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THE SMALL-SLOPE APPROXIMATION METHOD
APPLIED TO A THREE-DIMENSIONAL SLAB WITH
ROUGH BOUNDARIES

G. Berginc and C. Bourrely |
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rue Guynemer, BP 55, F-78283 Guyancourt Cedex, France

1. INTRODUCTION

The analysis of the electromagnetic field scattering by random rough
surfaces has been a subject of intensive research in recent decades
[1-4]. Theoretical and numerical approaches have received a wide
interest, we mention: the small-perturbation method (SPM) [5-10],
the Kirchhoff (or tangent plane) approximation method [1,11,12].
However, some restrictions limit the domain of their applicability, the
perturbation method is only valid for surfaces with small roughness
and the Kirchhoff approximation is applicable to surfaces with long
correlation length. Their combination gives the two-scale model, which
is inaccurate for grazing angles [13,14]. Besides these methods, new
approaches were suggested, like: the full-wave method analysis [15],
the surface-field phase-perturbation technique [16,17], the quasislope
approximation [18].

In the mid-1980s, Voronovich [19-24] proposed a new method
called the small-slope approximation (SSA) which is valid for arbitrary
roughness provided that the slopes of the surface are smaller than the
angles of incidence and scattering, and irrespective of the wavelength
of the incident radiation. The SSA is in fact making a bridge between
two classical approaches, namely: the Kirchhoff approximation and
the small-perturbation method. An extension to situations in which
multiple scattering from points situated at significant distance becomes
important is known as the non-local small-slope [23].
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In this paper we will focused on the SSA method in view to study
different rough structures like a slab or a film, considering the effects of
higher orders in a perturbative expansion. The problem of one rough
surface up to the order 3 is treated in [25, 31]. The [25] and [31] consider
the second order of the SSA and the one that includes the next-order
correction to it. The [25] proposed simplified forms for the first three
SSA terms in the case of penetrable surfaces under the assumption
of a Gaussian random process with an isotropic Gaussian correlation
function. In [31] we find results up to the third SSA term for incoherent
scattering from dielectric and metallic surfaces with Gaussian and non-
Gaussian correlation functions. The main point is to investigate the
case where a dielectric slab is bounded by two rough surfaces [29]. Since
the SSA method involves components of the SPM in the calculations,
we have used results of our previous works [26-28] developed under the
Rayleigh hypothesis.

The organization of the paper is as follows. In Section 2, we
give a description of a random rough surface and the notations used
for the electromagnetic field in a vectorial basis. In Section 3, we
define the scattering matrix as an expansion in terms of the surface
height. In Section 4, we summarize the main features of the small-
perturbation method and give an example in the case of a single
rough surface showing the relation with the operators of the SPM in
the formalism of [26]. Section 5 is devoted to the calculation of the
bistatic cross-section where an explicit example is given. In Section 6,
we give several examples of application of the SSA method in the
case of a single rough surface between two semi-infinite media, and
make a comparison with the results obtained by the SPM. Section 7,
treats the scattering by a slab with a rough surface on the bottom
side, and applications are given. In Section 8, we are interested in a
slab where the upper boundary is a rough surface, some applications
are considered. Section 9, deals with the general case of a slab with
two rough boundaries. A detailed development of the SSA method is
presented up to the order 4 with respect to the heights. We give an
example of application and compare with the results we have obtained
in the SPM case [27]. Appendices collect some formulas derived in
[26,27] and needed to make the paper self-contained.

2. PRELIMINARY DEFINITIONS AND NOTATIONS

The structure we consider is shown in Fig. 1, where the two rough
surfaces separate three media. The three media are characterized by
an isotropic, homogeneous dielectric constant €p, €1 and €5 respectively.
The two boundaries of the rough surfaces are located at the height
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Figure 1. An incident wave coming from medium 0 and scattered by
a slab with two rough surfaces.

z=hy(x), z = —H + ho(x), where x = (x,y). The two rough surfaces
are described statistically, more precisely, we assume that hi(x) and
hs(x) are stationary, isotropic uncorrelated Gaussian random processes
defined by their moments:

< hi(x) > =0, (1)

< hi(z)hi(x') > = W;(x — 2'), (2)

< hy(z)ha(z') > =0, (3)

where ¢ = 1,2, and the angle brackets denote an average over the

ensemble of realizations of the function hj(x) and ha(x). In this work
we will use a Gaussian form for the surface-height correlation functions
Wi (x) and Wa(x):

Wi(x) = of exp(—a*/I}), (4)

where o; is the rms height of the surface h;(x), and [; is the transverse
correlation length. The corresponding expressions in momentum space
are given by:

=0, (5)

= (2m)*5(p + P)Wi(p), (6)
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< hi(p)ha(p’) > = 0, (7)

where (We use the same symbol for a function and its Fourier
transform, they are differentiated by their arguments.)

Wi(p) = /deWi(az) exp(—ip - x), (8)
= 70} 1] exp(—p°l; /4). 9)

For the electromagnetic field we consider that each wave
propagates with a pulsation w and the time dependence is assumed
to be exp(—iwt). The electric fields E’ satisfy in the different media
an Helmholtz equation

(V? + & K3) E'(r) = 0. (10)

In the medium 0, E° can be written as a superposition of an incident
and scattered fields:

E°x,2) = E'(po)exp(ipo -  — iag(po)2)

2
+/ (;lwz))2 E°(p)exp(ip - +iao(p)z), (11

where (see Fig. 2)
ao(p) = (K3 —p)2, (12)
Ky =w/e, (13)
E'(po) = E(po)€) (po) + Exr(po)én (po), (14)
E*(p) = Ey(p)eYt + E3(p)én(p). (15)

The subscript H refers to the horizontal polarization (T'E), and V to
the vertical polarization (T'M), they are defined by the two vectors:

éH(p) = éz X ﬁ: (16)
é(‘)/_:l:(p) -4 a(p) . . lpl| (17)

p €z,
VeoKo Véoko ~
where the minus sign corresponds to incident wave and the plus sign
to the scattered wave. It has to be noticed that the vector E*(p) and
E'(py) are expressed in a different basis due the fact that é?,i (p) and

é%,i (p) depend on p. In medium 1, we get a similar expression namely:

2
El(r) = /(;WI;QEI_(p)eXp(ip-a:—ioq(p)z)

2
+ / éTp;zE”(p) exp(ip - x +iai(p)z),  (18)
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Figure 2. Definition of the scattering vectors.
where
1
a1(p) = (e K& — p*)2. (19)

The field E'~ is decomposed in the basis (€7 (p), €x(p)), and E'* in
the basis (€ (p), éu(p)) with

én(p) = € x p, (20)
é‘l/:l:(p) - 4+ Oél(p) ﬁ HpH N (21)

— é,.
Vel Ko ver Ko
3. THE SCATTERING MATRIX

We define the scattering matrix connecting the incident field to the
scattered field by the following expression

E*(p) = R(plpo) - E'(po), (22)

where R(p|po) is a two-dimensional matrix where the components
depend on the polarizations V and H

Ryv(plpo) Rvu(plpo) )

R(plpo) = < Ruv(plpo) R (plpo)
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We will consider a perturbative development of R in powers of the
height h of the form

R(plpo) = R (plpo) + B (plpo) + R? (plpo) + B (plpo) + (23-)

We have proven [26] in the case of the small-perturbation method that
the development takes the form

R(plpo) = (27)%5(p — p0)X " (o) + a0(p0) X" (pIpo)h(p—po)

2
+aolpo) | é”;ﬁ(” (Plp1lpo)h(p — p1)h(p1 — po)

d2p1 d2p2
+ao(po // @ (p|p, [p2|Po)

Xh(p—p1) (p1-P2)h(p2—po), (24)

where h(p) is the Fourier transform of &:

h(p) = /d2w exp(—ip - x)h(x). (25)

The expression of the scattered field represents the general solution
of the Maxwell equations which satisfy the radiation condition. For
instance, in medium 0, the scattered field reads

2
B (r) = B (po) explikl, ) + [ 5B Rlplpo) - B(po) expliky” ).
(26)

where kgi =p =+ ag(p)é,

In order to determine the scattering matrix we have to satisfy the
boundary conditions on the rough surfaces by writing the continuity
of the tangential components of the electric and magnetic fields, in the

case of the upper surface we obtain

n(x) x [Eo(w hl(ac)) (:B hi( m))] =0, (27)

n(x) - [GoE (x,h1(x)) — (ar: hl(:c))] =0, (28)

n(z) x [B®(z, hi(z)) - Bl( hi(z))] =0, (29)
n(x)=é, — Vhi(x) .

