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Abstract—Using Bloch formulations, an analysis is presented of
the confinement of power in omniguiding photonic band-gap fibers
of different dimensional values. Results are compared for four-layer
and eight-layer fibers. Power peaks are observed that correspond to
different propagation modes. Power patterns are found to be fairly
smoothly matched at the different layer interfaces, which confirm the
validity of the analytical approach.

1. INTRODUCTION

In 1987, Yablonovitch introduced the analogy between propagation
of photons in dielectric mediums and propagation of electrons in
semiconductors [1]. This ultimately gave birth to photonic band-gap
materials and photonic crystal fibers, where a periodic variation in the
RI is introduced, and the band-gap is formed for a certain range of
photon energies [2]. Such band-gap materials are now of great interest
owing to their multifarious potential applications in photonics [3–6].

Authors have reported earlier the useful characteristics of band-
gap fibers for spectral filtering [6]. They also reported the dispersion
characteristics [6] as well as the field patterns [7] of such fibers.
Band-gap materials are usually multilayered mediums [8] which have
potential applications in the area of integrated optics [9]. Some of
the applications would be optical switching [4], Bragg-reflectors [5],
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filtering [10–12] etc. Modal characteristics of multilayered and other
waveguides have been presented before by Choudhury et al. [13–16].
Multilayered waveguides in the form of annular core cross-sections were
also studied by Choudhury et al. [17–19] and Kumar et al. [20]. In these
papers they did not consider the band-gap phenomenon. Yariv and
Yeh [10] discussed the case of multilayered waveguides in analogy with
the motion of electrons in periodic lattice structures. In the present
paper too, we implement the quantum theory of electrons in solids,
and demonstrate the confinement of power in band-gap fibers. We
considered the cases when the two different types of layers are having
the same as well as different values of thickness. The distribution of
relative power is discussed for the cases of four-layer and eight-layer
fibers. However, the field and power patterns in the case of band-gap
fibers have been presented earlier by the authors [7], the present paper
describes the relative power distributions in the different fiber layers.

2. THEORY

The refractive index (RI) profile of band-gap fiber under consideration
is shown in Fig. 1, where nh and nl represent the RI values of the
regions of two different types of layers; the region of RI nh (nh > nl) is
having thickness a, and that of RI nl has b. We assume the high-
and low-index mediums have the permittivity values as εh and εl,
respectively. Also, the mediums are non-magnetic in nature, i.e.,
the permeability µ ∼= µ0, the free space permeability. As the figure
represents, there is a step-change in the RI values, and the fiber has
periodicities in both RI as well as thickness. If ψ = ψ (R,φ, z, t) is the
wave function, which is harmonic in time t and coordinate z, the wave
equation for the system of Fig. 1 will assume the form as

d2ψR

dR2
+

1
R

dψR

dR
+

{
ω2n2(R)

c2
− β2 − v2

R2

}
ψR = 0 (1)

where ψR is the radial field component, n(R) is the radial variation
of RI, β is the propagation constant, ω is the angular frequency, and

nl R
−2(a + b) −(a + 2b) a−(a + b) 2a + ba + b− b 0

nh

Figure 1. The profile of photonic band-gap fiber.
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v is the integer that represents the azimuthal periodicity. If the field
has the form of Bloch waves, one can finally get the following set of
differential equations [6] for the mediums of high and low RI values:

d2Uh

dR2
+

(
αh − β2

)
Uh(R) = 0 for 0 ≤ R ≤ a (2a)

d2Ul

dR2
+

(
β2 − αl

)
Ul(R) = 0 for (a+ b) ≥ R ≥ a (2b)

where αh ≈
(

ω
c

)2
n2

h and αl ≈
(

ω
c

)2
n2

l with U(R) as the Bloch function
and c as the speed of light. U(R) will have the form as

U(R) = ejkruk(R) (3)

with
uk(R) = uk(R+ a+ b) (4)

where k is a real quantity. If the solutions of Eqs. (2a) and (2b) are
matched at the layer boundaries, one may get the final eigenvalue
equation [6] for the photonic band-gap fiber under consideration. Now
the electric field can be represented as

