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Abstract—An infinite homogeneous circular cylinder with full
permittivity tensor is excited by a straight strip flowed by arbitrary
axial magnetic current. A nontrivial differential equation is derived
for the single axial magnetic component which is assigned a plane
wave representation. The boundary conditions lead to an integral
equation with nonsingular kernel which is solved by supposing a
Dirac comb representation for the unknown function. The resultant
Green’s function multiplied by the current distribution is integrated
numerically over the source to give the total field. Various numerical
examples are presented and discussed.

1. INTRODUCTION

Electromagnetic devices constructed by anisotropic materials are
extensively used and studied for many years. The directional
dependent properties are commonly employed to improve devices’
operation and performance. In [1], rotating anisotropic elements
are used to modify the energy and the frequency of light beams
passing through them. A half-wave plate and a linear polarizer are
investigated via a non relativistic approach to estimate their effect on
an advancing wave train. In [2], the anisotropy in the reception pattern
of an antenna is exploited to implement angle-of-arrival measurements
techniques. The beam of the receiver antenna is rotated, and the
direction corresponding to the maximum signal strength is taken as
the direction of the transmitter. Also Dettwiller [3] provides a study
concerning the light intensity coming out of a linear anisotropic device.
A general expression is received by using Stokes parameters, while
conclusions about light polarizations are drawn. Additionally, [4] shows
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that the operation of a flat monopole is enhanced by utilizing an
anisotropic surface creating coupled resonators. Finally, [5] analyzes
a Cartesian layered structure of anisotropic metamaterials using a T-
matrix method.

Common occurrences such as substrates of printed circuits,
artificial substances, ionospheric layers and composite fluids exhibit
certain properties of anisotropy. In this sense, the study of anisotropic
materials is crucial as the assumption for isotropic environment is
not always realistic. In [6], a solution of the wave functions inside a
homogeneous anisotropic medium is given in terms of finite integrals by
Ren et al.. Interesting properties of the fields defined as a superposition
of waves in all the eigenvector directions are discussed and physically
interpreted. In [7], a bounded anisotropic environment is investigated
and a derivation of the spherical wave functions of all kinds is achieved
in terms of an integral representation. In addition, Graglia and
Uslenghi [8] obtain the integro-differential equations governing the
electromagnetic waves inside a material with arbitrary anisotropy. The
region can be three-dimensional and of arbitrary shape. Moreover,
in [9] a decoupling of the electromagnetic field inside a general
bianisotropic medium is accomplished. Each of the simpler problems
possesses a Green’s dyad which is analytically determinable. In [12],
a version of the Huygens principle inside an anisotropic environment
is obtained by parallelizing the two-dimensional original region with
a complex isotropic one. Finally, [10] describes the diffraction by
an anisotropic half plane, while Sjoberg [11] provides an analysis for
the quasi-linear, bianisotropic Maxwell equations using an entropy
condition.

Anisotropic rods of circular cross section constitute a special topic
which attracts a great amount of attention. This is owed to the analytic
properties of the field solutions inside the anisotropic regions. Zhang
et al. [13] examine a multilayered gyrotropic bianisotropic circular
cylinder posed inside free space. A general formulation is presented for
the solution of electromagnetic scattering of incident waves using the
eigenfunction expansion method. In [14], nonlinear anisotropic circular
cylinders are investigated and solutions of scattering of obliquely
incident waves are obtained. The nonlinearity problem is overcome by
implementing perturbation methods and results for the fundamental
frequency components are received. Also in [15], the three-dimensional
Green’s function of an infinite circular gyroelectric cylinder is derived.
Specific analyses concerning excitation of guided modes along the
gyroelectric guide and radiation of dipoles in the proximity of the
scatterer are provided. In [16], the solutions of the source-free
Maxwell’s equations in anisotropic media have been developed in terms
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of the cylindrical wave functions for isotropic media. Finally, Monzon
[17] elaborates the same problem with help of two coupled integral
equations with nonsingular kernels and easily obtained solutions.

The aforementioned anisotropic structures can be excited by a
variety of sources. In [18], the excitation source for the anisotropic
circular cylinder is an embedded monopole and the theoretical
conclusions are verified experimentally. In [19] a point source of two
alternative polarizations produces field scattered by an anisotropic
plasma cylinder. The work deals with the enhancement of the radiation
from antennas surrounded by a plasma sheath with axial symmetry.
In [20] a plane wave is normally incident to the axis of the anisotropic
cylinder. The analysis can be used for oblique wave incidence as well.

The present work investigates an infinitely long circular cylinder
which is magnetically inert and electrically anisotropic. The rod is
placed inside vacuum area and it scatters the field developed by a
straight vertical strip flowed by arbitrary axial magnetic current. The
only nonzero magnetic component is the axial one, while the vector
of the electric field is parallel to the polar plane. For this reason, the
problem is two-dimensional and the dependence of the field functions
from the axial coordinate is suppressed. The adopted approach is based
on the pioneering paper of Monzon and Damaskos [21].

Application of Ampere’s and Faraday’s law leads to the
formulation of an extended version of Helmholtz differential equation
for the axial magnetic field. A plane wave representation with arbitrary
complex phases and amplitudes [22–24] is assigned to the unknown
function and the explicit expression of the phase is derived. By
using again Ampere’s law the azimuthal electric field is determined
and imposition of boundary conditions results in a couple of integral
equations for the amplitude function. We approximate the amplitude
by a finite weighted sum of Dirac delta functions and the Green’s
function is easily specified because the kernel of the integral equation
is nonsingular. The total magnetic field is obtained via numerical
integration of the product of the magnetic current with the Green’s
function over the line of the strip.

