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Abstract—Fractional curl operator has been utilized to study
the fractional perfect electromagnetic conducting waveguide. The
fractional perfect electromagnetic conducting waveguide may be
regarded as intermediate step between the two given waveguides. One
of the waveguide is composed of perfect electromagnetic conducting
(PEMC) walls while other is dual of it as (DPEMC). Corresponding
fields and surface impedance have been determined and boundary
conditions for DPEMC surface have been derived.

1. INTRODUCTION

Recently concept of perfect electromagnetic conductor (PEMC) as
generalization of the perfect electric conductor (PEC) and perfect
magnetic conductor (PMC) [1–6] has been introduced and has
attracted the attention of many researchers [7–11]. It is well known
that PEC boundary may be defined by the conditions

n × E = 0, n.B = 0

While PMC boundary may be defined by the boundary conditions

n × H = 0, n.D = 0

The PEMC boundary conditions are of the more general form

n × (H + ME) = 0, n.(D −MB) = 0

where M denotes the admittance of the PEMC boundary. It is obvious
that PMC corresponds to M = 0, while PEC corresponds to M = ±∞.
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Another generalization of PEC and PMC reveals from the concept
of fractional curl operator, i.e., (∇×)α [12]. The boundary is known
as fractional dual interface with PEC and PMC as the two special
situations of the fractional dual interface [13–18]. For a PEC interface
placed in a medium having intrinsic impedance η0 as original situation,
the surface impedance of the interface which may be regarded as
intermediate step between the PEC and PMC may be written as [12]

Zfd = jη0 tan
(
απ

2

)

where fd stands for fractional dual. These results may be obtained
using the following relations [12]

Efd =
1

(jk0)α
(∇×)αE

η0Hfd =
1

(jk0)α
(∇×)αη0H

where k0 = ω
√
µ0ε0 and η0 =

√
µ0

ε0
. It may be noted that above two

equations are Faraday-Ampere’s Maxwell equations with fractionalized
curl operator. Above relations yield solutions which may be regarded
as intermediate step between the solution (E, η0H) and (η0H,−E),
when the value of fractional parameter changes between zero and one.

In present discussion, our interest is to determined the fractional
dual solutions for a PEMC parallel plate waveguide using the fractional
curl operator. Corresponding impedance of the walls of parallel plate
waveguide has been determined and boundary conditions for DPEMC,
which is a limiting case of fractional dual surface for α = 1, have been
derived.

2. FRACTIONAL DUALITY FOR PEMC PARALLEL
PLATE WAVEGUIDE

Consider a parallel plate waveguide with PEMC walls at y = 0 and
y = b. The space between the plates is filled with air and the
propagation is along z-axis while the dimensions of the plates are
considered infinite along x-axis. Field solutions inside the guide can
be proposed using the field equations for PEC walls guide and then
applying the transformation given in [3], that is[

E
H

]
=

1
(Mη0)2 + 1

[
Mη0 − η0

1
η0

Mη0

] [
Ed

Hd

]
(1)
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where Ed, Hd are the solutions for a PEC plates waveguide and E, H
are the solutions for PEMC plates waveguide.

Fields inside the waveguide may be considered as combination of
two TEM plane waves bouncing back and forth obliquely between the
two conducting plates. That is for TM mode propagating along z-axis
in a PEC plates waveguide we can write

Ed = E1d + E2d (2a)
η0Hd = η0H1d + η0H2d (2b)

where (E1d,H1d) are the electric and magnetic fields associated with
one plane wave and are given below

E1d =
An

2

(
−jẑ − jβ

h
ŷ

)
exp(jhy − jβz) (3a)

η0H1d = x̂
jk

h

An

2
exp(jhy − jβz) (3b)

while electric and magnetic fields (E2d,H2d) associated with second
plane wave and are given below

E2d =
An

2

(
jẑ − jβ

h
ŷ

)
exp(−jhy − jβz) (3c)

η0H2d = x̂
jk

h

An

2
exp(−jhy − jβz) (3d)

After applying transformation given in equation (1), equation (3) can
be written as

E1 = B

[
Mη0

(
−ẑ − β

h
ŷ

)
− k

h
x̂

]
exp(jhy − jβz)