For the lower surface we can write equivalent conditions by making the
replacements, 0 — 1, 1 — 2, and h; by hs.
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4. THE SMALL-SLOPE APPROXIMATION FOR A
ROUGH SURFACE

In his approach Voronovich [21] remarks that the unitary of the
scattering matrix implies a reciprocity theorem leading to the following
properties:

R(p,po) = R(po, —p); (30)

for an horizontal translation of the rough boundary h(r) — h(r — a)

R(p,po) — R(p, po) exp [~i(p — po) - al, (31)

and for a vertical translation h(r) — h(r) + H

R(p,po) — R(p, po) exp [~i(a(p) + a(po)) H]. (32)

Using these results Voronovich proposes the following expression of the
scattering matrix

27'
Rp. po) — / (ZT)Q exp [~i(p — o) - 7 — i(a(p) + a(po))A(r)]

x® [p, po; ; [h]], (33)

in the case of a rough surface located between media 0 and 1. The
functional ® which depends on h has to be determined. The translation
conditions (31) and (32), lead to some properties on ® (here it is more
convenient to work with the Fourier transform @ [p,po; ; [h]] with
respect to the variable r). The first condition (31) reads:

2 . . PR—
R(p,po) = / TL_ 2 expi(PPo-€)r-i(00(®)+a0 P)Ar) G, po. ),

(2m)?
(34)

and the second (32)
6:r:—»h(:z—a) (p’ bo, €) = eXpiﬁ-a 6a:—>h(:1:) (pv Do, 5)’ (35)

for all vector a. In the framework of a perturbative development, ® is
expanded as an integral-power series of h namely:

d*&

B(p,po. &) = (&)@ (p, po) + / @T)fs(f — &)@ (p, po, £1)h(&1)

d2¢; d? ~
+//(27§)12 (275)22 3(€—€1—&)®P (p,po, &1, &)h(E)N(E)+ ... (36)
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The condition (32) imposes:

q>a:~>h(az)+H (p, Do, 5) - (I);zzah(a:) (p, Do, E) (37)

In the Fourier space, the transformation @ — h(x)+ H corresponds to
x — h(p) + (27)20(p)H. So for the order 1 in H, the condition (37)
reads

(2m)*5(p) H® M (p, po, €) = 0, (38)
or 1) (p,po, & = 0) = 0. In the same way, one can prove that

é(l)(pap()?gl)aék‘:OaaEn)ZO Vke[l,n} (39)

Now, using a finite expansion with respect to the variables &1,... ,&,
it follows that:

i)(TL)(1)7Z)()7£17 e 75”) =
Z 510{1 cee gnané(n)almn (pap07 517 cee 75”)7 (40)

al,... ,On=1T,Y

where & = (&2, &y). This expansion justifies the name of small-slope
approximation when the effects due to the frontiers are neglected in
the integration

i h(€) = / d%aahT(a"“’)exp—iw. (41)

The coefficients ® " (p,po,&1,-..,&,) are not unique and indepen-

dent. However, Voronovich [21, 23] showed that 3" can be expanded
as:

p(n) — 1) p(n) _ )
=2 ‘ﬁn:P—po—él—---—ﬁnq T [(P ® ‘En:P—Po—El—---—ﬁnq] ’

(42)

the first term in the right handside can be transformed into a term
of order n — 1 which is analogous to ®™ 1) and the term between
brackets is transformed into a term of order n 4+ 1. This important
relation will be called a reduction formula in the following.

Taking as an example the first terms in an expansion of Eq. (36),

and using Eq. (42) the computation of the term 3 should involve
&Y but its coefficient can be related to & and & and then
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replaced, we obtain the formula

R(p,po) = /d2’r' expfi(p*PO)"r'fi(ao(P)Jrao(PO))h(’r‘) 5(0) (p, o)

d*¢ 2 —i(p—po)-r—i( h
+ d“r exp \P Po)-r—i(ao(p)+ao(po))h(r)
(o2

x(2m)*5(& — & — 52)6(2) (P, Po, &1, &2)h(&1)h(&2). (43)

In this expression, if we take the term of order 1 in h, we get

R(p,po) = " (p, po) [(27)%5(p — po) — i(ao(p)+a0(po))h(p — p?)] j
44

Voronovich [21,20] has proposed to identify the expression (43) with
the small perturbation method (see [26] Eq. (53)) we obtain (The upper
indices 10 in (45) must be read from right to left, indicating the order of
the successive media. The same notation will be used in the following.):

R (plpo) = (27)%5(p — po) X (po) + co(po) X (plpo)(p — po)
2
tao(po) / éT”);Y?’ (Plp11po) (P — P1)A(p1 — po),s (45)
it results the equations:
3 (po, po) = X\ (po), (46)
i (ao(p) + a0(p0)) 3 (P, p0) = c0(p0) Xy (plpo), (47
—(0) B ao(po) (1)
P (P:po) - —1(a0(p) + aO(pO))XS (p’p())v (48)
~2iX"” (po) = X\ (po|po). (49)

The first equation gives the coefficient 5(0)(p, po) whose the
corresponding scattering matrix becomes

510 _ iao(po) <)
RS (p‘pO) - (ao(p)+a0(p0))Xs (p’p())

“ / 2y expi(P—Po) Tilao(P)tao(po)h(r) (50
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where Yil)(p\po) is given by A2, (see also [26] Eq. (61)). Following

the same procedure, the order two approximation ® %) can be written
in term of a order 1 and 3, leading to the expression:

—10 _ ao(po) [ d% 2,
By (Plp) = 000 1) + aop0)) / @n??

« exp~(P—Po—€)-T—i(a0(P)+a0(Po))h(r) {(271-)25(5)721)(1)“)0)

1 [= —
+5 [X wlp — €lpo) + X7 (plpo + €lpo)

Filao(p) + a0 (po)) X' (plpo) | H(€) } (51)

where Yf) is given by A3, (see also Eq. (62) [26]). We immediately
deduce

= (1) _dag(po)  Irs2),
2 U(p,po. ) = L[ XDl — Elpo)

+X.”(plpo+€Ipo)+lao(p)+ao(po)) X, (plpo) - (52)

The small-slope approximation method contains following the
construction procedure a perturbative term of order 1: Eq. (50), and
of order two: Eq. (52). It contains also a phase factor coming from
the tangent plane approximation. In addition, Voronovich has shown
in the scalar case with boundary Diriclet conditions that the Kirchhoff
tangent plane approximation was included in the small-slope method
for the order 2 (Eq. (52)).

5. COMPUTATION OF THE CROSS-SECTION

The scattered field is related to the incident field by:

B(2,2) Wmm E(po), (53)

with
Folpo) = "2 Rpip), (54)
p =Ky (55)

1t
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where 6 is the angle between €, and the scattering direction.
Introducing the Muller matrix M (p|po), the bistatic matrix is defined
by the relations

1
~ =M
¥(plPo) A cos(60) (plpo), (56)
1 _ _
= mf(ﬂpo) ® f(plpo), (57)
KZcos’(0) — —
=———3J = '’ R R .
(27r)2Acos(00) (p7p0) © (p? pO) (58)
where the product ® of two matrices f and g is defined by
+~=_ (fvv fvm gvv  gvH\ _
Fog= <fHV fun ) O \gnv gmm) = (59)
fvvgvy fvugvu Re(fvvgvm) —Im(fvvgyn)
frvgiv fuaghn Re(fav gim) —Im(fuvgyn)
2Re(fvvgirv) 2Re(fvugin) Re(fvvgiv+favgvn) —Im(fvvgin—fvagm) |
2Im(fvvanv) 2Im(fvagirm) Im(fvvgvy +favevn) Re(fvvgin—fvugiv)

The scattering from a randomly rough surface is a stochastic
process, so the computations of radar or laser cross-section for the
coherent and incoherent parts involve an average over the surfaces
realizations. The definition of the coherent bistatic matrix reads

1 — _
—coh _—
= Acost < f(plpo) > © < f(plpo) >
Kg cos2 0 — _
=——— <R R 60
A@rZcos by < R(p,po) > © < R(p,po) >, (60)
and the incoherent bistatic matrix
, 1 _ _
~incoh —
3" (plpo) = dooste [< f(plpo) © f(plpo) >
— < f(plpo) > © < f(plpo) >],
K2 cos?0 — —
= R R
A(27)2 cos by [< R(plpo) © Rppo) >
— < R(plpo) > © < R(p|po) >] . (61)

If we consider the case of a single rough surface Eq. (51) where we set

S (plpole) =X (plp — €lpo) + X2 (plpo + €lpo)
+i(ao(p) + ao(po) X\ (plpo), (62)
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this matrix does not comply with the reciprocity condition, so we will
define a reciprocal matrix by the relation

(plpole) = 5 [Spipole) + S(-pol ~ 6l - 7], (63)

where aI' means the anti-transpose of a matrix, with the definition

a b\ a —c
o) =5 %) o
Taking the statistical average of the matrix Rio(p]po) one obtains for

the coherent part

fao(Po) (o) +ao(eo))?o?/2
(a0(p) + ao(po))

)
. / a2re i)™ (X0 (pipy)
N N 2 _
. (ao(p)+ o(po)>/(d £ W(g)zs(ppols)},(%)

—10
< R, (plpo) > =

(
2 21)?2
and for the incoherent part the expression

zncoh( Kg COS2 4 |:

A(27)2 cos by
10 10
- <R, (plp0) > <R(plpo) >, (66)

—=10 —=10
p|po) = R, (plpo) ©® R, (p|po) >

where

ao(po)o(p) — (w0 (Yo (po))20? /2
5 €Xp :
ao(p)+ao(po))

% /dZ'r/dQ’r' exp(@0(@) a0 (Po))*W(r—r') oy =i(p—po)-(r—r") ,

{ |:7(1)(p p0> o 1(a0(p) + Oéo(p())) / d2£ W(f)
Y (

—=10 —=10
<Rs (p’po)QRs (p‘p0)>: _(

2 27)2
% (exp'® ) —1) %, (plpofé) |
o [71 i(Oéo(P);rOéo(Po)) / (;i??W(g)
x (ox ~1)S,(plpolé)|
2
” / (gﬁ WO, (Plmnle) © . (plml6) . (67)
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6. A ROUGH SURFACE BETWEEN TWO
SEMI-INFINITE MEDIA

In this section we apply the above derivation to the simple case
of a rough surface between two semi-infinite media. It will serve
as test of the small-slope method described in our formalism by
making a comparison with well-know examples. We take as first
(incident) medium the vacuum followed by a dielectric medium (n; =
1.62 + 10.001), the frontier being a rough surface with a rms height
o = 0.223 pm and a correlation length | = 1.42 ym (structure no 1).
The incident wave length A = 632.8 nm, the angle of incidence 6; = 20°,
and the azimuthal plane ¢; = 0°.