To validate the correctness of the proposed method and the
executed calculations, we check the boundary conditions for several
cases. The error is kept very low and the truncation parameters
are chosen properly. We examine the effect of the elements of
the permittivity tensor on the radiated power and the maximum
propagation direction of the device. Various conclusions are drawn and
especially the contour plots of the quantities with respect to a couple
of real dielectric constants are meaningful and useful. Moreover, the
characteristics of the strip source are varied and their influence on the
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radiation of the device is observed. The results are discussed and some
of them are verified by intuition. Finally, we change the dimensions
and the operating frequency of the antenna and we record its response
along several rays.

2. PROBLEM FORMULATION

We regard an infinite cylindrical scatterer with circular cross section
of radius a. The center of the circle coincides with the origin of the
utilized coordinate system. Either Cartesian (x, y, z) or cylindrical
(ρ, φ, z) coordinates can be used interchangeably. The material of the
cylinder (area 1) is magnetically inert and electrically anisotropic with
relative permittivity tensor ε1. A straight strip parallel to the y axis
is located external to the rod centralized on the point (x = b, y = 0)
of the x axis with a < b. The strip has a length of 2b sinφ0 and is
flowed by arbitrary z-polarized magnetic current Mz(φ) (in V/m) as
shown in Fig. 1. This current is nonzero only for the angular extent
−φ0 < φ < φ0 with 0 < φ0 < π/2. The whole structure is placed inside
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x ( =0)
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Figure 1. The physical configuration of the device. A straight
vertical strip with length 2b sinφ0 flowed by arbitrary magnetic current
Mz(φ) produces the primary field. It is scattered by a two-dimensional
anisotropic cylinder with radius a.
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vacuum (area 0). The relative permittivity tensor for the anisotropic
material of region 1 is written, in cartesian coordinates, as follows.

ε1 =


 ε1xx ε1xy ε1xz

ε1yx ε1yy ε1yz

ε1zx ε1zy ε1zz


 (1)

Both the physical configuration and the supposed excitation of
the device are invariant across the z axis and consequently the only
non vanishing magnetic component is the axial one. In other words,
the nature of the problem is two-dimensional and the participating
functions are independent of the variable z. Each field quantity is
written with a subscript indicating which area it is referred to. The
wavenumber and the intrinsic impedance of the vacuum are denoted as
(k0, ζ0) respectively. A time dependence of the form e+j2πft is adopted
and suppressed. The purpose of this work is to compute effectively
the far field of the structure. Additionally, the effect of the anisotropy
parameters on the radiation pattern of the antenna is interesting to be
studied.

3. ANISOTROPIC REGION FIELDS

Let Hz1(x, y) stand for the single magnetic component in area 1 and
{Ex1(x, y), Ey1(x, y), Ez1(x, y)} for the Cartesian electric components
inside the cylinder. By application of Ampere’s law for the considered
anisotropic material, one concludes to the following three scalar
equations.

∂Hz1(x, y)
∂y

= j
k0

ζ0
[ε1xxEx1(x, y) + ε1xyEy1(x, y) + ε1xzEz1(x, y)] (2)

∂Hz1(x, y)
∂x

= −j k0

ζ0
[ε1yxEx1(x, y) + ε1yyEy1(x, y) + ε1yzEz1(x, y)] (3)

ε1zxEx1(x, y) + ε1zyEy1(x, y) + ε1zzEz1(x, y) = 0 (4)

To this end, we implemented Faraday’s law and we found that the
partial derivatives of Ez1(x, y) with respect to x, y equal to zero.
That means that the axial electric component is constant within the
anisotropic region. Also from the same law, a relation between the
electric components parallel to the polar plane is derived.

∂Ey1(x, y)
∂x

− ∂Ex1(x, y)
∂y

= −jk0ζ0Hz1(x, y) (5)

Solve (4) with respect to Ez1(x, y) and substitute it into (2), (3). Use
the resulting equations to express Ex1(x, y) and Ey1(x, y) as functions
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of Hz1(x, y) derivatives. Finally, eliminate these quantities from (5) to
obtain the differential equation below:[

gxx
∂2

∂x2
+ (gxy + gyx)

∂2

∂x∂y
+ gyy

∂2

∂y2
+ gk2

0

]
Hz1(x, y) = 0 (6)

The auxiliary quantities appearing above are defined as follows.

gxx = ε1xzε1zx − ε1xxε1zz (7)
gxy = ε1xzε1zy − ε1xyε1zz (8)
gyx = ε1zxε1yz − ε1yxε1zz (9)
gyy = ε1yzε1zy − ε1yyε1zz (10)

g = ε1xzε1yyε1zx − ε1xyε1yzε1zx − ε1xzε1yxε1zy

+ε1xxε1yzε1zy + ε1xyε1yxε1zz − ε1xxε1yyε1zz (11)

The differential equation (6) is an extended version of Helmholtz
equation which covers anisotropic cases and does not possess an explicit
solution. We suppose solutions expressed by means of a plane wave
representation. This is an integral of waves with arbitrary complex
phases P (θ) and amplitudes A(θ) propagating towards all the possible
directions θ on x-y plane. This technique is common in bibliography
when dealing with nontrivial problems and its advantages are described
in [22]. Uzunoglu and Holt [23] adopted this method to specify the
field inside an arbitrarily shaped scatterer. Also it is stated [24] that
this form is the most general one satisfying the wave equation in a
homogeneous material. It should be noted that the phase P (θ) in the
following formula is not related with any direction’s wavenumber of
area 1, it remains to be determined.