H1 =
B

η0

[(
−ẑ − β

h
ŷ

)
+ Mη0

k

h
x̂

]
exp(jhy − jβz)

E2 = B

[
Mη0

(
ẑ − β

h
ŷ

)
− k

h
x̂

]
exp(−jhy − jβz)

H2 =
B

η0

[(
ẑ − β

h
ŷ

)
+ Mη0

k

h
x̂

]
exp(−jhy − jβz) (4)

where
B =

jAn

2((Mη0)2 + 1)

Total fields inside the guide can be written as
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E = E1 + E2

= 2B
[
−k

h
cos(hy)x̂−Mη0

β

h
cos(hy)ŷ−jMη0 sin(hy)ẑ

]
exp(−jβz)

(5a)
η0H = η0H1 + η0H2

= 2
B

η0

[
Mη0

k

h
cos(hy)x̂−β

h
cos(hy)ŷ−j sin(hy)ẑ

]
exp(−jβz) (5b)

Fields E1 and H1 given by equations (4) are related through the
Maxwell equations as

k1 × E1 = η0H1 (6a)
k1 × η0H1 = −E1 (6b)

Similarly

k2 × E2 = η0H2 (6c)
k2 × η0H2 = −E2 (6d)

where

k1 =
1

(jk)
(−jhŷ + jβẑ)

k2 =
1

(jk)
(jhŷ + jβẑ)

In order to fractionalize these fields we may expand the fields in terms
of eigen vectors of the cross product operators (k1×) and (k2×) and
then fractional fields can be found by fractionalizing the eigen values
of the cross product operators as

E1fd = [(a1)αP1A1 + (a2)αQ1A2 + (a3)αR1A3] exp(jhy − jβz) (7a)
H1fd = [(a1)αP2A1 + (a2)αQ2A2 + (a3)αR2A3] exp(jhy − jβz) (7b)

where

A1 =
1√
2

[
x̂− j

β

k
ŷ − j

h

k
ẑ

]
, a1 = j

A2 =
1√
2

[
x̂ + j

β

k
ŷ + j

h

k
ẑ

]
, a2 = −j

A3 = −j
h

k
ŷ + j

β

k
ẑ, a3 = 0
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and

P1 =
B√
2

[
−jMη

k

h
− k

h

]

Q1 =
B√
2

[
jMη

k

h
− k

h

]
R1 = 0

P2 =
B

η
√

2

[
−j

k

h
+ Mη

k

h

]

Q2 =
B

η
√

2

[
j
k

h
+ Mη

k

h

]
R2 = 0

Using these values in equation (7), we get

E1fd(y, z) = B
k

h

[{
Mη0 sin(

απ

2
) − cos(

απ

2
)
}
x̂

−jβ

k

{
−jMη0 cos(

απ

2
) − j sin(

απ

2
)
}
ŷ

−j
h

k

{
−jMη0 cos(

απ

2
) − j sin(

απ

2
)
}
ẑ
]
exp(jhy − jβz)

(8a)

H1fd(y, z) =
B

η0

k

h

[{
Mη0 cos(

απ

2
) + sin(

απ

2
)
}
x̂

−j
β

k

{
jMη0 sin(

απ

2
) − j cos(

απ

2
)
}
ŷ

−j
h

k

{
jMη0 sin(

απ

2
) − j cos(

απ

2
)
}
ẑ
]
exp(jhy − jβz)

(8b)

Similarly we can write

E2fd(y, z) =B
k

h
exp(−jαπ)

×
[{

−Mη0 sin(
απ

2
) − cos(

απ

2
)
}
x̂

−jβ

k

{
−jMη0 cos(

απ

2
) + j sin(

απ

2
)
}
ŷ

+j
h

k

{
−jMη0 cos(

απ

2
)+j sin(

απ

2
)
}
ẑ
]
exp(−jhy−jβz) (9a)
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H2fd(y, z) =
B

η0

k

h
exp(−jαπ)

×
[{

Mη0 cos(
απ

2
) − sin(

απ

2
)
}
x̂

−j
β

k

{
−jMη0 sin(

απ

2
) − j cos(

απ

2
)
}
ŷ

+j
h

k

{
−jMη0 sin(

απ

2
)−j cos(

απ

2
)
}
ẑ
]
exp(−jhy−jβz) (9b)

