
r−1∑
j=0

φ
(j)
i (1 −m)φ(j)

k (1 − n)

=
r−1∑
j=0

δi,jδk,jδm,n

= δi,kδm,n. (4)

The use of the above nature of the multiscalets yields the multiscalet
based moment method (MBMM) [14], which enforces the derivative
sampling and tracking for the integral equations in addition to the
point-matching procedure. In the MBMM, the unknown function is
expanded using the multiscalet basis functions defined on the contour
of a scatterer

J(τ ′) =
N∑

n=1

[Df
nφ0n(τ ′) +Dd

nφ1n(τ ′)] (5)

where Df
n and Dd

n are the expansion coefficients and the superscripts
f and d denote the function sampling and derivative sampling
respectively. Note that we have split the scatterer into N segments
with a length of h and τ ′n (n = 1, 2, · · ·N + 1) are the corresponding
nodes. The multiscalets are then taking the following form after being
shifted and scaled to fit the segments

φ0n(t′) =

{
3t′2 − 2t′3 τ ′n−1 ≤ τ ′ ≤ τ ′n
3(2 − t′)2 − 2(2 − t′)3 τ ′n ≤ τ ′ ≤ τ ′n+1

φ1n(t′) =

{
t′3 − t′2 τ ′n−1 ≤ τ ′ ≤ τ ′n
−(2 − t′)3 + (2 − t′)2 τ ′n ≤ τ ′ ≤ τ ′n+1.

(6)

where t′ = (τ ′ − τ ′n−1)/h and τ ′ is the arc length along the contour
measured from a reference point. Testing the discretized integral
equation using the multiscalet weighting functions and making use of
the Sobolev orthogonality of the multiscalets in (4), we can write that

F inc(τm) =
N+1∑
n=1

g0n(τm)Df
n +

N+1∑
n=1

g1n(τm)Dd
n
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F
′inc(τm) =

N+1∑
n=1

g′0n(τm)Df
n +

N+1∑
n=1

g′1n(τm)Dd
n

m = 1, 2, · · · , N + 1 (7)

where F inc is the known incident field in the scattering problems and
gpn (p = 0, 1) are the matrix elements evaluated by integrating the
Green’s function and multiscalet bases within a segment. The resulting
matrix equation is solved using the standard numerical methods and
J(τ ′) is then found from (5).

3. MBMM FORMULATIONS FOR EM SCATTERING

Consider the TM z wave scattering by a 2D conducting scatterer which
can be represented by the electric field integral equation (EFIE) [18]

Ei
z(ρ) =

κη

4

∫
C
Jz(ρ′)H(2)

0 (κ|ρ − ρ′|)d�′ ρ and ρ′ on C. (8)

where Ei
z denotes the incident electric field, Jz denotes the unknown

current density on the contour C of the scatterer and H
(2)
0 denotes

the zeroth-order second kind of Hankel function. To determine the
current density Jz, we first discretize the contour of the scatterer into N
segments with a step size of h. We then expand Jz using the multiscalet
bases as shown in (3), and test the integral equations in terms of the
discrete Sobolev inner product. This leads to the following MBMM
system equations

Einc
z (xm

0 , y
m
0 ) =

N∑
n=1

Df
n

{∫ 0

−h
(3t′2 − 2t′3)H(2)

0 (κsmn
1 )dτ ′

+
∫ h

0
[3(2 − t′)2 − 2(2 − t′)3]H(2)

0 (κsmn
2 )dτ ′

}

+
N∑

n=1

Dd
n

{∫ 0

−h
(t′3 − t′2)H(2)

0 (κsmn
1 )dτ ′

+
∫ h

0
[−(2 − t′)3 + (2 − t′)2]H(2)

0 (κsmn
2 )dτ ′

}

dEinc
z (xm

0 , y
m
0 )

dτ
=

N∑
n=1

Df
n

{∫ 0

−h
(3t′2 − 2t′3)V1dτ

′
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+
∫ h

0
[3(2 − t′)2 − 2(2 − t′)3]V2dτ

′
}

+
N∑

n=1

Dd
n

{∫ 0

−h
(t′3 − t′2)V1dτ

′

+
∫ h

0
[−(2 − t′)3 + (2 − t′)2]V2dτ

′
}

m = 1, 2, · · · , N (9)

where

t′ = 1 +
τ ′

h

V1 =
κH

(2)′

0 (βsmn
1 )

smn
1

· [(xm
0 − x

′n
1 )(cosα1m + cosα2m)

+ (ym
0 − y

′n
1 )(sinα1m + sinα2m)]

V2 =
κH

(2)′

0 (βsmn
2 )

smn
2

· [(xm
0 − x

′n
2 )(cosα1m + cosα2m)