Hz1(x, y) =
∫ π

−π
A(θ)e−jk0P (θ)(x cos θ+y sin θ)dθ (12)

By replacing (12) in (6), the following expression for P (θ) is acquired.

P (θ) =
√

g

gxx cos2 θ + (gxy + gyx) cos θ sin θ + gyy sin2 θ
(13)

Once the phase function is found, it is convenient to rewrite the axial
magnetic field in cylindrical coordinates.

Hz1(ρ, φ) =
∫ π

−π
A(θ)e−jk0ρP (θ) cos(θ−φ)dθ (14)
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The azimuthal electric field Eφ1(ρ, φ) inside area 1 should also be
specified as it is tangential to the boundary surface of the anisotropic
cylinder and therefore is appeared in the relevant boundary condition.
The derivation is possible by applying again Ampere’s law with use of
the transformation formulas [25]:

 E1x(x, y)
E1y(x, y)
E1z(x, y)


 =


 cosφ − sinφ 0

sinφ cosφ 0
0 0 1


 ·


 E1ρ(ρ, φ)
E1φ(ρ, φ)
E1z(ρ, φ)


 (15)

∇×

 0

0
H1z(ρ, φ)


 =


 cosφ sinφ 0

− sinφ cosφ 0
0 0 1


 · ∇ ×


 0

0
H1z(x, y)


 (16)

The relation between the unitary vectors of the two coordinate systems
is necessary because the tensor of the dielectric constants is given in
Cartesian form. The resulting expression is given by

E1φ(ρ, φ) =
ζ0
g

∫ π

−π
A(θ)P (θ)e−jk0ρP (θ) cos(θ−φ) ·

[cos θ(gxx cosφ+ gxy sinφ) + sin θ(gyx cosφ+ gyy sinφ)] dθ (17)

The amplitude function A(θ) is still unknown and will be determined
by imposing the suitable boundary conditions.

4. SINGULAR MAGNETIC EXCITATION

A prerequisite to proceed analyzing the effect of the strip, is the explicit
form of the magnetic-type Green’s functions G0/1(ρ, φ,R, F ) inside
the corresponding region. A singular magnetic dipole with magnitude
jζ0/k0 [26] posed inside area 0 across the axis (ρ = R,φ = F ), that
is R > a, excites the structure. The primary excitation quantity is
well-known in series form [27].

G0,prim(ρ, φ,R, F ) = − j

4

+∞∑
n=−∞

ejn(φ−F )

{
H

(2)
n (k0R)Jn(k0ρ), ρ < R

Jn(k0R)H(2)
n (k0ρ), ρ > R

(18)
where Jn(z), H(2)

n (z) are the Bessel and (second type) Hankel functions
of order n and argument z. The aforementioned quantity is
dimensionless even though it corresponds to the axial magnetic field.
It also equals to the electric-type primary Green’s function. The
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azimuthal electric field is given by

Gd
0,prim(ρ, φ,R, F ) =

ζ0
4

+∞∑
n=−∞

ejn(φ−F )

{
H

(2)
n (k0R)J ′

n(k0ρ), ρ < R
Jn(k0R)H ′(2)

n (k0ρ), ρ > R
(19)

where the prime ∗′ denotes the differentiation with respect to the entire
argument. The secondary responses (magnetic and electric) of the
system inside vacuum area 0 possess the following forms.

G0,sec(ρ, φ,R, F ) =
+∞∑

n=−∞
Cn(R,F )ejnφH(2)

n (k0ρ) (20)

Gd
0,sec(ρ, φ,R, F ) = jζ0

+∞∑
n=−∞

Cn(R,F )ejnφH ′(2)
n (k0ρ) (21)

The Hankel functions are the only ρ-dependent components because
the region is unbounded and the Sommerfeld’s radiation condition
should be fulfilled. The respective Green’s functions for the anisotropic
region 1 are these of (14), (17).

G1(ρ, φ,R, F ) =
∫ π

−π
A(θ,R, F )e−jk0ρP (θ) cos(θ−φ)dθ (22)

Gd
1(ρ, φ,R, F ) = ζ0

∫ π

−π
A(θ,R, F )P (θ)e−jk0ρP (θ) cos(θ−φ)Ψ(θ, φ)dθ (23)

The unknown amplitude A(θ,R, F ) contains inherently the depen-
dency on the source’s position (R,F ), contrary to the auxiliary quan-
tity Ψ(θ, φ) defined below.

Ψ(θ, φ) =
cos θ(gxx cosφ+ gxy sinφ) + sin θ(gyx cosφ+ gyy sinφ)

g
(24)

The boundary conditions demand continuity of the tangential field
components across the boundary of the scatterer ρ = a.

