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Abstract—Genetic algorithm (GA) is effective for global optimiza-
tions, but needs the user to define several parameters. Unless these
parameters are defined appropriately, search efficiency drops signifi-
cantly. There are, however, no clear rules for the defining, and almost
all users have considerable difficulty to use GA efficiently. A good al-
gorithm must be use-friendly. It should not, if possible, need the user
to define such parameters and can play high performance for any opti-
mization problem. This paper proposes an autonomous GA addressing
these problems.

1. INTRODUCTION

There are cases when optimization is required in the field of
electromagnetic engineering, such as optimizing design parameters,
resolving a nonlinear inverse scattering problem as an optimization
problem, and so on. Usually, an objective function has multiple local
solutions due to the function complexity or errors in approximately
calculation, and a global applicable optimization method is necessary.
Genetic algorithms (GA) have achieved considerable success [1–9]
as a global optimization method with a wide range of applicability,
requiring no prior information, being appropriate for diverse objective
function, and offering the ability of recovery even after trapping on a
local solution. GAs, however, have the following problems.

(i) Difficult to use
GAs require several parameters, including the probabilities
for mutation and crossover of genes, and the population size
(the number of individuals). Unless these parameters are set
appropriately, search efficiency drops significantly. There are,
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however, no clear rules for setting these parameters, and almost
all users have considerable difficulty setting them without prior
experience in parameter tuning.

(ii) Slow convergence
Global optimization methods do not utilize differential informa-
tion, so convergence is usually slower than when using the descent
category optimization method. GA also does not use this infor-
mation, leading to a large quantity of GA improvements and a
wide range of proposed methods [10–14]. If we blindly seek the
convergence speed, however, the likelihood of trapping on a local
solution also increases. A resolution to this problem is required to
develop faster GAs.

This paper proposes an autonomous GA that does not need user to
define the parameters and converges to the solution rapidly.

The details about GA general procedure are omitted here, because
there are so many GA textbooks.

2. THE PROBABILITY FOR MUTATION

To observe the effect of mutation probability concretely, let us first
consider the maximization of function

Ω1(x1, x2, · · · , xn) =
n∏

i=1

sinxi

xi
, −10 < xi < 10 . (1)

Figure 1 shows the case when n = 2 for (1).

2.1. Performance vs. Mutation Probability

The performance of GA can be estimated with the quantity of
performed fitness evaluations (PFE), which means how many times
the objective function was calculated until the algorithm convergence.

The author applied a general GA (tournament type selection, one
point type crossover) to maximizing (1) for cases n = 2 and n = 5,
with an admissible error of 10.4. The PRE vs. Mutation Probability is
shown in Fig. 2. In this diagram, the result is the average for 200 tests,
taking the fact that the GA is a probabilistic algorithm into account.

The following points are evident:

(i) GA’s performance is susceptible to changes in mutation
probability;

(ii) the optimal values of mutation probability for the two cases are
different and if one use 0.2, the optimal value for case n = 2,
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to the optimizing of case n = 5, the convergence speed drops
significantly.

The waveform for n = 5 cannot be shown as a figure, but imagine
a form similar to Fig. 1 within 5D space. In spite of the fact that
the objective functions are similar, the characteristics of the PFE
count to mutation probability are widely different. This fact means
that an appropriate mutation probability should be determined by
tuning it with respect to the specific objective function, and the result
of this tuning, however, may be not universally applicable to other
objective functions. Thus it is impractical to find the optimal mutation
probability by such a tuning. Another idea is needed.
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Figure 1. Function (1) surface
plot for n = 2.
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Figure 2. Performed fitness
evaluations vs. mutation prob-
ability.

2.2. Homozygous Mutation

As mentioned in Section 1, there are no clear guidelines for adjusting
the mutation probability, and it is difficult to develop fitness-based
mutations. This paper focuses on the genes at the root of the GA.
The search efficiency is dependent on the speed of evolution of the
virtual individual. From the viewpoint of biological evolutionary
theory, individual competition for survival and gene diversity are the
two prerequisites for evolution. The higher the survival competition
is, the higher the pressure on improving fitness, with superior genes
inherited by offspring. But the gene diversity may be reduced because
individuals with even slightly slower fitness are culled. A population
lacking diversity ceases to evolve, making it crucial to maintain a
balance between inheritance and diversity. Mutation is needed to keep
the diversity. Excessive mutating, however, may disturb the evolution,
because superior genes may also be destroyed.