+ (ym
0 − y

′n
2 )(sinα1m + sinα2m)]

smn
1 =

√
(xm

0 − x
′n
1 )2 + (ym

0 − y
′n
1 )2

smn
2 =

√
(xm

0 − x
′n
2 )2 + (ym

0 − y
′n
2 )2. (10)

In the above formulations, τ is the arc length measured from the mth
node (xm

0 , y
m
0 ), and (xm

1 , y
m
1 ) and (xm

2 , y
m
2 ) are the observation position

variables in the two neighboring segments of the node. They are related
to each other by {

xm
1 = xm

0 + τ cosα1m

ym
1 = ym

0 + τ sinα1m

−h ≤ τ ≤ 0{
xm

2 = xm
0 + τ cosα2m

ym
2 = ym

0 + τ sinα2m

0 ≤ τ ≤ h. (11)

Similarly, (x
′n
1 , y

′n
1 ) and (x

′n
2 , y

′n
2 ) are the source position variables in

the two neighboring segments of the nth node (xn
0 , y

n
0 ) and they are
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related as {
x

′n
1 = xn

0 + τ ′ cosα1n

y
′n
1 = yn

0 + τ ′ sinα1n

−h ≤ τ ′ ≤ 0{
x

′n
2 = xn

0 + τ ′ cosα2n

y
′n
2 = yn

0 + τ ′ sinα2n

0 ≤ τ ′ ≤ h. (12)

Figure 1 illustrates the above coordinate relationship between a node
and a point on its neighboring segments on a contour C for a scatterer.
In this figure, (xn

0 , y
n
0 ) is the coordinate of the nth node, α1n and α2n

are the directional angles of the two neighboring segments connecting
to the node, and τ ′ is the distance between a source point on the
neighboring segment and the node. If n is replaced by m and τ ′ is
replaced by τ , the same relationship is valid for the observation position
variables.

n1α
n2α

),( 00
nn yx

h

O X

Y

τ ′

τ ′

C

Figure 1. Coordinate relationship for a node and its neighboring
segments on a contour C.
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As a comparison, we also derive the corresponding MoM system
equation with the triangle bases∫ 0

−h

(
1 +

τ

h

)
Einc

z (xm
1 , y

m
1 )dτ +

∫ h

0

(
1 − τ

h

)
Einc

z (xm
2 , y

m
2 )dτ

=
N∑

n=1

Cn

[∫ 0

−h

(
1 +

τ

h

)
dτ

∫ 0

−h

(
1 +

τ ′

h

)
H

(2)
0 (κd11)dτ ′

+
∫ 0

−h

(
1 +

τ

h

)
dτ

∫ h

0

(
1 − τ ′

h

)
H

(2)
0 (κd12)dτ ′

+
∫ h

0

(
1 − τ

h

)
dτ

∫ 0

−h

(
1 +

τ ′

h

)
H

(2)
0 (κd21)dτ ′

+
∫ h

0

(
1 − τ

h

)
dτ

∫ h

0

(
1 − τ ′

h

)
H(2)

o (κd22)dτ ′
]

m = 1, 2, · · · , N. (13)

where dij =
√

(xm
i − x

′n
j )2 + (ym

i − y
′n
j )2 with i = 1, 2 and j = 1, 2.

These system equations can be easily solved with the desired expansion
coefficients using the iteration methods such as Biconjugate Gradient
Stabilized Method (BCGSTAB) or Generalized Minimal Residual
Method (GMRES) with a moderate memory usage if the system matrix
is very large [19].

4. NYSTRÖM METHOD

For the EFIE represented by (8), the Nyström method is implemented
as follows. By the discretization with N segments, the EFIE becomes

Ei
z(ρ) =

N∑
i=1

∫
∆C

g(ρ,ρ′)Jz(ρ′)d�′ ρ and ρ′ on C (14)

where g(ρ,ρ′) = κη
4 H

(2)
0 (κ|ρ − ρ′|). In each segment, the integration

can be replaced by the summation using an appropriate quadrature
rule, say Gaussian-Legendre quadrature. We then obtain

Ei
z(ρ) =

N∑
i=1

P∑
j=1

g(ρ,ρ′
ij)Jz(ρ′

ij)wij (15)

where P is the number of quadrature points on each segment and
wij is the weight of the quadrature rule on the jth point of the ith
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segment. Choosing the quadrature points as the observation points and
performing the point-matching procedure on these quadrature points
results in the following algebraic matrix equation

Ei
z(ρmn) =

N∑
i=1

P∑
j=1

g(ρmn,ρ
′
ij)Jz(ρ′

ij)wij (16)

where m = 1, 2, · · · , N and n = 1, 2, · · · , P . This is a NP ×NP matrix
equation with NP unknown values of the current density on NP
quadrature points. The resulting matrix equation is also solved using
iteration methods when the matrix size is very large. The problem
in this process is that the diagonal elements in the matrix cannot be
determined because the observation points coincide the source points
with the logarithm singularity of the Green’s function. This problem
can be solved by using a local correction based on the singularity
treatment in [20]. Due to the complexity of the local correction with
a high order, we adopt a simpler but efficient procedure proposed in
[12] to evaluate the diagonal elements. We rewrite (16) by extracting
the self term and obtain