G1(a, φ,R, F ) = G0,prim(a, φ,R, F ) +G0,sec(a, φ,R, F ) (25)

Gd
1(a, φ,R, F ) = Gd

0,prim(a, φ,R, F ) +Gd
0,sec(a, φ,R, F ) (26)

The z-polarized electric field is also continuous on the cylindrical
boundary. This component vanishes into vacuum region and so does
in the anisotropic one as Ez1(ρ, φ) does not vary with respect to the
observation point. To manipulate the boundary conditions, eliminate
the dependence of the azimuthal variable by multiplying (25), (26) by
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e−jmφ for each integer m and integrate with respect to φ from φ = −π
to π. Via this procedure, we receive the information included in each
angular harmonic. If one exploits the orthogonality of the sinusoidal
functions, one obtains:∫ π

−π
A(θ,R, F )L(θ,m)dθ =

− j
4
H(2)

m (k0R)Jm(k0a)e−jmF + Cm(R,F )H(2)
m (k0a) (27)∫ π

−π
A(θ,R, F )P (θ)Ld(θ,m)dθ =

− j
4
H(2)

m (k0R)J ′
m(k0a)e−jmF + Cm(R,F )H ′(2)

m (k0a) (28)

The functions L(θ,m), Ld(θ,m) are definite integrals given by

L(θ,m) =
1
2π

∫ π

−π
e−jγ(θ) cos(θ−φ)−jmφdφ (29)

Ld(θ,m) = − j

2π

∫ π

−π
e−jγ(θ) cos(θ−φ)−jmφΨ(θ, φ)dφ (30)

with γ(θ) = k0aP (θ). These integrals are analytically evaluated and
expressed in terms of Bessel functions. We simply cite the results,
while hints for the derivations are contained in Appendix A.

L(θ,m) = j−me−jmθJm(γ(θ)) (31)

Ld(θ,m) =
j−me−jmθ

2g

·
[
ejθ (cos θ(gxx − jgxy) + sin θ(gyx − jgyy))Jm−1(γ(θ))

− e−jθ (cos θ(gxx+jgxy)+sin θ(gyx+jgyy))Jm+1(γ(θ))
]

(32)

5. INTEGRAL EQUATION SOLUTION

The integral equation for the unknown function A(θ,R, F ) is
formulated by eliminating parameter Cm(R,F ) from (28) with help
of (27).
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∫ π

−π
A(θ,R, F )

(
P (θ)Ld(θ,m) − H

′(2)
m (k0a)

H
(2)
m (k0a)

L(θ,m)

)
dθ =

e−jmF

2πk0a

H
(2)
m (k0R)

H
(2)
m (k0a)

(33)

The equation is valid for each integer m. The Wronskian determinant
of Bessel functions is used above for simplifying the result. In our
consideration we are not so interested in specifying the explicit form of
the function A(θ,R, F ), as in determining the field in the anisotropic
region. For this reason, we suppose a Dirac comb representation for the
unknown function [28] which is possible since the kernel of the integral
equation is nonsingular for each θ ∈ (−π, π). With this approach
the integrals of (33) for various m are converted to series. The delta
functions of the finite sum become infinite at (2U+1) equispaced points
θu = 2uπ/(2U + 1) within the integration interval θ ∈ (−π, π).

A(θ,R, F ) ∼=
U∑

u=−U

∆u(R,F )δ (θ − θu) (34)

Because of the nature of Dirac function we avoided to place delta pulses
on the limits of the definition interval. Substitution of (34) in (33) gives
the following form:

U∑
u=−U

∆u(R,F )

(
P (θu)Ld(θu,m) − H

(2)′
m (k0a)

H
(2)
m (k0a)

L(θu,m)

)
=

e−jmF

2πk0a

H
(2)
m (k0R)

H
(2)
m (k0a)

(35)

The unknown weights ∆u(R,F ) are found by solving the related
(2U+1)×(2U+1) linear system. This is derived by truncating the series
(18)–(21) and by restricting the integer indexes n,m to the interval
[−U,U ]. The obtained system is robust and its matrix numerically
invertible [21]. Once the coefficients of the sum (34) are determined,
substitution to (27) yields to:

Cm(R,F ) =
1

H
(2)
m (k0a)

·

(
j

4
H(2)

m (k0R)Jm(k0a)e−jmF +
U∑

u=−U

∆u(R,F )L(θu,m)


 (36)
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for m = −U, ..., U . In this way the Green’s function for the vacuum
area is readily derived:

G0(ρ, φ,R, F ) = G0,sec(ρ, φ,R, F ) +G0,prim(ρ, φ,R, F )

=
U∑

n=−U

(
Cn(R,F ) − j

4
e−jnFJn(k0R)

)
H(2)

n (k0ρ)ejnφ

(37)

As far as the primary component of the Green’s function is concerned,
we choose the formula corresponding to ρ > R for brevity. The
expression (37) of G0(ρ, φ,R, F ) is also suitable for ρ = R because
(18) is continuous at the change point.