Compared to the quantity of generations involved in species
survival in the natural world, the quantity of mutations occurring in
the gene is extremely low. This is because the species has sufficient
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diversity. If the quantity of individuals is extremely small, inbreeding
is unavoidable, and it is well known that this leads to an increase in the
spontaneous mutation probability. This mechanism can be interpreted
as a natural “emergency measure” to preserve diversity in the species.

The author introduced this mechanism into GAs, eliminating the
usual spontaneous mutation processing and instead causing mutation
only in same-type pairings (homozygous mutation). Concretely, the
target genes of the parents are compared prior to crossover, and if
they are identical to each other, then a same-type pairing is assumed,
and spontaneous mutation occurs. As pairs are selected at random for
crossover, matching genes means that the ratio of that gene is high
within the population, probabilistically speaking. Mutation of a gene
with a high incidence within a population will decrease uniformity
and increase diversity. If there is no gene which is common within
a population, on the other hand, there would be no spontaneous
mutation, and therefore no interference with the course of natural
evolution. As there is no point in crossing identical genes, the
introduction of spontaneous mutation to inbreeding will improve search
efficiency. Homozygous mutation does not require the control of
sensitive parameters, unlike spontaneous mutation, is independent of
the virtual environment (including methods of natural selection and
crossover, and objective function), and naturally preserves diversity
within the species. Further, taking into consideration that
(i) inbreeding in nature does not always result in offspring with

significantly different genes, and
(ii) minor mutations centered on existing genes may be required in

latter evolutionary stages,
the homozygous mutation plays a general uniform distribution
mutation in one of the parents of the same-type pair, and a standard
Gaussian distribution (centered at value of the current gene) mutation
in the other.

The performance of GA with the homozygous mutation is shown
in Section 4.

3. THE PROBABILITY FOR CROSSOVER

The effect of crossover probability on GA performance is not as strong
as that of mutation probability. Since the hope of getting the solution is
always placed on new chromosomes in the next generation, usually the
probability for crossover is large but not one, because it also destroys
superior genes.

The author implements crossover for all pairs due to the following
reasons.
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(i) The most superior individual is unconditionally seeded into the
next-generation population to ensure the inheritance (the royalty
system).

(ii) Along with the function for automatic adjustment of homozygous
mutations, the crossover probability can be little larger than that
for a general GA (without homozygous mutation).

4. THE PERFORMANCE OF HRGA

For purposes of simplification, the GA with the combination of
homozygous mutation and the royalty system, with the elimination
of the mutation and crossover probability, is referred to below as
“HRGA”.

The author applied HRGA and a standard GA to maximize (1)
to compare their performance. The standard GA uses tournament
method for natural selection and two-point crossover, and its crossover
and mutation probabilities are determined from tuning based on a large
quantity of simulations for the objective function. For comparison, the
population size was set to 30 for both HRGA and the standard GA.
Figure 3 shows trends in fitness over generations when using n = 2
in (1). GA probability is taken into account by taking the average
of 500 tests in Fig. 3 (and in Fig. 4). It is evident that HRGA only
requires about half as many generations as the standard GA to finish
the evolution.
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Figure 3. Comparison of HRGA
and the standard GA (n = 2
case), where the fitness value is
equivalent to the value of Ω1.
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Figure 4. As Fig. 3, but n = 5.

Next the author used n = 5 in (1). No adjustment was
used for HRGA, but the crossover and mutation probabilities for
the standard GA were reset. Fitness trends (Fig. 4) show that
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the standard GA required about four times as many generations as
HRGA. One of the reasons the search efficiency of HRGA without
any tuning was superior to that of the standard GA with tuning is
thought to be that the mutation probability for the standard GA was
fixed. Tuning was implemented experimentally on the final results,
but remained unchanged throughout evolution once set. In natural
evolution, however, the quantity of species is constantly changing.
When the quantity of species is high there is no need for mutation,
and forced mutation can result is the loss of superior genes, having
an adverse effect on evolution. When the quantity is species is too
low (uniformity), mutation must be increased. HRGA resolves this
problem rationally and simply.