Incoherent component
0.06 T T T

thetad (deg)

Figure 3. Incoherent components 7""(;) to the second order
approximation as a function of the scattering angle 6; VV (dashed
line), HH (solid line). Medium characteristics: height o = 0.223 um,
correlation length [ = 1.42 ym, index ng = 1, n; = 1.62 + 10.001.
Incident angles: 6; = 20°, ¢; = 0°, wavelength A\ = 632.8 nm.

The incoherent components v"°"(g,) are shown in Figs. 3 and 4
as a function of the scattering angle 6; in the order 2 approximation
(All the calculations are performed with MATLAB, The MathWorks,
Inc.). The scattering intensity for the coherent part with 4 polarization
components is presented in Fig. 5. The results agree well with
those obtained in [30,31]. As a second example (structure no 2), we
consider a rough surface made of aluminium with relative permittivity
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x107° Incoherent component
T T T T

Sg 12,21

thetad (deg)

Figure 4. Same characteristics as the previous figure, components
V H (dashed line), HV (solid line).

€1 = —40—1i1.1. The rough surface is supposed to be homogeneous and
isotrope with rms height (o = 0.3/Kj) of Gaussian nature, and with a
correlation length (I = 3/Kjy). The incident wave length A = 632.8 nm.
The angle of incidence ¢; = 20°, and the azimuthal plane of incidence
¢; = 0. The incoherent components ~""(,;) are drawn in Figs. 6
and 7 as a function of the scattering angle 6,4, calculated to the second
order approximation. The scattered intensity for the coherent part
including 4 polarization components is shown in Fig. 8.

Starting from the previous structure (no 2) we modify the
statistical parameters in such a way that neither the Kirchoff method
nor the small-perturbation method are valid, taking for instance o =
1/ Ky, et | = 1/Kj (structure no 3). In this case we obtain the results
shown in Figs. 9-11, and we observe a very different behavior for
the incoherent components, there exists for V'V and VH two maxima
around #; = £70°, while for HV a maximum occurs for 8; = 0° and
the order of magnitude of the cross-section is reduced by a factor 2.

In a last example (structure no 4) we take the case of a calculation
made with small-perturbation method we have published in [26], see
Fig. 8. For this structure, Koo = 0.068 and 1/Kyl = 0.73. The
results with the SSA method are shown in Figs. 12-14. For the four
polarization components we agree with the order of magnitude and
the shape of the intensity, however, small oscillations are present, their
origin is certainly due to the FF'T integration method we have used.
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Coherent component
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Figure 5. Same medium characteristics as in Fig. 3. Coherent
components Y°°"(f;) as a function of the scattering angle 63, VV
(dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).

Incoherent component
25 T T T

Sg 11,22

thetad (deg)

Figure 6. Incoherent components 7™"(f;) in the order 2
approximation as a function of the scattering angle 6;. V'V (dashed
line), HH (solid line). Incident wavelength A = 632.8 nm, height
o = 0.3/K), correlation length | = 3/Kj. Angles: 6; = 20°, ¢; = 0°,
permittivity: g =1, e = —40 —i1.1.
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x 107 Incoherent component

Sg 12,21

0 i i i i i i i
-90 —-60 -30 0 30 60 90
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Figure 7. Same characteristics as the previous figure, components
V H (dashed line), HV (solid line).

Coherent component
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Figure 8. Medium characteristics of Fig. 6. Coherent components
7" (64) as a function of the scattering angle 6y, V'V (dashed-dotted
line), HH (solid line), VH (dotted line) and HV (dashed line).
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Incoherent component
3 T T T

thetad (deg)

Figure 9. Incoherent components 7™"(f;) in the order 2
approximation as a function of the scattering angle 6;. V'V (dashed
line), HH (solid line), Incident wavelength A = 632.8 nm, surface
height 0 = 1/Kj, correlation length: [ = 1/Ky. Angles: 6; = 20°,
¢; = ¢ = 0°. Permittivity: ¢g =1, e = —40 —i1.1.

Incoherent component
07 T T T

05

04

S 12,21

02

01

0
-90 -60 -30 0 30 60 90
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Figure 10. Medium characteristics identical to the previous figure.
Incoherent components V H (dashed line), HV (solid line).
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Figure 11. Medium characteristics identical to Fig. 9. Coherent
components 7°°*(0,;), VV (dashed-dotted line), HH (solid line), VH
(dotted line) and HV (dashed line).
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Figure 12. Incoherent components 7" (6,) with SSA to the order 2.
V'V (dashed line), HH (solid line). Incident wavelength A\ = 457.9 nm,
surface height ¢ = 5nm, correlation length: [ = 100nm. Angles:
0; = 0°, ¢; = 0°, permittivity: ¢g =1, e = —7.5 —10.24.
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Figure 13. Same characteristics as the previous figure. Components
V H (dashed line), HV (solid line).
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Figure 14. Same characteristics as Fig. 12. Coherent components
" (64), VV (dashed-dotted line), HH (solid line), VH (dotted line)
and HV (dashed line).

7. A SLAB WITH A ROUGH SURFACE ON THE
BOTTOM SIDE

In this section we start with main object of the paper namely to
compute a scattering process generated by a slab. Here, we consider a
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Figure 15. A slab with a rough surface at the lower boundary and
planar surface on the upper side.

slab whose lower boundary is a two dimensional rough surface and the
upper boundary is a planar surface. A schematic view of the geometry
and the different waves propagating in the structure is given in Fig. 15.
Making the observation that in medium 2 no wave is coming in the
upward direction, the scattering matrices obtained in the previous
section are still valid.

In [26] Section B, we have shown in the case of the small-
perturbation method that the scattering matrix is given up to the
order 2 in h by the expression

R(plpo) = (2m)%6(p — po) X5 (po) + ao(po) X (pIpo) (P — po)

2
+ao(po) / égﬁ?(mmp@)h@pﬂh(plpo>, (68)

where the matrices YS) are given in the Appendix B. Following the
method proposed by Voronovich and applied in the previous section,
we identify the terms obtained by the small-perturbation method with
those of the SSA method, this procedure leads to the expression of the
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scattering matrix

iog(po) [ d%
(ao(p) + ao(po)) J (2m)?
% expi(P=Po—€)T=i(a0(p)+ao(po) A(r) {(Qﬂ)%(&)ffj)(ﬂpo)

d2r

—10
R, (p|po) =

i —(2 —(2
+5 [ X1 (plp — €lpo) + X (plpo + €lpo)

+iao(p) + a0 (p0)) Xy (pIpo) | h(€) } (69)

7.1. Applications

We begin with the structure (structure no 5) taken from [26] see Fig. 14.
The slab is characterized by the parameters: rms height ¢ = 5nm,
correlation length | = 500 nm, and a slab thickness H = 500nm. The
permittivities of the successive media are: ¢y = 1, € = 2.68964i10.0075,
€0 = —18.3 4 10.55. The incident wavelength A = 632.8 nm, and the
angle of incidence 6; = 0°. The intensity curves are shown in Figs. 16—
18. We observe for the incoherent components that the magnitude is
the same as in the small-perturbation method (SPM), with a maximum
of intensity for 8; = 0. We notice the presence of small oscillations for
the polarization V'V, and for the polarization HV the appearance of
a structure around 6; = £50° which does not show up in the former
method, and the absence of satellite peaks for the V'V component.