6. MAGNETIC FIELD INTEGRAL

It is common knowledge that the magnetic field produced by the
excited structure is given by the following integral [29]:

Hz0 = −jk0

ζ0

∫
W
G0Mzdw (38)

where W is the area of the source (line flowed by magnetic current)
and dw the infinitesimal length. The curve of the strip is described in
cylindrical coordinates by the polar equation:

ρ = r(F ) = b

√
1 + sin2 F , F ∈ [−φ0, φ0] (39)

The explicit form of the equation (38), in the case under consideration,
is written as [30]

Hz0(ρ, φ) = Hz0,sec(ρ, φ) +Hz0,prim(ρ, φ)

= −jk0

ζ0

∫ φ0

−φ0

G0(ρ, φ, r(F ), F )Mz(F )
√
r2(F )+r′2(F )dF (40)

where a separation between secondary field produced by the cylinder
and the primary field in the absence of it, is made. If one replaces the
expression of the Green’s function of (37) in equation (40), one receives
the final form:

Hz0(ρ, φ) = −jk0

ζ0

U∑
n=−U

H(2)
n (k0ρ)ejnφ

·
∫ φ0

−φ0

(
Cn(r(F ), F ) − j

4
e−jnFJn(k0r(F ))

)
Mz(F )

√
r2(F ) + r′2(F )dF

(41)
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The coefficients Cm(r(F ), F ) in (41) are not analytic with respect to
F as the derivation uses a numerical procedure throughout which the
position of singularity (r(F ), F ) is supposed to be invariant. When it
comes to the part of integrand of (41), owed to the singular Green’s
response, a principal function of it is not possible to be found. For these
reasons an exact integration is not feasible and a numerical procedure
is used instead. The trapezoidal rule is applied for (2V +1) equispaced
points within the integration interval Fv = vφ0/V for v = −V, ..., V .
The computation is efficient as the matrix of the linear system (35)
determining Cm(R,F ) is independent of the location of the source
(R,F ). Therefore, the trapezoidal integration of (41) requires only
one matrix inversion for all the (2V +1) different points of the Green’s
singularity. The magnetic field in the far region can be determined
with use of the following asymptotic relation of Hankel function for
large arguments [31, 364]:

H(2)
n (k0ρ) ∼

√
2

πk0ρ
e−j(k0ρ−nπ

2
−π

4
) , k0ρ→ +∞ (42)

The power radiated by the total, the scattering and the incident
electromagnetic waves for observation points in the far region, defined
below, will be the main investigated quantities.

S(φ) = lim
ρ→+∞

[
ζ0ρ |Hz0(ρ, φ)|2

]
(43)

Ssec(φ) = lim
ρ→+∞

[
ζ0ρ |Hz0,sec(ρ, φ)|2

]
(44)

Sprim(φ) = lim
ρ→+∞

[
ζ0ρ |Hz0,prim(ρ, φ)|2

]
(45)

The aforementioned functions have dimensions of power per axial
length.

7. NUMERICAL RESULTS

7.1. Parameters and Validation

A set of computer programs has been developed for evaluating the
tangential field components on the cylinder’s boundary and the far
field response of the device. To implement the previously described
technique, the truncation parameters should be selected in the first
place. As far as the number of the terms U in the delta-function sum
(34) is concerned, a careful choice should be made. With increasing
U the error of the boundary conditions on the scatterer’s surface is
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diminished but simultaneously the matrix of the system (35) becomes
more and more ill-conditioned. A number of U = 15 Dirac function
terms per wavelength of the scatterer’s perimeter 2πa leads to robust
and physically consistent solutions. When it comes to the number of
points V for the application of the numerical (trapezoidal) integrations
of (41), the situation is different because with larger V , we always
receive more accurate results. A choice that provides convergence for
all the near field quantities is using V = 50 points per wavelength of
strip’s length 2b sinφ0.

The relative permittivity tensor of (1) is not taken to be a full
matrix. That is because of the two-dimensional nature of the scattering
problem and the fact that the axial electric component Ez1 is not
present. The parameters multiplying this quantity if one expands
the definition formula of the electric flux density: D1 = ε1 · E1,
can be arbitrary but are chosen equal to zero not to affect other
operations: ε1xz = ε1yz = 0. Moreover, in order to ensure that the axial
component of the electric flux density Dz1 is also vanishing, we take
ε1zx = ε1zy = 0. The diagonal elements of the tensor (including ε1zz)
are nonzero, otherwise (4) would be verified even for non vanishing
axial electric field Ez1. Due to the large number of the problem’s
parameters, we should assign to some of them typical values which
will be kept constant in the following numerical examples if it is not
stated differently. For simplicity, we take ε1zz = 1 and a = 3 cm with
f = 1200 MHz. The strip is usually located at a horizontal distance
b = 5 cm and its angular extent is chosen equal to φ0 = π/7. The
magnetic current flowing the source is generally supposed constant
and unitary: Mz(φ) = 1 V/m. As far as the observation points in the
far region are concerned, the ones corresponding to the direction φ = π
are mainly examined. That is because the influence of the rod there
is more direct (line-of-sight propagation) and the primary field of the
source is not dominant in this region, even for quite small cylinders,
due to the device’s configuration.