5. THE POPULATION SIZE

Population size is the only parameter must be set for using HRGA in
Section 4. In this section, an algorithm that can automatically adjust
its population size is discussed.

There is no generally effective value for population size because it
varies with the specific optimization goal (objective function). From
the viewpoint of probability, it is evident that the probability of
discovering a solution is proportional to the quantity of sample points,
which is another way of saying the population size.

The efficiency of GA is not dependent on random search
probability, the point is evolution. As long as the diversity of the
population is not sacrificed, an increase in population size will not
make a major contribution in evolution, but will increase the cost of
evaluating individuals from each generation. A comparison of two
strategies – using a large population and reducing the quantity of
generations, or using a small population and driving evolution over
many generations – indicates that the latter approach offers better
search efficiency as long as the population size is not excessively small.

Experiment results for the application of HRGA in maximizing
(1) using dimension values n = 2, 3, 4, 5 are shown in Fig. 5. With
a population of 10, the quantity of evaluations of the objective
function needed to find the solution is much larger, indicating that
the population size is too small. When the population is increased
to 15, 20 or 30, it becomes possible to preserve species diversity and
evolution proceeds smoothly, lowering the quantity of evaluations. An
increase in population above 40 tends to again increase the quantity of
evaluations, indicating that an excessively large quantity of individuals
will degrade search efficiency.

Consider the optimal population size. In addition to the
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Figure 5. Performed fitness evaluation number (PFE) vs. population
size.
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Figure 6. Surface plot of Ω2 in
(2).
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Figure 7. A population distri-
bution.

experiment shown in Fig. 5, the author also investigated the
applicability of GA to multiple optimization problems with single-
peak objective functions (continuous functions with only one minimum
or maximum), with similar results. For single-peak and other simple
functions, 20 to 30 individuals appear to offer good performance.

When objective functions are complex and there are many local
solutions, it is possible to avoid the problem of having the entire
population trap on local minima by increasing the population size, but
the problem of how large an increase is appropriate remains unresolved.

The waveform for 2D function

Ω2(x1, x2) = x1 sin 4x1 + x2 sin 2x2 , 0 ≤ xi ≤ 10 (2)

is shown in Fig. 6, while Fig. 7 is the contour diagram for Ω2 < 0.
There are multiple local minimum, and the minimum is in region ©2
of Fig. 7.

The distribution of sample points of 10th-generation for the
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application of the standard GA with a population size of 60 in
minimizing Ω2 is shown in Fig. 7 with �. Two-thirds of the individuals
(40) are concentrated in local minimum ©1 , and the remainder have
low fitness (note the contour lines) and are unlikely to survive in the
next generation in a high-competition environment. This is only one
example, and in fact most of the minimizing experiments run resulted
in success, but it does point out that even with a large population it
is possible that the population traps on a local minimum.

Because 20 to 30 individuals are sufficient for single-peak
functions, to prevent the entire population from trapping on a local
minimum it is of course best to disperse some of the individuals groups
at ©1 to other regions.

To do this, the information about local minima basins (LMBs)
of attraction of the objective function is needed. GAs handle
large amounts of information related to the objective function, but
conventional algorithms apply this information only to evaluation of
individuals. If this objective function information can be utilized more
effectively it becomes possible to grasp the LMBs.

5.1. An Algorithm for Grasping LMBs

The author proposes a technique called “multi-class” capable of
grasping LMBs of a continuous objective function by using the
information about the function obtained in each generation of a GA.
The term “class” here can be understood as a LMB from the viewpoint
of search, but within the virtual world of GAs it is closer to a
community. Many virtual individuals belong to several communities,
evolving through survival competition within that community.

The multi-class GA flow is as outlined below.
(i) Grid the search-space (n dimensional space).

In principle the cell width can be user-defined, but it should be
fine-grained enough to ensure that adjacent local solutions are not
identical or belonging to the adjacent cell. For example, the width
can be a multiple of the allowable margin of solution error defined
by the user. The maximum fitness of individuals belonging to a
cell is defined as the cell fitness, with an initial value of zero.