Ez =
1

R1/2

[
C1e

jξhR + C2e
−jξhR

]
ejβzejvφ for 0 ≤ R ≤ a (5)

and

Ez =
1

R1/2

[
C3e

jξlR + C4e
−jξlR

]
ejβzejvφ for (a+ b) ≥ R ≥ a (6)

with
ξh = (αh − β2)1/2 and ξl = (β2 − αl)1/2 (7)

Further, in eqs. (5) and (6) C1, C2, C3 and C4 are the arbitrary
constants to be determined by using the boundary conditions. This
finally yields the values of constants C1, C2 and C4 as

C1 = C3
2jξl

(jξl + ξh)eaξh

[
ejbξlejkL −

{
ejbξlejkL − eaξh

1 − e2aξh

}]
(8a)

C2 = C3
2jξl
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[
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]
(8b)
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− 1

2jξl

]
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In eqs. (9), L = a+b, and the values of the constants C1, C2 and C4 are
evaluated in terms of the constant C3, which may be determined by a
normalization condition taking into consideration the input power.

Using eqs. (5) and (6), the radial (R-) and the angular (φ-)
components of the electric/magnetic fields can be derived for the high-
index as well as low-index regions of the omniguiding fiber. These
field components are not incorporated into the text. Using those field
components, and implementing the boundary conditions, the optical
power [21] transmitted through the different fiber sections can be
evaluated. If we represent the magnitude of power in the high- and
low-index regions as ph and pl, respectively, then the values of ph and
pl will be

ph =
1
2

∣∣∣∣∣∣Re
2π∫
0

R∫
0

[{
1
R

(
C1e

jξhR + C2e
−jξhR

) [
v sin(vφ) +

1
2

cos(vφ)
]

−jξh
(
C1e

jξhR − C2e
−jξhR

)
cos(vφ)

}
ejβZ

×
{
j

ξ2h

β√
R

{
1
R

(
C1e

jξhR + C2e
jξhR

) [
v sin(vφ) − 1

2
cos(vφ)

]

+jξh
(
C1e

jξhR − C2e
jξhR

)
cos(vφ)

}}∗
e−jβZ

−
{
j

ξ2h

β√
R

{
1
R

(
C1e

jξhR + C2e
−jξhR

) [
v sin(vφ) − 1

2
cos(vφ)

]

+jξh
(
C1e

jξhR − C2e
−jξhR

)
cos(vφ)

}
ejβZ

}

×
{
− j

ξ2h

1√
R

{
1
R

(
C1e

jξhR + C2e
−jξhR

)

×
[
1
2
β2

ωµ0
cos(vφ) − vωεh sin(vφ)

]

− jβ2ξh
ωµ0

(
C1e

jξhR − C2e
−jξhR

)
cos(vφ)

}}∗
e−jβZ

]
RdRdφ

∣∣∣∣∣
(9a)
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×
[
v sin(vφ)+

1
2

cos(vφ)
]
−jξl

(
C3e

jξlR−C4e
−jξlR

)
cos(vφ)

}
ejβZ

×
{
j

ξ2l

1√
R

{
− 1
R

(
C3e

jξlR + C4e
−jξlR

)

×
[
vβ2

ωµ0
sin(vφ) +

ωεl
2

cos(vφ)

]

+jξlωεl
(
C3e

jξlR − C4e
−jξlR

)
cos(vφ)

}}∗
e−jβZ

−
{
j

ξ2l

β√
R

{
1
R

(
C3e

jξlR + C4e
−jξlR

) [
v sin(vφ) − 1

2
cos(vφ)

]

+jξl
(
C3e

jξlR − C4e
−jξlR

)
cos(vφ)

}
ejβZ

}

×
{
− j

ξ2l

1√
R

{
1
R

(
C3e

jξlR + C4e
−jξlR

)

×
[
1
2
β2

ωµ0
cos(vφ) − vωεh sin(vφ)

]

− jβ2ξl
ωµ0

(
C3e

jξlR − C4e
−jξlR

)
cos(vφ)

}}∗
e−jβZ

]
RdRdφ

∣∣∣∣∣
(9b)

In eqs. (9), the values of constants C1, C2, C3 and C4 are as defined in
eqs. (8). As mentioned above, the constant C3 can be determined by
a normalization condition taking into consideration the input power.
If pt represents the total power transmitted through the omniguiding
fiber, then ph/pt and pl/pt will, respectively, represent the relative
power (or the confinement factor) in the high-index and the low-index
regions of the fiber.