At this point we can make two remarks: the order 2 approximation
of the SSA method is a linear combination of the order 1 and 2 of the
SPM, see Egs. (62) and (63), it implies that the fine structure observed
for the order 2 in SPM is probably masked by the global effect due to
the SSA order 2. Moreover, our numerical experience in the SPM case,
shows that the functions to be integrated contain very narrow peaks
needing a special treatment (see [28] for a discussion), in the case of
the SSA method where we integrate by a FFT, even an increase of
the number of points is not sufficient to recover the peaks. In the
next example, we take the parameters of structure no 1, where we
introduce above the rough surface a slab of thickness H = 500nm
and permittivity € = 2.6896 + i0.0075 (structure no 6). The effect
of the absorbing dielectric slab shows (as expected) a decrease of the
reflected intensities for all the polarization states, however, the shape
of the curves remains the same for the polarizations V'V and HH, the
results are shown in Figs. 19-21. In a last example, we take a rough
surface made of aluminium, the parameters are the same as in structure
no 2, and we add above the surface an absorbing dielectric slab of
permittivity ez = 2.6896 — 10.0075 (structure no 7). The results are
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Figure 16. Incoherent components 7"°*(f,) to the order 2, V'V
(dashed line), HH (solid line), Surface height ¢ = 5nm, correlation
length [ = 100nm, slab thickness 500 nm. Permittivities ¢g = 1,
€1 = 2.6896 4+ 10.0075, e = —18.3 +i0.55. Incident angles: 6; = 0°,
¢; = 0°, wavelength A = 632.8 nm.
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Figure 17. Same characteristics as the previous figure. Incoherent
component V H (dashed line), HV (solid line).
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Figure 18. Characteristics of Fig. 16. Coherent components v (8),
V'V (dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).
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Figure 19. Incoherent components 7"°"(;) to the order 2.
VV (dashed line), HH (solid line), Surface height ¢ = 0.223 um,
correlation length | = 1.42 ym, slab thickness 500 nm. Permittivities
€g = 1, €1 = 2.6896 + i0.0075, e = 1.62 4+ 10.001. Incident angles:
0; = 20°, ¢; = 0°, wavelength A = 632.8 nm.
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Figure 20. Same characteristics as the previous figure. Incoherent
component VH (dashed line), HV (solid line).
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Figure 21. Characteristics of Fig. 19. Coherent components v (8,),
V'V (dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).
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Figure 22. Incoherent components y""(0;) to the order 2. VV
(dashed line), HH (solid line), Surface height o = 0.3/ K, correlation
length | = 3/Kj, slab thickness 500nm. Permittivities ¢ = 1,
€1 = 2.6896 +i10.0075, €2 = —40 — il1.1. Incident angles: 6; = 20°,
¢; = 0°, wavelength A = 632.8 nm.

presented in Figs. 22-24. The addition of an absorbing slab decreases
the intensity for the polarizations V'V and H H while the shape remains
the same, but for the polarisation V H we observe two maxima instead
of one in structure no 1.

8. A SLAB WITH A ROUGH SURFACE ON THE UPPER
SIDE

We consider a dielectric slab of permittivity €; inserted between two
semi-infinite media of permittivity ey and e5. The upper part of slab
is a rough surface, the lower part is a planar one, see Fig. 25. In
order to compute the scattering matrix R, (p|po), we need first to de-
termine the scattering matrix in the small-perturbation method that
we summarized. We will start from the two reduced Rayleigh equations
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Figure 23. Same characteristics as the previous figure. Incoherent
component VH (dashed line), HV (solid line).
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Figure 24. Characteristics of Fig. 22. Coherent components v (8,),
V'V (dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).
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z

€9

Figure 25. A slab of permittivity ¢; and thickness H between two
semi-infinite media of permittivity ¢y and es.

obtained in [26] Egs. (100) and (101), namely:
d®u —14+0 — ; 14,0 ;
/W]‘/Ih+ T (plu) - Ru(ulpo) - Ei(po) + M), (plpo) - E'(po)

_ o) on(®) g (70)

(€1 — €o)

d*u —1-,0 = i “7l—0— i
/ BT (plu) - Ru(ulpo) - B (po) + M- (plpo) - E(po)

(2r)
_2Aeoe)tonlp) ()
(€1 — €0)

where the matrices M, are given by:

M,llb’oa(mp) _ (baz(al)(;) cz_ocg(ao)(”li) p)Mlb,Oa(u‘p)’ (72)
B2 ulp) = (ba%g:)(;)a_a;(a 1)(171) DAt ulp),  (73)
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with

R i) - (Il 5 o)
aei Koao(p)(@ X P) (eo€1)2 Kou - p

1
70, b 0 -p —be? K L X P
AT = (Hu\mqu  abog(w)on(p)i p —be] Kpao(w) (i xAp>z>7
aes Kooy (p) (u x p), (€0€1)2 Kgu - p

and

I(alp) = /de exp(—ip - ¢ — iah(x)). (76)

Inside the slab the scattered field by the planar surface is related to
the incident field by the relation

E' (u) =7 (u) - B (u), (77)
where 72! is a diagonal matrix
712 (p) = exp? 1 P 72 (p), (78)
ez (p)—e12(p) 0
7 (p) = <€2al(p)661a2(p) m(p)az(p)) ’ (79)
a1(p)+az2(p)

this matrix contains the reflection coefficients for a planar surface
located at z = —H which separates two media of permittivity e
and €. The phase factor exp(2ia;(p)H) describes the extra path of
the scattered wave due to the planar surface. Collecting the integral
Egs. (70) and (71), the matrix R, is a solution of the equation
d2u —1 -1 .
[ o [P0l + 7721 (0) - 2, )] - R =

——=1+4,0— _ —=1—,0—
— [M" " (plpo) + 77 (p) - My (plpo)] - (80)
In order to construct a perturbative development, the method consists

to expand in Taylor series I(a|p) with respect to h. We obtain for the
matrix R, an expansion analogous to Eq. (24)

Ru(plpo) = (27)25(p — po) X (p0) + 0 (p0) X (lpo) (P — po)

2
+ao(po) / (‘127’”);?5?’ (plp1IPo)h(p — p1)h(p1 — po), (81)
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with the following expressions for the matrices X,

“7l+0+ 1,0+ -1
M polpo) iy M <po\po>]

a1(po) — ao(po) a1(po) + ao(Po)

X (pg) = -

_1+70_ _1_70_
M7 (polpo) iy M (P0|P0)]

a1 (Po) + ao(po) Po) " o Tpo) + colpo)
= (7"(po) + 7" (p0)) - [T+ 7" (p0) 'FHQl(Po)]ila (82)

719(pg) is given by (C13).

X (ulpo) = 21 @ (ulpy), (83)
X (ulpilpo) = a1(w)@ " (wlpo) + ao(po)@" (ulpo)
—2P " (ulp1) - Q" (m1|po), (84)

Q@ and P are given in Appendix C.

In order to obtain the scattering matrix for a slab with a rough
surface at the upper boundary in the SSA approximation, we follow
the same method of identification between the SSA and SPM described
in Section 7, and we get

iag(po) _ / d*¢
(ao(p) + ao(po)) J (2m)?
% exp L (P=Po—€)m=i(ao(P)+a0(po)) A(r) {(gﬂ)%(s) qul)(p‘po)

—10
R, (plpo) = d*r

i —(2 —(2
+5 [ X2 (plp — €lpo) + X, (plpo + €lpo)

+i(ao(p) + ao(po)) X, (plpo) | h(€) (85)

The last step is to introduce in Eq. (85) the X, reciprocal matrices to
complete the expression of the scattering matrix Rio(p\po).

8.1. Applications

We take as a first example a slab of thickness H = 500nm, with an
upper rough surface o = 15nm, [ = 100 nm, and a lower planar surface
made of a perfect conductor (structure no 8). The successive media
have a permittivity: €y = 1, e = 2.6896 + i0.0075. The incident field
is normal to the slab, and the wavelength A = 632.8 nm. The scattered
intensities for the polarizations V'V and H H are presented in Fig. 26, a
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Figure 26. Incoherent components "(0;) to the order 2, VV
(dashed line), HH (solid line), Surface height ¢ = 15nm, correlation
length { = 100nm, slab thickness 500 nm. Permittivities ¢g = 1,
€1 = 2.6896 4+ 10.0075, e = +ico. Incident angles: 6; = 0°, ¢; = 0°,
wavelength A = 632.8 nm.

comparison with the SPM (see [26] Fig. 10) shows that the magnitude
are the same, but the difference between the maxima for 6; = +30°
and the minimum for 6; = 0° is more pronounced in the SPM case.
For the crossed polarizations V H and HV shown in Fig. 27 the shape
of the intensities is identical but the magnitudes are half of the SPM
case. Taking the same structure, with an angle of incidence 6; = 20°,
the results are shown in Figs. 29-31. The intensities are concentrated
in the backscattering region for the polarizations V'V and H H, while
for the V H and V H the intensities are maximum in a region opposite
the incident scattering angle.

An other structure (no 10) is obtained from structure no 8 where
the infinite conducting planar surface is replaced by a silver planar
surface of permittivity e = —18.3 4+ 10.55. In Fig. 35 is shown the
intensities for the polarizations V'V and HH, the HH component has
the same maxima for ; = £40° as in the SPM case (see Fig. 13
in [26]), but the difference between the maxima and the minimum
(04 = 0°) is less important. For the polarizations HV and V H, the
intensities behavior with the scattering angle are similar but reduced
by approximately a half compared to the SPM case.
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Figure 27. Same characteristics as the previous figure. Incoherent
component VH (dashed line), HV (solid line).
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Figure 28. Characteristics of Fig. 26. Coherent components v*°"(6,),
V'V (dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).
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Figure 29. Incoherent components 7"**(;) to the order 2, V'V
(dashed line), HH (solid line), Surface height ¢ = 15nm, correlation
length [ = 100nm, slab thickness 500 nm. Permittivities ¢g = 1,
€1 = 2.6896 4+ 10.0075, e = +ioco. Incident angles: 6; = 20°, ¢; = 0°,
wavelength A = 632.8 nm.
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Figure 30. Same characteristics as the previous figure. Incoherent
component V H (dashed line), HV (solid line).
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Figure 31. Characteristics of Fig. 29. Coherent components v°°"(6,),
V'V (dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).
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Figure 32. Incoherent components 7"°*(,;) to the order 2, V'V
(dashed line), HH (solid line), Surface height ¢ = 15nm, correlation
length [ = 100nm, slab thickness 1000nm. Permittivities ¢g = 1,
€1 = 2.6896 +10.0075, e = +ico. Incident angles: 6; = 0°, ¢; = 0°,
wavelength A = 632.8 nm.
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Figure 33. Same characteristics as the previous figure. Incoherent
component V H (dashed line), HV (solid line).