(ii) Generate an initial population, calculate individual fitness, and
check for a solution, in the same manner as for standard GAs.

(iii) Update the cell fitness.
If the maximum fitness of individuals in a cell is higher than the
cell fitness, let the fitness be the cell fitness.

(iv) Divide the search-space among the classes (a class denotes a LMB)
in accordance with the classification procedure, the following
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algorithm:
(a) Cells with fitness of the average or below are classed to a

special class named vagrant. Others are classified as below.
(b) Set class number nc = 1.
(c) For cells not yet assigned to classes, assign the one with the

highest fitness to the nth
c class. The cell is called center cell

of the class.
(d) If there is a newly assigned cell Cnew within the nth

c class
proceed to step (e), otherwise to step (g).

(e) The adjacent cells of Cnew (Fig. 8) satisfying the following
conditions will also be assigned to that class:
• do not belong to any other class, and
• fitness is lower than the cell Cnew.

(f) Return to step (d).
(g) If there are any unassigned cells, set nc = nc + 1 and return

to step (c) to assign the cells to the new class, otherwise end
processing.

The distance between two class’s center cells is called class
distance. The individuals existing in a cell also belong to the
class to which the cell is assigned.

(v) For each class, construct a sub-population with its individuals, and
generate the next-generation sub-population in the same manner
as for standard GAs. However,

• if the quantity of individuals s belonging to a class is below
a preset value (in this paper, s < 10), the class is disqualified
to a community, and the individuals are instead assigned to
class vagrant;

• the maximum sub-population size is 20.
If s > 20, create the sub-population to include only the 20
individuals with the highest fitness values, excluding class
vagrant.

(vi) Return to step (ii).

In fact, the cell with the highest fitness is taken as the center, and
adjacent cells with lower fitness values are assigned to its class, and
extending the class. If no extension is possible then the unassigned
cell with the higher fitness is taken as the center for a new class, and
the process repeated until all cells are assigned.

Figure 9 shows an example for the classification procedure. (a)
The search-space is gridded and the fitness of each cell is set to zero.
(b) Estimate the individuals. (c) Update cell fitness. If there is more
than one individual in a cell, such as cell (2,4), the cell fitness is set
with the best individual fitness. The average fitness of cells is 6.65. (d)
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Figure 9. An example for the classification procedure.

The best cell is assigned to class (cell (2,4), the center cell of the class),
and then the adjacent cell of cell (2,4) is checked if it can be assigned
to the class. Cell (2,3), (3,4) and (2,5) are assigned to the class because
their fitness is larger than the average fitness and smaller than that of
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cell (2,4), but cell (1,3) is not. Similarly, cell (2,2) is also assigned to
this class as adjacent cell of cell (2,3). Cell (4,4) is a adjacent cell of
cell (3,4), but it is not assigned to this class because its fitness is larger
than cell (3,4). It will be selected as a center cell of next class.

It is evident that there are two errors of the class region in
Fig. 9(d). One is about the center cell. Cell (2,3) or (3,3) should
be the center cell, not (2,4). The other is cell (4,4) should also be
assigned to this class, not other class. The errors have those roots
in the imperfection of information on objective function. Because the
generation is done for each class and the individuals in center cell
have high fitness, the information on center cell and its neighborhood
will be closely investigated, and the errors will be corrected after
several generations. In the early stage of evolution, LMBs may not
be expressed by the classes correctly (the center cell and region may
change generation by generation), but as evolution proceeds and more
and more information is accumulated, the class region comes close to
the LMB, in order of LMB depth. After the class distance becomes
fixed, the cell width can be adjusted. Double the width when the
shortest class distance is large enough (for example, longer than the
width of 8 cells). For 4 or fewer cells, halve the width.

5.2. A Test of Multi-Class GA

Figure 10 shows an example of class transition when the multi-class
GA is applied to minimize Ω2 in (2). In this experiment the number of
LMBs was an unknown, and initially 10 local solutions were tried with
200 individuals. The allowable margin of solution error was ε = 10−2

(search space size = 103 × 103), the initial cell width 10 (total cell
quantity 10,000) and fitness values saved for top 300 cells.