We are permitted to proceed in presenting and observing the effect
of the participating parameters on the operation of the investigated
device only when the adopted method is validated. In order to test
the correctness of the computations and the theoretical completeness
of the analyses we represent the errors of the boundary conditions
similar to (25), (26) as functions of the azimuthal angle of observation
point. Numerical integrations as these of (41) are carried out for the
determination of the total error (not only for a single Green’s source).
A Hermitian permittivity tensor is considered with ε1xy = −ε1yx =
−1.1, ε1xx = 3 and ε1yy = 2. The strip is posed at b = 12 cm and five
different sizes for dielectric rod are examined with a = 2, 4, 6, 8, 10 cm.
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In Figs. 2a and 2b the error is computed in db and it is extremely
low (less than −100 db) for both the tangential boundary quantities,
a fact that verifies our approach. It is apparent that for cylinders
with reduced radii, the error is decreasing because the same number
of Dirac functions U is used, while the length of each azimuthal arc
in (34) is reduced. In this way, a better representation of the field
is achieved. It should be also noted that the error for the electric
boundary condition is, in average, larger than this of the magnetic one,
as the nature of the problem is magnetic. Moreover, one could notice
that the electric boundary condition error exhibits more significant
variations with respect to φ (maximum at φ ∼= ±π/3 and minimum at
φ ∼= 0, π) for smaller rods, whist the opposite happens for the magnetic
boundary condition.

7.2. Variable Material Properties

In Fig. 3a we present the far field radiated power S(φ) along the typical
radiation direction φ = π as function of the off-diagonal element of
the permittivity tensor ε1xy for various ε1xx. We suppose ε1yy = 2.5
and ε1xy = ε1yx (symmetric matrix). The investigated quantity is
dependent only on the magnitude of ε1xy, not its sign. Therefore, a
symmetry of the curves with respect to the value ε1xy = 0 (for which the
power is maximized) is observed. Also for decreasing ε1xx the decaying
behavior away from ε1xy = 0 is steeper and the oscillation of the far
field greater. Additionally, the minimum value is appeared for larger
ε1xy as ε1xx increases. In Fig. 3b the angle corresponding to maximum
propagation power, that is the direction φ for which Ssec(φ)/Sprim(φ)
becomes maximum, is shown as function of ε1xy. One can notice
that for a substantial range of ε1xy the radiated field is maximized
for angles close to φ = ±π and consequently this direction is worth
to be examined (as we did before). The presented functions are odd
with respect to the off-diagonal element, while for specific limiting
values such as ε1xy = 0, discontinuity jumps are detected. These sharp
variations happen at the same ε1xy for which minimum or maximum
far field is appeared in Fig. 3a.

In Fig. 4a the same quantity as in Fig. 3a is represented but for
various ε1yy with constant ε1xx = 2.5. We note that ε1yy has a greater
impact on the observed field than ε1xx. The differences of the curves
for different ε1yy are larger than the corresponding ones of Fig. 3a, a
fact that is explained by the orientation of device’s source (parallel
to y axis). The power is significantly diminished with decreasing ε1yy

expressing how strongly the y electric component is weighted inside the
anisotropic area. Moreover, for ε1xy

∼= ±2 the radiated power is almost
vanishing in the case of ε1yy = 0.5. In Fig. 4b the same quantity as in
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Figure 2. The error of the boundary conditions (in db) as function
of the azimuthal angle of observation point for various radii of
the cylinder: (a) magnetic condition, (b) electric condition. Plot
parameters: ε1yx = −ε1xy = 1.1, ε1xx = 3, ε1yy = 2, ε1zz = 1,
ε1xz = ε1zx = ε1yz = ε1zy = 0, b = 12 cm, f = 1200 MHz, φ0 = π/7,
Mz(φ) = 1 V/m.



312 Valagiannopoulos

0 1 2 3
1

2

3

4

5

6

7

8
x 10

6

1xy

fa
r 

fie
ld

 p
ow

er
 a

t 
=

 (
W

/m
)

1xx
=0.5

1xx
=2.5

1xx
=4.5

(a)

0 1 2 3

0

1

2

3

4

1xy

m
ax

im
um

 r
ad

ia
tio

n 
an

gl
e 

(r
ad

)

1xx
=0.5

1xx
=2.5

1xx
=4.5

(b)

Figure 3. The far field radiation as function of the off-diagonal
element ε1xy of a symmetric tensor for various ε1xx: (a) power along
the typical ray φ = π in W/m, (b) angle for maximum propagating
power in radians. Plot parameters: ε1yy = 2.5, ε1zz = 1, ε1xz = ε1zx =
ε1yz = ε1zy = 0, b = 5 cm, f = 1200 MHz, φ0 = π/7, a = 3 cm,
Mz(φ) = 1 V/m.
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Figure 4. The far field radiation as function of the off-diagonal
element ε1xy of a symmetric tensor for various ε1yy: (a) power along
the typical ray φ = π in W/m, (b) angle for maximum propagating
power in radians. Plot parameters: ε1xx = 2.5, ε1zz = 1, ε1xz = ε1zx =
ε1yz = ε1zy = 0, b = 5 cm, f = 1200 MHz, φ0 = π/7, a = 3 cm,
Mz(φ) = 1 V/m.
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Figure 5. The far field radiated power along the typical direction
φ = π as function of the diagonal elements ε1xx, ε1yy of the relative
dielectric constants tensor. The material is biaxial. Plot parameters:
ε1yx = −ε1xy = 0, ε1zz = 1, ε1xz = ε1zx = ε1yz = ε1zy = 0, b = 5 cm,
f = 1200 MHz, φ0 = π/7, a = 3 cm, Mz(φ) = 1 V/m.