Ei
z(ρmn) =

N∑
i=1

P∑
j=1

g(ρmn,ρ
′
ij)Jz(ρ′

ij)wij +A (17)

where

A =
P∑

j=1

g(ρmn,ρ
′
mj)Jz(ρ′

mj)wmj (18)

is the self term. The self term can be further rewritten as

A =
P∑

j=1

g(ρmn,ρ
′
mj)Jz(ρ′

mj)wmj + g(ρmn,ρ
′
mn)Jz(ρ′

mn)wmn

=
P∑

j=1

[Jz(ρ′
mj) − Jz(ρ′

mn)]g(ρmn,ρ
′
mj)wmj + Jz(ρ′

mn)B (19)

where
B =

∫
∆Cm

g(ρmn,ρ
′)d�′. (20)

The integral (20) can be evaluated in a closed-form by using the small
argument approximation of the Hankel function [18], namely

B = ∆Cm

[
1 − j

2
π

ln
(

1.781κ∆Cm

4e

)]
(21)

where e = 2.718. This integral can also be efficiently evaluated using
the generalized quadrature rule proposed in [20].
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Figure 2. Geometry of a 2D conducting L-shape cylinder.

5. NUMERICAL EXAMPLES

Example 1: Scattering by a 2D conducting L-shaped cylinder.
Consider a 2D conducting L-shaped scatterer as shown in Fig. 2.
The scattering by this structure has been analyzed by several authors
[21, 22], but the size was limited to be electrically small or medium.
We select � = 250λ here to enlarge the size of the scatterer with a
circumference of 1000λ, where λ is the wavelength. Fig. 3 shows the
corresponding numerical solution for the normalized current density
on the contour of the scatterer in the TM case using the MoM with 20
unknowns per wavelength. The large numerical noise is clearly seen in
this plot. In contrast, the MBMM solution, as shown in Fig. 4, with
only 10 unknowns per wavelength is more attractive because only a
very low numerical noise appears. The Nyström method solution is
plotted in Fig. 5, but it cannot provide a better approximation for the
current density if we discretize the contour of the scatterer into 5000
segments with 4 quadrature points at each.

Example 2: Scattering by a 2D conducting duct. This problem
is taken from [23] and the geometry is plotted in Fig. 6. We choose
r = 64λ, yielding a circumference of 1024λ. Figs. 7–9 show the
corresponding MoM solutions for the normalized current density on
the duct contour in the TM case with different discretizations. Fig. 10
sketches the MBMM solution for the current density with 10 unknowns
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Figure 3. MoM solution with 20 unknowns per wavelength for the
current on the L-shape cylinder.
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Figure 4. MBMM solution with 10 unknowns per wavelength for the
current on the L-shape cylinder.
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Figure 5. Nyström solution with 5000 × 4 unknowns for the current
on the L-shape cylinder.
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Figure 6. Geometry of a 2D conducting duct scatterer.
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Figure 7. MoM solution with 10 unknowns per wavelength for the
current on the duct scatterer.
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Figure 8. MoM solution with 20 unknowns per wavelength for the
current on the duct scatterer.
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Figure 9. MoM solution with 30 unknowns per wavelength for the
current on the duct scatterer.
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Figure 10. MBMM solution with 10 unknowns per wavelength for
the current on the duct scatterer.
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Figure 11. Nyström solution with 5000× 4 unknowns for the current
on the duct scatterer.

per wavelength. It is clear that the MBMM solution is better than
the MoM solution with the finest mesh. The Nyström solution is also
shown in the Fig. 11 and the solution is the worst due to the insufficient
discretization or quadrature points.

6. CONCLUSION

The multiscalet based algorithm is used to solve for the scattering
problems with a very large size reaching 1000λ and 1024λ. The
numerical solutions are very stable due to the high-order representation
of the basis functions and derivative tracking for the unknown
functions. The discretization scheme with 10 unknowns per wavelength
is unchanged compared with the electrically small problems. In the
contrast, the lower-order MoM produces much more numerical noises
in the numerical solutions and the finer discretization is required for
a better approximation. The Nyström method is also implemented
in the 2D scattering problems with a higher-order local correction for
the singular elements in the system matrix. However, the numerical
solutions are not better if the quadrature points are not enough.
Choosing more quadrature points increases the resulting system matrix
size sharply, leading to a cancellation of the advantages of the method.
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Overall, the multiscalet based algorithm is the most robust. If its MoM
matrix is incorporated with the FMM, a new fast hybrid algorithm for
solving extremely large problems is possibly yielded.
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