The fact to add a slab under a rough surface has a significant
influence on the scattered intensity. To illustrate this point we take the
structure no 1 (a rough surface between two semi-infinite media) and
introduce a slab of thickness H = 500nm with an infinite conducting
lower planar surface (structure no 11).

The results are presented in Figs. 38-40, we observe the same
maximum around the backscattering direction for the polarizations
V'V and H H but an increase of the scattered intensity by a factor 100.
We notice for the polarizations HV and V H the presence of small
oscillations for 65 > 60° due to the integration method.

9. A SLAB WITH TWO ROUGH BOUNDARIES

In the previous sections we have examined the cases where only on
rough surface participated to the scattering process, in the present
section our purpose is to show how light can interact with a slab
delimited by two rough surfaces. This configuration is shown in
Fig. 1, where three regions are characterized by different permittivities
homogenous and isotropic, €y, €; and €s. A slab is delimited by two
rough surfaces located at z = hy(x) and z = —H + ho(x), ¢ = (z,y).

Since the SSA method involves a knowledge of the scattering
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Figure 34. Characteristics of Fig. 32. Coherent components v*°"(6,),
V'V (dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).
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Figure 35. Incoherent components v7"(f;) to the order 2, VV
(dashed line), HH (solid line), Surface height o = 15nm, correlation
length [ = 100nm, slab thickness 500nm. Permittivities ¢g = 1,
€1 = 2.6896 4+ 10.0075, e = —18.3 +i0.55. Incident angles: 6; = 0°,
¢; = 0°, wavelength A = 632.8 nm.
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Figure 36. Same characteristics as the previous figure. Incoherent
component VH (dashed line), HV (solid line).

Coherent component
50 T

g (4B)

Sig,

\
1

ot
1 \‘!ll‘,\" hihit
Nk

~ " alaey
IV AVAVAVATATEIA RIS
1 S y
Pyl v I LA lﬁ,\m-,(
1 .

X IRITHEN

RH

i
gy i ¥
50 [ |

li
iy
By

¥ V

i
i

-200 !

I
L
i
I I I I I 4
] 30 60 9
thetad (deg)

Figure 37. Characteristics of Fig. 35. Coherent components (),
V'V (dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).
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Figure 38. Incoherent components +¢°"(f;) to the order 2.
VV (dashed line), HH (solid line), Surface height ¢ = 0.223 um,
correlation length | = 1.42 ym, slab thickness 500 nm. Permittivities
€0 = 1, e = 1.62 +10.001, e = +ioco. Incident angles: 0; = 20°,
¢; = 0°, wavelength A = 632.8 nm.
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Figure 39. Same characteristics as the previous figure. Incoherent
component V H (dashed line), HV (solid line).
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Figure 40. Characteristics of Fig. 38. Coherent components v°°"(6,),
V'V (dashed-dotted line), HH (solid line), VH (dotted line) and HV
(dashed line).

matrices calculated in the small-perturbation method, we summarize
the results already obtained in [27] and needed in the following. For
a system with two rough surfaces the perturbative development of the
scattering matrix R can be expanded as:

11) . ==(20)

R — R(OO) R(lo) = 4 R LR =7 T 71
+R® + R LR 4 (86)
where the terms associated with the products of the heights of the two

surfaces h hi' are labelled R(nm).

Concerning the bistatic incoherent cross-sections we decompose
their expressions into three terms corresponding to the contributions
of the upper and lower surfaces alone plus a contribution due to the
interference

—incoh incoh

plpo) = 7" (plpo) + 7"

mcoh(

(plpo) +7ii " (plpo), (87

as an example

—incoh |:< E(IO) ® R(IO) > 4 <R(20) ® E(QO) >

(plpo) = KgCOS29
TuA\PIPO) = A (2m)2 cos by

+ <R® o R >} : (88)
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corresponds to the contribution of the upper surface (ho(x) = 0),
where the perturbative expansion is limited to the order 3 as a
function of mean height o;. In a similar way the contribution due
to the lower surface can be written by permuting the upper indices.
The interference term 7"¢°". contains the contributions of the field
interacting with the two rough surfaces, and the dominant parts are
given by

K2 cos? 0 — _

—incoh _ 0 (10) (12) +(12) —(10)

Yud . (PIP0) = A@rZcosty [< R7oOR7>+<R 70R >
+<RYeoR®™ s L <R eR"™ >
+<R"MeoRr" )>+...}, (89)

these contributions contain all the terms with of o3 (1 <i+j <4). If
the values o1 and o9 are close their contributions will be equivalent to
fourth order terms in (88), (89). So we have supposed in Eq. (89) that
the terms corresponding to O'il 0’%, o? U%, Jf‘ J% are negligible compared
to the terms kept in Eq. (89), moreover, due to their complexity these
terms of sixth order are not calculated.

In the case of the small-slope method we will study a perturbative
development of the scattered field which depends on the slope of the
surfaces hi, ho. The scattering matrix we have used in Sections 4, 7
and 8, must be generalized to the case with two surfaces. It is clear
that several generalizations can be proposed, we choose the simplest
one by making an ansatz similar to the functional form proposed by
Voronovich, namely

R(p. po)= / Prd®r' expl-i(p—po) - (r-+1')

—i(a(p) + a(po))(h1(r)+ha(r'))]
x® [p,po; v; r'; [ha(r)]; [ha(r)]] . (90)

Introducing the Fourier transform of the functional ®, we have
o d2€ d2£,
_ 2., 72 :
R(p,po) = /d rd r/(27r)2 on)? exp|[—i(p—po—&) -7
—i(p—po— &) 7' —i(a(p) + alpo))(hi(r) + ha(r'))]
x® [p,po; & & [h1(8)]; [ha(€)]] . (91)
In this expression the functional ® is expanded in a Taylor series in

powers of hy and hs taking into account the translational invariance.
In order to simplify the formulas in the following
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i) we omit the dependance on hp, hy in the ® argument
ii) We introduce the notations ®™™4k where n refers to the
dependance on the number of heights of the upper surface, m
the number for the lower surface
iii) 4,7,k represent the order according to which the field interacts
successively with the surfaces hy and ho
iv) the differential elements d?£ have to be divided by (27)2, and each

function §() multiplied by (27)2.
We then obtain the following expansion:

&(p,po, & &) =0 (p,py, €)5(¢) + 2 (b, po, €)5(€) (92)

+ / d2€18(€ — €)@ (p, po, £1)h1 (€1) (93)
+ / d2€20(€' — €)@V (p, po, £2)ha(£2) (94)
+ / d*€1d%E20(E+ &' — & — &)

B0V (p, o, &1, €)1 (€1)ha(£2) (95)
+OUD2 (p, po, &1, €2)ha (1) (€2)] (96)

+/d2€1d2£25(§ — &1 — &)@ (p, po, &1, &2, E) M EDh1 €D (97)
+ [ PEIE - 61-6)8 P p,po. €. 61, EDIAEN L) (99
+ / &1 d*Eod?E30(E+ & — &1 — & — &3) [

§(21)112 (pa Do, El? 527 63)h1 (él)hl (SZ)hQ (53) (99)

+BEVI2L (p, po €1, €, &) (€1)ha(Es)ha(£2) (100)
+@E2(p, Po,53,51,52)h2(€3)h1(€1)h1(52)] (101)
+ / d*E1d*Ead*€35(E + & — &1 — & — £3) [

BUV2L(p p, €1, £, £3)ha(E1) 2 (€2) (£5) (102)
+i’(12)212 (pa Do, 51, '53, '52)h2 (El)hl (Sg)hQ (52) (103)
+(§(12)122 (pa Do, 537 517 52)}2’1 (£3>h2 (51)h2 (52)] (104)

+ / 26, d%€2d%€50(€ — &1 — & — &)
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x @B (p, po, &1, €2, €3)h1 (€1)h (€2)ha (€3) (105)
+/d251d2§2d2£35(£’ — &1 — & —&3)
<& (p, po, &1, €2, €5)ha(€1)ha(€2) ha( &) (106)
+/d2€1d2€2d2§3d2£45(5 +E - -6 -6 &)