3. RESULTS AND DISCUSSION

Figures 2–4 show the variation of the theoretically estimated values
of the relative power distributions in the guiding and the non-guiding
regions (of the omniguiding Bragg fiber) against the radial distance.
Different number of fiber layers have been taken into account, e.g., in
our illustrative cases, we considered four- and eight-layers, in order to
see the effect of the number of layers on the transmission of power. In
order to plot all these graphs, the operating wavelength is kept fixed
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Figure 2. Plot of confinement factor for four-layer fiber with a = b =
2µm.

at 1.55µm. This is because of the advanced interest being paid by the
present R&D community toward the development of low cost in-line
fiber components suitably working at 1.55µm. Further, fibers offer low
loss at 1.55µm window. As the width of the section is fixed, these plots
show how the power is distributed over the number of modes sustained
for a fixed value of azimuthal mode index. (In our analytical treatment,
however, we considered relatively lower order modes). This is why we
observe several peaks in these graphs corresponding to certain values
of the radial distance. These peaks, therefore, represent the various
modes sustained in the fiber. At this point, this is to be mentioned that
a study of such omniguiding Bragg fibers has been reported earlier by
the authors, in which they presented the plot of eigenvalue equation for
the system [6], and the variation of fields in the different fiber sections
[7]. The dispersion characteristics of such fibers were also investigated
[6], and the band-gap features were reported. It was found that the
number of allowed bands increases with the index difference between
different layers, and also, the allowed bandwidth becomes higher in the
cases corresponding to larger thickness values. Further, it was found
that, by using Bloch formulation, the analytical treatment leads to the
smooth match of fields in different fiber sections, which confirms the
validity of the implementation of the quantum theory of electrons.

Figure 2 corresponds to the case when both the layers are of the
same thickness, viz. 2µm. In this illustrative case, four layers are
considered, and the low- and the high-index regions have RI values as
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Figure 3. Plot of confinement factor for four-layer fiber with a = 4µm
and b = 2µm.

Figure 4. Plot of confinement factor for eight-layer fiber with
a = b = 2µm.
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1.4 and 1.8, respectively. The allowed value of β in the intermediate
region is taken to be 6.15µm−1. We observe the existence of several
peaks in the graph, which essentially represent various modes sustained
by the guide. Also, we find that, like the fields [7] in different sections of
the fiber, the relative power distributions too match almost smoothly
at different layer boundaries.

With the same RI values and the same number of layers, when
the high-index layer thickness is doubled (Fig. 3), number of peaks
within the structure is also almost doubled, indicating thereby a
proliferation in the number of existing modes. This is as expected
because more number of modes can be sustained in waveguides with
higher dimensions. In this case too, the allowed intermediate value of
the propagation constant is taken to be 6.15µm−1.

We further observe the case when the number of layers is just
doubled, viz. eight (Fig. 4). The rest of the parameters are kept the
same, i.e., nh = 1.8, nl = 1.4 and β = 6.15µm−1. The layer thicknesses
are also kept the same, viz. a = b = 2µm. We see that the number of
sustained modes is much more enhanced in this case, which is evident
from the higher number of power peaks in this case. We generally
observe that, with the increase in radial distance, the confinement
factor generally decreases. Further, we observe the common feature in
all the cases that the confinement factors in the different fiber sections
match in a fairly smooth way, which essentially confirms the validity
of our analytical approach.

4. CONCLUSIONS

From the foregoing analysis, conclusions can be drawn that more
number of propagation modes exist in the fiber when the thickness
of the high-index layer is increased. Power peaks demonstrate the
existence of different modes in the fiber. The confinement factor
reduces with the increase in radial distance. A fairly smooth match of
power in the different sections confirms our analysis (based on fairly
simpler quantum theory of electrons) to be valid.
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