Figure 10(a) indicates classes assigned in an early generation with
“�”. Cells containing individuals with high fitness values were assigned
as class centers, but as there was no generational change or fitness
information for cells adjacent to the center, each class holds only one
cell.

Figure 10(b) shows the state in the fifth generation. Classes at
©2 and ©3 are expanding, incorporating adjacent cells. Several classes
exist for a single LMB, but if expansion continues they will reduce
to a single class. New classes have appeared at ©1 , ©4 and ©5 and
are expanding. The low-fitness classes evident in Fig. 10(a) have
disappeared.

Figure 10(c) shows the class state after 30 generations. The LMBs
in the upper right region each have classes, and they are quite large.
The class center cells are stable, with ample spacing between classes,
so cell width is also expanding.
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Figure 10(d) shows the class state after 200 generations. The cells
are quite large, and the class regions perfectly match the top ten LMBs,
and ten local solutions are precisely obtained.
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Figure 10. Transition in class regions.

5.3. Uses of Multi-Class GA

The LMB information obtained by multi-class GA, in turn, can be
used for the following:

• limiting the sub-population size for each LMB. The objective
function is a single-peak function, so about 20 individuals per
LMB is sufficient. In addition, individuals assigned to a particular
LMB can search for local solutions, as shown in subsection 5.2.
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• developing a GA that can automatically adjust population
size. For example, it starts with only 20∼30 individuals, and
automatically increases the quantity when multiple LMBs are
identified.

• getting multiple local solutions in a single experiment, and
determining the width and depth of each LMB. When used in
design problems, for example, it becomes possible to select designs
with low cost and high stability.

6. AN APPLICATION EXAMPLE

With the homozygous mutation and multi-class technique, one can
construct an autonomous GA that does not need the user to define the
probabilities for mutation and crossover of genes, and the population
size. Here, as a simple application example, a design of a three layers
radome shown in Fig. 11 is considered.

2 22

3 33

R1,2
region 1:

region 2:

region 3:

region 4:

region 5: 5 = 0 5 = 0

1 = 0 1 = 0

4 = 2 4 = 2 4 = 2

d2

d3

d4 = d2

~

Figure 11. A three layers radome.

The reflection coefficient of a TE plane wave (vertical incidence) is
given by the following recursive relations for the generalized reflection
coefficients [15]:

R̃n,n+1 =
Rn,n+1 + R̃n+1,n+2 exp(2jkn+1dn+1)
1 + Rn,n+1R̃n+1,n+2 exp(2jkn+1dn+1)

, (3)

R̃4,5 = R4,5 , (4)
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where dn+1 (n = 1, 2, 3) is the layer thickness, Rn,n+1 is the Fresnel
reflection coefficient of a plane wave at the interface between the nth

and (n + 1)th regions:

Rn,n+1 =
µn+1kn,z − µnkn+1,z

µn+1kn,z + µnkn+1,z
, (5)

and kn+1 is the wave number in region (n + 1). For purposes of
simplification, the layer 3 in region 4 is the same as layer 1 in region
2, and the other parameters are assumed as following:

ε2 = 3.65ε0 , ε3 = 6.32ε0 , (6)
µ2 = µ3 = µ0 , (7)
σ2 = 0.1168 , σ3 = 0.02338 , (8)
0.1mm < d2, d3 < 8mm . (9)

What we want to do is

min
d2,d3

R̃1,2 .

The autonomous GA is applied to the optimization, where the
allowable margin of solution error is assumed to 10−4m for both d2

and d3. As a result, four proposals shown in Table 1 and the class
regions shown in Fig. 12 are obtained simultaneously.
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Figure 13. Waveform of R̃1,2

Compared the class regions with the contours and the waveform
of R̃1,2 in Fig. 13, it is evident that the regions perfectly match the
LMBs. One can choose a proposal from Table 1 for processing easily
or cost-performance, and try to adjust it by making use of the LMB
information if necessary.
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Table 1. Design proposals of the radome obtained by the autonomous
GA.