C2122(p, po, &1, &2, &3, &) (€1) M1 (2)ha(€3)ha(€a)  (107)
D22 o €1, €, &5, E4)h1 (€1)ha(€2)h1(€3)ha(&s)  (108)
+¢(22)1221(P P0, &1, 82, €3, §4)h1(&1)ha(€2)ha(€3)h1(€4)  (109)
D22 by €1, &g, E3,E4)ha(€1)h1(€2) D1 (€3)ha(€4)  (110)
D22 (p o €1, €, &, E4)ha(€E1)h1(€2)ha(€3)h1(&4)  (111)
+OD21(p po €4, &5, &3, 54)h2(€1)h2(€2)h1<£3)h1(£4)] (112)
+/d2£1d2€2d2§3d2€45(5 +&—& -6 & —&) [
BV (p py, &1, &2, &3, €&0)h1 (&) (€2)hn (€3)ha(€a)  (113)
+ @GV, b €1 €9, €3, E)h1(€1)h1(€2)ha(E) R (€3) (114)
+OBVIL(p 5y €1, €9, &3, €4)h1(€E1)h2(E0)h1 (€)1 (€3) (115)
+@CH (p py, £y, Ez,53,€4)h2(€4)h1(€1)h1(52)h1(£3)] (116)
+/d2£1d2€2d2§3d2545(5 +& -6 —&—€&—¢&) [
13)1222( p0751752753754)h1(54)h2(61)h2<€2)h2(£3) (117)
@(13)2122(1) Do, &1,&2,€3,€4)ha(&1)h1(E4)h2(€2)ha(€3) (118)
U2 (p po €1, €2, €3, €a)ha(€1)ha (€)1 (€4)ha(€s)  (119)
+@13222 (p_pq, &, Ez,53,54)h2(€1)h2(52)h2(53)h1(54)] (120)
+/d251d2€2d2§3d2€45(§ & — & —& &)
X é(40) (p7 Po, 517 527 537 54)h1(£1)h1(£2)h1 (53)h1 (54) (121)
+/d2§1d2€2d2§3d2€45(§, —&1— & — & — &)
x @ (p, po, &1, €2, €3, E4)ha(€1)ha(€2) ha(€3) ha(€a). (122)

The computation of ®"™ follows the method proposed by
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Voronovich, we consider successively the terms of order n + m =
1,2,3,4 in the previous expansion, and identify them with the
equivalent order of the small-perturbation method. The expansion to
the 4th order is required to take into account the interactions between
the two surfaces.

9.1. Expansion of the Scattering Matrix according to the
Order

9.1.1. Ordern+m=1

We get for this order the expression:

2
/d%% [1 = i(ao(p) + ao(po))hu (r)] @1 (p, po. £)5(€)

2 ¢/
v éfp [1 = ilao(p) + ao(po))ha(r')] B (p, po, €)(¢)), (123)

after some calculations we obtain:
(2m)%3(p — po) [ (p. po) + 8 (P, p0)|
—i(ao(p) + ao(po)) [‘i’qﬁo) (P, po)h1(p — po) + BL (9, po)ha(p — Po) |,

(124)

a comparison with the SPM leads to the expressions ii>§?) and (i)ElO) in

term of the known operators 7(1)

% (0) _ dag(po) <)
q)uo (p7p0) - Oéo(P) +a0(p0)Xu (p|p0)7 (125)
8 (p.po) = — 0P D) i), (126)

ao(p) + ao(po)

Making use of the relation (42) we also obtain the following
contributions to the order n +m = 2

() = —(ag(po)ao(p))* @O b, (127)
&) = —(ag(po)ao(p))*@ ha s, (128)
SV = —(ag(po)ao(p)® (8 + &) hha,  (129)
B2 = —(ag(po)ao(p)® (B + & ) hahi.  (130)
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9.1.2. Ordern+m = 2

The computation of the order 2 involves a power of hy and hy such
that n + m = 2, moreover, the terms of order 1 in h Egs. (93), (94)
must be replaced by terms of order 0 and 2, we then obtain

2 2 ¢!
[ S S e i = =€)~ itp 20— €) v
exp [—i(ao(p) + ao(po)) (hi(r) + ha(r'))]
% [Eq. (92) + Eq. (95 — 98)] . (131)

After integration and introducing Egs. (127)-(130), we obtain the
result

/ 2p, [_ (ao(p) + ao(po))z((i,£0)(p,p0) + 3 (p, po))

(2m)2 2

+&UD"%(p, po,p — p1,p1 — Po)| i (p —p)ha(pr —po) (132)
dQ [ (o —+ o 2 . -

+f G Aol®IE Q0B (01, ) + 8 (p. o)

+&’(11)21(P7p0, P—Dp1,P1— po)_ ha(p — p1)hi(p1 — po) (133)

+/ d’py —_(ozo(p)-I-Oéo(po))2

(271')2 ) év(JO) (pap())

+@ (p, po,p — p1,p1 — po) | (P — p )M (p1 —po)  (134)

2 r 2
+/é:)12 __(OZO(P) +2a0(Po)) 9 (p, po)

+@) (p, po,p — p1.p1 — po) | ha(p — p1)ha(p1 — po).  (135)

From this expansion we can derive the expressions of &™) in terms
of the matrices X obtained in SPM. In the above expression the last

two terms Eqgs. (134), (135) must be identified with R® and E(OZ),
see Egs. (35), (36) in [27], we deduce
B (p. po. p1) = (ao(p) +2Oéo(po))2(i,1(10)(pjp0)
+a0(po) X ™ (plp1[po). (136)
B2 (p py.p1) = (ao(p) +2a0(p0))2«i>20)(p,po)
+a(po) X (plp1|po)- (137)
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We know with the reduction formula (42) that a term of order 20 can
be decomposed into a term of order 1 and a term of order 3, for example

i

&1 (p, pg, p1) = )43(20) (P,Po, P — P1,P1 — Po);

ao(p) + ao(po
(138)

and from Eqgs. (125), (126) the first order terms give for
®(10) and &) an expression in terms of the known operators
7(1), 7&1)’ 7(20)’ x02)

u

- iy .
&1 (p, py, p1) = m {X@O)(P’Pl\po)

+ i%(ag(p) + ao(Po))YS)(p\po)] , (139)

~ iy __
&Y (p,py,p1) = m [X(OQ)(P’PHPO)

+i(0(p) + anlpo) X plpo)| . (110

Extra terms of order 3 can be deduced (We introduce in @ a lower
index to make reference to the origin of their order when a confusion
is possible.)

&% = —i(ag(p) + ao(po)) B2 hy hy by, (141)

& = —i(ao(p) + a0(po)) B hy hy hs, (142)

i g21)112 = —i(ag(p) + ao(Po))‘i’(QO)hl ha ha, (143)

PV — _i(ag(p) + ao(po)) B hy hy b, (144)

i 512)122 = —i(ag(p) + ao(Po))‘i’(Og)hl ha ha, (145)

0D — i(ag(p) + ao(po)) B8P ha hy hy. (146)

For the first two terms in Eqgs. (132), (133) we can make an

identification with B\, (see Eq. (34) in [27]), they give

B ~-(11)12
SUD12(p B py) = ao(po)X( ) (plp1lpo)

5 (a0(p) + a0(p0) (@ (plpo) + 2. (plpo))
(147)
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R 11)21
U2 (p po py) = ao(po)X( (plp1|po)

+5(a0(p) + ao(po) (L (plpo) + B (plpo)).
(148)

Here, we notice that the relation (42) linking the orders n—1, n, n+
1, and the formula (138) for one surface can be extended to the case
of 2 surfaces, for example

&(10) - unu _ _
(p7p07p1> ao(p)+a0(p0) (p7p07p P1,P1 PO()y )
149

where in the calculations we keep all the terms of &1 giving a
contribution to ®(19) and &V,

We see that Eqgs. (147), (148) give new contributions to the order
n +m = 3, they have to be included in the next approximation
otherwise these contributions will be missing in the calculations of the
coupling between the two surfaces at higher order.

21)112

& = —i(ag(p) + ao(po)) @ V'2hy hy hy, (150)
B = —i(ao(p) + a(po)) |2V + SO | hyhy . (151)
B = i(ag(p) + ao(po)) B2 g by (152)
&Y% = —i(ao(p) + ao(po)) @V hy ha by, (153)
<i>§12)212 — i(ao(p) + ao(po)) [ (112 @(11)21} ho by by, (154)
&' = _i(ag(p) + ao(po)) BV 2hy by ha, (155)
next we add Egs. (143)—(146), and we get the following terms to be

included in the next order.
PN — —i(ao(p) + ao(po)) $(20) 4 $(1112] hy hyhy, (156

1)121

reu

1)211

relz

@)+ U2 yhy by, (158

gl

(o)

= —i(ao(p) + ao(po)) '<i><11>12 L gana } hihahy (157
(o)
(o)

'(i,(oz) i H11)21] ho o hy,

redr

2)122

2

(2

2

N )|

;2)221 ) (
YV = —i(ao(p) + ao(po)) @(11)12 - @l } hz fihz, (160
i It <

(02) + @(11)12 hl hl hQ.
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9.1.3. Ordern+m =3

We have to collect in Egs. (92)—(122) all the terms up to the order 3 in
h, excepted those of power 2, and add Eqgs. (141), (142), Eqgs. (156)—
(161) obtained from the order 2, we get the contributions

2 2 ¢!
/erdzr/ (5752 % exp [~i(p —po — &) T —i(p—po— &) 7]

xexp [—i(ao(p) + ao(po))(hi(r) + ha(r'))]
x[Eqs. (92-94) + Eqgs. (99-106)] , (162)

after some calculations (162) gives:
/d251d2€2d2§3 6(p—po—& — & — &) {

~21(a0(p) + ao(po))* [ 8 (p,po) + & (5. p0)|
{h1(&1)h1(&2)h2(€3) + h1(&1)ha(€2)h1(&3) + ha(&1)h1(§2)h1(€3)