Adding these components we get the fractionalized fields as given below

Efd(y, z) =
An

((Mη0)2 + 1)
k

h
exp(−j

απ

2
)

×
[
{−Mη0S1S2 − jC1C2} x̂

−jβ

k
{Mη0C1C2 + jS1S2} ŷ

+
h

k
{Mη0C1S2 − jS1C2} ẑ

]
exp(−jβz) (10a)

η0Hfd(y, z) =
An

((Mη0)2 + 1)
k

h
exp(−j

απ

2
)

×
[
{jMη0C1C2 − S1S2} x̂

+
β

k
{−Mη0S1S2 − jC1C2} ŷ

+j
h

k
{Mη0S1C2 − jC1S2} ẑ

]
exp(−jβz) (10b)

where

C1 = cos
(απ

2

)
, C2 = cos

(
hy +

απ

2

)
S1 = sin

(απ
2

)
, S2 = sin

(
hy +

απ

2

)
We can see from equations (5) and (10) that when α = 0

Efd = E η0Hfd = η0H

and for α = 1
Efd = η0H η0Hfd = −E

For M = ∞

Efd = Efd |PEC η0Hfd = η0Hfd |PEC
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For M = 0

Efd = Efd |PMC η0Hfd = η0Hfd |PMC

where Efd |PEC and Efd |PMC means fractional dual fields
corresponding to waveguide with PEC and PMC walls respectively.

Surface impedance Z
fd

may be written in a matrix form as

Z
fd

=
[
Zfdxx Zfdxz

Zfdzx Zfdzz

]

where

Zfdxx =
Efdx

Hfdx
= jη0

{
Mη0S1S2 + jC1C2

Mη0C1C2 + jS1S2

}

Zfdxz = −Efdx

Hfdz
= jη0

k

h

{
Mη0S1S2 + jC1C2

Mη0S1C2 − jC1S2

}

Zfdzx =
Efdz

Hfdx
= −jη0

h

k

{
Mη0C1S2 − jS1C2

Mη0C1C2 − S1S2

}

Zfdzz =
Efdz

Hfdz
= −jη0

{
Mη0C1S2 − jS1C2

Mη0S1C2 − jC1S2

}

For α = 0 and 0 < M < ∞

Z = η0

[
− 1

Mη0
j k

h cot(hy)
−j h

k tan(hy) Mη0

]

For α = 1 and 0 < M < ∞

Z = η0

[
Mη0 j k

h cot(hy)
−j h

k tan(hy) − 1
Mη0

]

For M = ∞ and 0 < α < 1

Z = η0

[
j tan(απ

2 ) tan(hy + απ
2 ) j k

h tan(hy + απ
2 )

−j h
k tan(hy + απ

2 ) − j cot(απ
2 ) tan(hy + απ

2 )

]

For M = 0 and 0 < α < 1

Z = η0

[
j cot(απ

2 ) cot(hy + απ
2 ) − j k

h cot(hy + απ
2 )

+j h
k cot(hy + απ

2 ) − j tan(απ
2 ) cot(hy + απ

2 )

]

Also it can be seen from equation (10) that boundary conditions for
the DPEMC surface are

n × (Mη2
0H − E) = 0 , n · (B + Mη2

0D) = 0
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3. DISCUSSION AND CONCLUSIONS

It is noted that for α = 0, we are dealing with a perfect electromagnetic
conducting parallel plate waveguide carrying TM mode in z-direction.
This may be interpreted as the superposition of two plane waves
bounding back and forth obliquely between the two plates. As
fractional parameter α takes values from zero towards unity, there
are two activities happening. One is the electric and magnetic field
vectors are being rotated by an angle απ/2 in the counterclockwise
direction. Other is that perfect electromagnetic conductor (PEMC)
is changing to dual to perfect electroamgnetic conductor (DPEMC).
That is parallel plates are intermediate step of PEMC and DPEMC .
As α becomes equal to unity rotation angle becomes equal to π/2 and
PEMC parallel plates changes to DPEMC parallel plates satisfying the
boundary condition

n × (Mη2
0H − E) = 0 , n · (B + Mη2

0D) = 0
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