Fig. 3b is depicted for several ε1yy. In the cases of ε1yy = 2.5, 4.5, the
variation of the maximum radiation angle is identical to this of Fig. 3b
(with a slightly smaller fluctuation). On the contrary, for ε1yy = 0.5
the curve is very different not only close to ε1xy = 0. In particular,
the sign of the angle is inverse, while the jump is replaced by a peak
consisted of two discrete measurements. Given the fact that from both
sides of this spike the values of the presented quantity are similar, one
can guess that the radiated power along the direction indicated by
the peak and the other round of it, are almost equal. In other words,
a power balance between the two rays is achieved and therefore the
maximum direction is difficult to be discerned.

In Fig. 5 we examine the case of a biaxial material with zero
off-diagonal elements of its permittivity tensor (ε1xy = ε1yx = 0). A
contour plot of the radiated power at φ = π, S(π) is shown, with
respect to the diagonal elements which are supposed to be positive
(ε1xx, ε1yy). It is noticeable that for increasing ε1yy with constant ε1xx,
the far field power increases. This rise is steeper for larger ε1xx. The
dependence of the measured quantity on ε1xx for constant ε1yy is much
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weaker, and especially for small ε1yy the far field is constant. In the
case of larger ε1yy, the power is an increasing function of ε1xx with
average value proportional to ε1yy.
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Figure 6. The far field radiated power along the typical direction φ =
π as function of the diagonal elements ε1xx, ε1yy of the relative dielectric
constants tensor. The material is gyroelectric. Plot parameters:
ε1xy = −ε1yx = 1.5, ε1zz = 1, ε1xz = ε1zx = ε1yz = ε1zy = 0, b = 5 cm,
f = 1200 MHz, φ0 = π/7, a = 3 cm, Mz(φ) = 1 V/m.

In Fig. 6 we depict a contour plot of the propagated power
along the typical ray φ = π, S(π) for a gyrotropic material with
ε1xy = −ε1yx = 1.5, as function of the diagonal elements (ε1xx, ε1yy).
With constant ε1yy, the behavior of the measured quantity is dependent
on the parameter ε1yy itself. For larger ε1yy the far field power increases
and for smaller ε1yy decreases with respect to ε1xx. Within a narrow
range near to ε1yy = 3, the variation of the quantity is almost negligible.
Also for minimum ε1xx, ε1yy a small peak is recorded at the lower left
point of the diagram. By keeping constant ε1xx, the radiated power
is increasing with ε1yy. An interesting property is that the fluctuation
range of the quantity also increases for greater ε1xx, as not only the
maximum values are larger but also the minimum ones are smaller.

In Fig. 7 we represent the contour plot of the far field power at
φ = π, S(π) with respect to the off-diagonal elements of the dielectric
constant matrix. The material is uniaxial as we suppose ε1xx = ε1yy =
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Figure 7. The far field radiated power along the typical direction
φ = π as function of the off-diagonal elements ε1xy, ε1yx of the relative
dielectric constants tensor. The material is uniaxial. Plot parameters:
ε1xx = ε1yy = 2.5, ε1zz = 1, ε1xz = ε1zx = ε1yz = ε1zy = 0, b = 5 cm,
f = 1200 MHz, φ0 = π/7, a = 3 cm, Mz(φ) = 1 V/m.

2.5. One can recognize a saddle point at (ε1xy = ε1yx = 0) when both
parameters are vanishing. In the case of a symmetric permittivity
tensor (ε1xy = ε1yx) a maximum is exhibited, while for gyroelectric
material (ε1xy = −ε1yx) the same point, coinciding with the origin of
the coordinates, constitutes a minimum. It is also noteworthy that
the response of the structure is the same when ε1xy and ε1yx change
mutually their positions. Furthermore, for large values of ε1xy, ε1yx, the
far field at φ = π is vanishing in the symmetric case, while it increases
unboundedly in the gyroelectric case.

7.3. Variable Source Position and Current

In Fig. 8a the far field power is appeared as function of the azimuthal
angle for various positions b of the excitation source. The radius a
is constant and the length of the strip equals 2b sinφ0 = 4 cm. A
symmetric tensor (ε1xy = ε1yx = 1) and a biaxial material (ε1xx = 2.5,
ε1yy = 3) are supposed. We observe local maxima at φ ∼= 0, π,
a property that remarks the significance of examining the power
channeled towards the typical radiation direction φ = π. With
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Figure 8. The far field power in W/m as function of the azimuthal
angle in radians for various: (a) horizontal positions of the strip
(2b sinφ0 = 4 cm), (b) angular extents of the strip (b = 5 cm).
The magnetic current of the source is uniformly distributed. Plot
parameters: ε1xx = 2.5, ε1yy = 3, ε1zz = 1, ε1yx = −ε1xy = 1 ε1xz =
ε1zx = ε1yz = ε1zy = 0, f = 1200 MHz, a = 3 cm, Mz(φ) = 1 V/m.
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increasing b the oscillations become more rapid and the response is
weaker. The latter is natural because the anisotropic rod close to
the strip enforces the radiation operation of the device. Moreover,
the dependence of the observed quantity on the position of the source
is stronger for observation points close to direction φ = 0. This is
explained by the direct influence of the strip to points close to ray φ = 0
as there is no line-of-sight interference by the cylinder. In Fig. 8b the
same quantity is presented but for various angular extents 2φ0 of the
rod. The curves are not symmetric with respect to φ = 0 due to the
directional dependent properties of the scatterer. The greater angular
extent is occupied by the strip, the more significant is the response of
the device. This is anticipated because for increasing φ0 the length
of the strip becomes larger and with constant magnetic current the
strength of the source is amplified. Furthermore, the fluctuation of the
quantity as function of the azimuthal φ angle increases for larger φ0.