+h1(£1)h2(52)h2(53) + ha(&1)h1(§2)h2(&3) + ha(&1)ha(&2)h1(€3)}
(&1 hi(€2)ha(€) B (p, po) +hif €1) ol £2) o €3) B (P po) | (163)

— 510 (p) + a0(p0) P (,po, €1) s (€ (€2)n (69)

+h1(&1)h2(&2)h1(€3) + ha(&2)ha(€3)h1(&1)
+h1(&1)hoA&2)ho(€3) +hi(€1)h1(&2) ha€3) + ho&2)hi(€3)h1(&1)}  (164)
%(040( ) + ap(po)) 2@V (p, po, &1) {ha(€1)ha(€2)ha(&3)
+h1(&2)h1(&3)h2(&1) + ha(&1)h1(&3)h2(&2) + ha(&1)h1(&2)h1(&3)
+ha(&1)h2(§2)h1(&3) + h1(§3)ha(&1)ha(€2)} (165)
+ |22 4 V) (p, po. €1, €0, €)1 (€1)h (€2)ha(€s)  (166)
+ :<i>(21)121 +‘i>(21)121 (P, po,&1,&2,83)h1(&1)h2(&3)h1(&2)  (167)
T [Be02 B (s, 0, €00l E) (€€ (168)
+ }i><12>221 + q><12)221' (P, po, &1, &2, &3)ha(€1)ha(€2) I (€3)  (169)
& [B0222 L G097 (b 1 0. £l (€)Da(€) (170
+ :q,(12)122 + (I)(m)m_ (P, o, &1,82,€3)h1(&3)ha(&1)h2(&2)  (171)
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+ {@(30) + <i>§3°)} (P, Po, &1, €2, &3) M1 (€)M (§2)ha (&3)  (172)
+ (899 1+ &) (p, po, &1, &, €)ha(€1)ha(€2)hal€s)| . (173)
where the operators (i)gog) and ‘i)gSO) are given by Egs. (141),
(142), V2% and VIR by Eqs. (156)-(161), 19 and O by

Eqgs. (139), (140), & and ) by Eqs. (125), (126).
Reordering the previous expression with respect to the h; products
leads to:

/d2£1d2£2d2£3 d(p—po—& — & —§&3) [
- et +adp) P 0p. o) ~ o) ol B0 p. o 0)

+0p, po, €1, €2, €3) + 5D, 0, €1, 62, €3) | hu(€1)(2)a(€3)

(174)
+{‘§<ao<p>+ao(po>>3<i>&°><p, Po)— i(a0(p)+a0(po) 2B, po, &)
+®03)(p, po, &1, &2, &3) + BV (p, po, &1, &, 53)} ha(&1)h2(&2)h2(&3)

(175)

+ {‘%%@) + ao(p0))* [ (p. po) + 8 (p, p0)|

_%(ao(p) + ap(po))? [@(10) (p. po, &3) + V) (p, po, 53)}

+é(21)112(p7 Po, 517 527 53) + é521)112(1)7 Po, 517 527 53)}
xhi(&1)h1(&2)h2(€3) (176)

+ {‘éwo(p) + ao(p0))* [ (p. po) + 8 (p, p0)|

_%(ao(p) + ag(po))*@19 (p, po, &3)

+é(21)121(p7 Po, Eh EQ7 53) + i)g21)121 (p7 Po, Eh 527 63)}
xhi(&1)ho&3)ha(€2) (177)
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i . -
+{ = gi(0) + antp))* [#0p.0) + &0,

1 (00(p) + a0(p0))? [00 (0. po, &) + ) (p. . &5)]

+§(21)211(p7 Po, 517 527 53) + @521)211(1)7 Do, 517 527 53)}
xha(&3)h1(&1)h1(€2) (178)

+ {—%(ao(p) +ao(p0))* |2 (p, po) + @ (p, p0)|
1

_5(040(1?) + a0(po)) 2@ (p, po, &3)

+(i’(12)212(p7 Do, £1a £2a 53) + (i’gl2)212(p7 Do, £1a £2a 53)}
xha(€1)h1(&3)h2(&2) (179)

+ {—%(ao(p) +ao(p0))* |2 (p, po) + @ (p, p0)|

—%(040(1?) + a(po))® [&’(10) (p. po, &3) + @Y (p, po, 53)}

+(i)(12)221(p7 Do, £1a £2a 53) + (i)gl2)221(p7 Do, £1a £2a 53)}
ha(&1)h2(&2)ha(§3) (180)

+ {—%(Ozo(p) +ao(p0))* | @ (p, po) + @ (9, p0)|
1

——(ao(p) + a0 (po))? [&,(10) (p. po. &) + @V (p, po, 53)}

2!
+(i’(12)122(p7 Po, £1a £2a 53) + (i’gl2)122(p7 Do, £1a £2a 53)}
X h1(&3)ha(&1)ha(€2)] - (181)
In order to identify the different terms with the operators Rr"™ (see

Egs. (34)—(40) in [27]) of the perturbative development we make the
variable substitutions & = p — p1, & = p1 — p2 and integrate the
delta functions. Next, following the Voronovich method, we identify

&0 with E(BO) obtained in the SPM method and then deduce 2%

similarly for ®©3). The terms of ®21 have to be identified to ﬁ(m) and
according to their heights values contribute to ®(2%) or &1 similarly
for ®(12),
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So in a first step

<i)(30): Oéo(po)f(

3!

@(05) — 040 <p0)7

i
NET

we obtain:

30) i

= (30
-~y

+i(ao(p) + ap(po))? @0,

(03) &3 , 1
(a0(p) + ao(po))* @,

112 z(21)112

b (21
@(21)112:a0(p0)X( ) _ 3

a1

1
NET
£ (21)121

o)

]

1
N

H(1211 _ ao(p

+—

+—

é(12)212: a0 (po)f

1
+—

RET

& (12)221 _ ao(Po

1
o
1
N

= ag(po)X

1 (ap(p) + ao(po))Q(i,(lo)

L (a0(p) + ao(po))? [@(10) + @(01)}

(a0(p) + co(po))* |80 + 8]

(a0 (p) + a0 (po))* | 2 + ,i,go)} ’

(a0 (p) + ao(po))? :@(10) n @(01)}

(ao(p) + ao(po))® | B + @&0)} 7
(12)212

(ao(p) + ao(po))?@OV

(ao(p) + co(po))* |87 + 8]

< (12)221  z(12)221
)X — (Y

(ao(p) + ao(po))? [&;(10) n @(01)}

(ao(p)+ao(po))* | &)+ (]

(a0 (p) + ao(po))2 @10

(a0 (p) + ao(po))? @Y

179

(182)

(183)

(184)

(185)

(186)

(187)

(188)
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H12)122 _ ao(p0)7(12)122 B <I>(12)122

+p(an(p) + aopo))? [81) + 0V)]

2!
i ~ -
+55(00(p) + ao(po)® |2 + @] (189)

A second step consists to solve the above equations, giving the
order 2 terms:

< (11)12 _ ia(po) {_ (21)112

SV, po, &1, ) = TS [l lpo)

+ X (plgy ol po) + X (plé 1|6 lpo) + X (pla |6 o)

Hilao(p) + aalpo)) |§ (X wialp) + X ol

X e )+ éf( i)

=22 (00(p) + a0(p))? (X wlpo) + X (wlpo)) }. (190)
= (11)21 _ iao(po) 1 1121
B o, 1.62) = - 0P [XO ol
+X M (plgs e lpo) + X (plulealpo) + X (pla s lpo)

Hilao(p) + aalpo)) |§ (X il + X ol i)

11)12
2

Hx p|51|po>+Y“””<p|sl|po>]

‘%%(m +ao(po))? (X, (plpo) + X, (plp0)) }- (191)

$(20) (P, p0,&1,&2) = % {Y(go) (pl&1/€2]Po)

+i§< 0(p) + a0 (o)) X “Aplé1 Ipo)

12 aolp) +aolpo) X lplpo)} (192)



Progress In Electromagnetics Research, PIER 73, 2007 181
@2 (p,py, &1, &) = M{Y(Og) pl&1|&2|po
( )= S X Y wleelp
___(02)(

H (a0(p) + ao(po) X

2 (00(p) + ao(p) X (plpn) ). (199)

pl€1]po)

The expressions (190)-(193) contain the operators X already
calculated.

In addition, Eqgs. (182)—(189) will contribute also to the 4th order
through the terms:

1122

B0 = i(ag(p) + ao(po)) [@EVN2 + @02122] (194
B2 _ (40 (p) + ao(po)) (2221 | 2122 (195)
'i):(szz)uu — i(ao(p) + ao(po)) (o121 | Hu2)22] (196)
B2 _ i (p) + ao(po)) ($(0211 4 genuz) (g7
221 _ _i(40(p) + ao(po)) (e | a2 (198)
2212 _ (40 p) + ao(po)) (o121 | u2)22] (199)
B4V — —i(ag(p) + ao(po)) [@UV2 + SON] (200
UM _ (00 (p) + ag(po)) (2212 | G2 (201)
(i)g13)2212 — _i(ao(p) + ao(po)) (2212 | H12)221] (202)
L2 — _i(ag(p) + ao(po)) U221y <i>(03)] ; (203)
B2 _ i(p) + ao(po)) [BCV12 4 @(30)] , (204)
BBV i((p) + ao(po)) (121 | @(21)112] . (205)
BBV _ (40 (p) + ao(po)) (121 | @(21)211] . (206)
BBV _ (a0 (p) + ao(po)) [@2D21 Jr(i,(zao)] 7 (207)

(i):())40) = —i(ag(p) + ap(po)) @B, (208)

égﬂ‘l) — —l(ao(p) _i_ao(po))é(og), (209)
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we recall that the lower index 3 refers to the original order of the terms.