No. 1 2 3 4

d2[mm] 0.1 4.7 5.0 3.0

d3[mm] 5.4 3.0 8.0 1.5

R̃1,2 0.017 0.031 0.039 0.068

7. CONCLUSIONS

This paper proposed an autonomous genetic algorithm (GA) by
introducing the homozygous mutation and multi-class technique into a
general GA. The homozygous mutation is spontaneous mutation based
on the genetic theory that inbreeding trigger mutation, eliminating the
need for mutation and crossover probabilities, preserving population
diversity naturally and making it easier to utilize GAs while improving
search efficiency. The multi-class technique utilizes the information
of objective function obtained by the GA in estimating applicability,
for survey of the local minima basins (LMBs) of attraction. With
the information of LMBs, the algorithm can automatically adjust the
population size to match the complexity of the objective function to
prevent the system from trapping on a local minimum, and efficiently
obtain multiple local solutions simultaneously in one play. Moreover,
it is possible to develop the algorithm to automatically switch over
to the descent category optimization method once the LMBs are
approximated.

REFERENCES

1. Chiu, C.-C. and P.-T. Liu, “Image reconstruction of a perfectly
conducting cylinder by the genetic algorithm,” Proc. Inst. Elect.
Eng. Microwaves, Antennas Propagat., Vol. 143, 249–253, 1996.

2. Weile, D. S. and E. Michielssen, “Genetic algorithm optimization
applied to electromagnetics: A review,” IEEE Trans. Antennas
Propagat., Vol. AP-45, 343–353, 1997.

3. Takenaka, T., Z.-Q. Meng, T. Tanaka, and W. C. Chew, “Local
shape function combined with genetic algorithm applied to inverse
scattering for strips,” Microwave and Optical Technology Letters,
Vol. 16, No. 6, 337–341, 1997.



268 Meng

4. Haupt, R. L. and S. E. Haupt, Practical Genetic Algorithms, A
Wiley-Interscience Pub., John Wiley & Sons, INC., New York,
1998.

5. Meng, Z.-Q., T. Takenaka, and T. Tanaka, “Image reconstruction
of two-dimensional impenetrable objects using genetic algorithm,”
Journal of Electromagnetic Waves and Applications, Vol. 13,
No. 1, 95–118, 1999.

6. Sijher, T. S. and A. A. Kishk, “Antenna modeling by infinitesimal
dipoles using genetic algorithms,” Progress In Electromagnetics
Research, PIER 52, 225–254, 2005.

7. Tu, T.-C. and C.-C. Chiu, “Path loss reduction in an urban area
by genetic algorithm,” Journal of Electromagnetic Waves and
Applications, Vol. 20, No. 3, 319–330, 2006.

8. Lu, Y.-Q. and J.-Y. Li, “Optimization of broadband top-load an-
tenna using micro-genetic algorithm,” Journal of Electromagnetic
Waves and Applications, Vol. 20, No. 6, 793–801, 2006.

9. Chen, X., D. Liang, and K. Huang, “Microwave imaging 3-
D buried objects using parallel genetic algorithm combined
with FDTD technique,” Journal of Electromagnetic Waves and
Applications, Vol. 20, No. 13, 1761–1774, 2006.

10. Rawlins, G. J. E., L. D. Whitley, M. D. Vose, R. K. Belew,
W. Banzhaf, C. Reeves, W. N. Martin, and W. M. Spears,
Foundations of Genetic Algorithms, (1-6), 1991–2001, Morgan
Kaufmann Publishers.

11. Johnson, J. M. and Y. Rahmat-Samii, “Genetic algorithms in
engineering electromagnetics,” IEEE Antennas and Propagation
Magazine, Vol. 39, No. 4, 7–25, 1997.

12. Rahmat-Samii, Y., “Genetic algorithms in modern electromagnet-
ics: concept, implementation and applications,” Tutorial Work-
shop, 2000 International Symposium on Antennas and Propaga-
tion, 2000.

13. Meng, Z.-Q., T. Takenaka, and S. He, “A genetic algorithm with
an adaptive chromosome structure for reconstruction of radome
parameters using a Gaussian beam,” Microwave and Optical
Technology Letters, Vol. 25, No. 5, 323–327, 2000.

14. Meng, Z.-Q. and H. Misaka, “Fast genetic algorithm for
optimization of inverse scattering problem,” IEEJ Trans.,
Vol. 122, No. 12, 1005–1010, 2002 (in Japanese).

15. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van
Nostrand Reinhold, New York, 1990.