The Figs. 9a and 9b correspond to the same configuration of
Figs. 8a and 8b with different excitation current defined by the
equation Mz(φ) = exp

[
−100 (φ/φ0)

2
]

V/m. The magnetic current
is now much more concentrated at φ = 0 (the source similar to
a two-dimensional dipole). The magnitudes of the measured power
are, in average, 100 times less than in the case of constant unitary
current indicated by Figs. 8a and 8b. This is reasonable because now
the strength of the source is equivalent to a small fraction of that
possessed by the excitation in the previous example. If one ignores the
magnitudes, the shape of the curves are almost identical for both the
examined cases.

7.4. Variable Device Dimensions

In Figs. 10a, 10b, 10c and 10d we consider a structure with b = 8
cm, ε1xx = 2.5, ε1xx = 3 and ε1xy = ε1yx = 1.5. The far field power
for four different rays, one normal to the next, (φ = −π/2, 0, π/2, π)
is appeared as function of the radius of the rod for several operating
frequencies. In all the regarded cases the quantity exhibits more rapid
oscillations with increasing frequency. That is anticipated because the
electric size of the device increases. Along the rays φ = 0, π, the
response of the antenna is more substantial with increasing a and as the
operating frequency gets larger the far field gets stronger. Furthermore,
for φ = −π/2, the values of the curve with f = 1200 MHz are greater
than these of the f = 1800 MHz curve, while the response for the
case of f = 600 MHz increases rapidly with a. Finally, the radiated
power at φ = π/2 is maximized for f = 1800 MHz and minimized for
f = 1200 MHz when a possesses a moderate value.
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Figure 9. The far field power in W/m as function of the azimuthal
angle in radians for various: (a) horizontal positions of the strip
(2b sinφ0 = 4 cm), (b) angular extents of the strip (b = 5 cm). The
magnetic current of the source is concentrated. Plot parameters:
ε1xx = 2.5, ε1yy = 3, ε1zz = 1, ε1yx = −ε1xy = 1 ε1xz = ε1zx = ε1yz =
ε1zy = 0, f = 1200 MHz, a = 3 cm, Mz(φ) = exp

[
−100 (φ/φ0)
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Figure 10. The far field power in W/m as function of the radius
of the cylindrical scatterer for various operating frequencies along the
direction: (a) φ = −π/2, (b) φ = 0, (c) φ = π/2, (d) φ = π. Plot
parameters: ε1xx = 2.5, ε1yy = 3, ε1zz = 1, ε1yx = ε1xy = 1.5,
ε1xz = ε1zx = ε1yz = ε1zy = 0, b = 8 cm, Mz(φ) = 1 V/m.
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8. CONCLUSIONS

A homogeneous magnetically inert rod which is electrically anisotropic
is the main objective of this study. The structure is proposed to
work as antenna and its excitation source is not conformal to the
scatterer’s surface. A finite strip flowed by arbitrary axial magnetic
current (to activate the electrical anisotropy) develops the primary field
illuminating the cylinder. The magnetic-type Green’s function of the
problem is derived by solving an integral equation with nonsingular
kernel. The evaluation of the scattering integral over the source is
performed numerically and a computationally efficient and convergent
solution is obtained. The effect of the position, the length and the
current of the strip on the features of the device has been examined.
Additionally, the influence of the size of the scatterer and the operating
frequency on the operation of the antenna has been observed. But the
impact of the permittivity tensor’s elements is mainly investigated by
using meaningful contour plots.

The proposed technique can be expanded to treat problems with
multiple anisotropic cylindrical layers and excitation strips of arbitrary
shape. It would be also interesting to investigate the three-dimensional
analogous of the problem. Another significant contribution to this
work would be the implementation of method of moments for the
determination of the current on the strip, while the structure is excited
by an elementary source.

APPENDIX A. DERIVATION OF (30) AND (31)

We duplicate a definition of Bessel functions with integer orders n from
a standard textbook [31, p. 360, eqn. (9.1.21)]:

Jn(z) =
j−n

π

∫ π

0
ejz cos θ cos(nθ)dθ (A1)

The integrand function above is even with respect to θ and therefore the
integration interval can be converted to symmetric with double length.
If one adds to the resulting form the following vanishing quantity

−j j
−n

2π

∫ π

−π
ejz cos θ sin(nθ)dθ = 0 (A2)

and take the complex conjugate (for real z), one obtains an alternative
definition for Bessel functions of integer orders and real arguments:

Jn(z) =
jn

2π

∫ π

−π
e−jz cos θ+jnθdθ (A3)
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By exploiting the azimuthal periodicity of the functions, we make the
change of variable u = θ − φ. It is then straightforward to evaluate
(29) and to obtain (31), by taking into account (A3).

As far as the function Ld(θ,m) of (30) is concerned, convert to
exponential form all the harmonic components of Ψ(θ, φ) from (24)
and make again the change of variable φ = θ − u. By using the
definition (A3) each time we meet a similar integral, four Bessel terms
corresponding to orders m ± 1 are obtained. The necessary factoring
leads to the two terms of (32).
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