9.1.4. Ordern+m=4

This order will produce the expression of the operators to the order 3,
namely, @1 ®(12) $G0) $03) In the ® expansion Egs. (92)-(122)
we have to retain the terms with n +m = 0,1,2,4, and in Eq. (91)
make a development in powers hy ho up to 4, and also take into account
contributions Egs. (194)—(209) obtained from the previous order.

All together, we derive the expression:

[ Eatatedieso—m-& -6 -6

11(00(P) + a0o(po)* [ (20 (p.po) + 8 (p,p0) )

|1 (6)h1(€2)hn (€)ha(€4) + b (61)h1 (€2)ha(€a)hn (€4)

+h1(&1)h2(§2)h1(€3)h1(€4) + ha(&1)h1(€2)h1(€3)h (€4
+h1(&1)h1(&2)ha(&3)h2(84) + ha1(&1)h2(&2)R1(§
+ho(&1)h1(&2)h1(€3)ha(&a) + h1(€1)ha(& 2) 2(&3

(€1)h1(&2)h2(&3)h1(&a) + ha(&1)ha(&2)h1(§

2 1

2%
DN
~—
>
—
—
2%
w
~—
>
[\
—
[l
W
>
[\
—
ey
—
~—
>
[\
—
2%
DN
~—
>
[\
—
i
w
~—
>
—
—
e
S
~—
[E——

0
& (p,po)| (210)
+ar(00(p) + a0(po) &) (p, o, &1)

[1(€0)h1(€2) P (E8)a (€4) + P (€1)ha (€2) 1 (€3)ha(€2)

+h1(&1)h1(&2)h2(&3)h1(&4) + hi(&1)h2(&2)h1(&3)R1(€4)
+h2(&1)h1(&2)h1(€3)h1(€a) + ha(€1)h1(§2)ha(€3)R2(€
+h1(&1)h2(&2)h1(&3)h2(&a) + ha(§1)h1(&2)h2(&3)h1(€4)
+h1(&1)h2(€2)h2(€3)h1(84) + ha(€1)ha(82)h1(€3)h1 (&4
+h1(&1)h2(&2)ha(€3)ha(€a) + ha(&1)h2(§2)h2(&3)h1(&a
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(ao(p) + 0(p0))*®V (p, po, &1)
[na(61)ha(€2)ha (€3)ha(€4) + ha(€1)ha(€2) (€3 (€4)

+ho(€1)h1(&2)h2(83)h1(€a) + ha(§1)ha(€2)h1(€3)h1(&4)

i1 (6o (€2)ha (€5 ha(€1) + ha(E1)h (€2)ha(€s)ha(€0)] (212)

(ao(p) + a0(p0))* @V (p, po, &1, &2)
[11(€0)h(€2)h (E8)ha(€4) + ha(€1)hn (€2)ha (€5 (€4)

+h1(&1)h2(&2)h1(€3)h1 (&4

+ h1(&1)h1(&2)ha(€3)ha(

—~~

h1(&3)ha(

—~

+h1(&1)h2(&2)h1(€3)h2(&4) + ha(€1)h1 (&2

+h1(&1)ha(&2)ha(€3)h1(&4) + h1(€1)ha(&2)h2(83)h2(84)

(213)

(214)

R (€)1 (€2)ha(€s)ha(E4) |
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+ [(i)(22)1122 + i§22)1122i| (p7 Po, 517 527 537 54)
xh1(&1)h1(&2)h2(83)ha2(€4) (217)

+ | @O 1 SEV (p, py, €1, €5, €3, €1)
xh1(&1)h2(&2)h2(€3)h1(€4) (218)
+ [‘_13(22)1212 + <i>§22)1212] (P, p0,&1,62,63,€4)
xh1(&1)h2(&2)h1(&3)ha(€s) (219)

+[@C22112 L I (b £ £, €5, E4)
(&1)h1(&2)h1(&3)h2(&a) (220)

XhQ

+ _§(22)2121 + (i§,22)2121_ (p7 Po, 517 527 537 &4)
xha(&1)h1(&2)h2(83)h1(&4) (221)

+ |22 4 PV (b, po, &1, 2. €0, €4)
xha(&1)h2(&2)h1(&3)h1(€a) (222)

+ [i)(13)1222 + (i§,13)1222i| (p7 Po, 517 527 537 54)
xh1(€1)ha2(&1)h2(€2)h2(€3) (223)

+ @092 1 S (o, &1, 5, €5, €4)
xha(€1)h1(€a)h2(82)h2(€3) (224)
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+ [§(13)2212 + i§13)2212i| (p7 Po, 517 527 537 &4)
Xho(&1)h2(&2)h1(€4)h2(€3) (225)

+ [§(13)2221 + (i)§13)2221] (p7 Po, 517 527 537 54)
xha(&1)ha(&2)h2(83)h1(&4) (226)

+ [@(31)1112 + (i)§)31)1112] (p7 Po, Ela 527 537 54)
xh1(€1)h1(&2)h1(&3)h2(84) (227)

+ [@(31)1121 + (i.é31)1121] (P, Po, &1, 62,83, 64)
Xhi(&1)h1(&2)h2(€a)h1(&3) (228)

+ [‘i>(31)1211 + (i.é:n)mn] (P, Po, &1, 62,83, 64)
Xhi(&1)ha(&a)h1(€2)h1(&3) (229)

+ [@(31)2111 " (i)§31)2111}
(PP, &1, &2, &3, E)ha(E)1 () (E2)hn (&) (230)

+ [&’(40) + ‘igm)} (p7p07£1152153a£4)
xhy1(&1)h1(&2)h1(&3)h1(€a) (231)

+ |:i)(04) + ‘i)§304):| (p7p07£17£2a£3a€4)

xha(€1)ha(€2)ha(€s)ha(80) }. (232)

In the previous formula we collect the terms according to the ordered
appearance of h; and he, they are 16 such combinations. For the
purpose to make the formulas shorter, we introduce the notations:

Q%p,po) = Q%(p, po) + Q2 (p. po)

= %(040(17)+ao(Po))4[<i>§LO)(p,po)+<i>f10)(p,p0) , (233)
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Q(Ol) (p7p07 El) =
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1 00(®) + 00(p0))* 819 (p, po,

Sr(ao(p) + ao(po))?"i’(Ol)(Papo,

51)7
51)7

(234)

(235)

QU (p, po, £1,€2) = = (ao(p) + a0(po))* @2 (p, po, &1, £2), (236)

2

QU2 (p po, &1, €9) = 1(040(27) + ag(po)) 2@V (p, po, €1, &), (237)

QY (p, po. £1,€2) = ~(a0(p) + a0(p0))* BV (p, po. &1, £2),

QO (p, po, &1, &) = 1(010(17) +ao(po))* @ (p, po, &1, &2),

2

2

2

(238)

(239)

and we omit the dependance upon the variables in Egs. (210)—(232)

/ d%¢, d*¢y d*¢3 d*¢, 5(p—
(2m)? (2m)? (2m)2 (2m)2 O

{(i,(22)1122_|_‘i,:())22)1122 _20) _(02) _ (1112 _ (01)

—QU0) 4 Q<0>} hihihahs
n {@(22)1221+<i>§22)1221—9(11)21 _aniz

—QU0) 4 Q<0>} hihahahy
{q)(22)1212 LHEVI2I2_ (121 (112 )(01)

w

= QU 4 QO hyhohihy
{<I>(22)2”2 @(22)2112 (121 _(11)12
= QO+ 0O} hohy
{q,(22)2121 @(22)2121 01121 _ (1112 _ (01)
Q(0>} 2hihahn

{®(22)2211

+& 2)2211 _ ((20) _ ((02) _ (11)21
_ o) +Q(O)}h2h2h1h1

(2
3

_qOn

p0—€1—52—€3—£4)[

(240)

(241)

(242)

(243)

(244)

(245)
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+ {&,(13)1222 + ,_I:,g13)1222 _02) _ oniz _ (01

_ o) 4 Q(O)} hyhohsahs (246)
+ {&)(13)2122 + (i)g13)2122 _02) _(1)21 _ (11)12

— Q) 4 QO hohihohy (247)

T {&,(13)2212 n @5313)2212 _ 02 _ o2
— QO 4 QO hohohihy (248)

+ {@(13)2221 + <i,él?))m?l _02) _ 1121 _ )(01)

— U0 4 Q<O>} hahshahy (249)
i {@(31)1112 4 <i>§31)1112 _20) _ o1z _ (01)

— Qo 4 Q<0>} hihihihs (250)
+ {&,(31)1121 + (i,g31)1121 _ 20) _ 121

— (0 4 Q<0>} hihy hohy (251)
+ {&,(31)1211 + (i,g31)1211 _ 20) _(1)21 _ (11)12

— QU0 4 Q(O)} hihahihy (252)
+ {&,(31)2111 + ,i,g31)2111 _ 0) _ 21 _ (01)

— QU0 4 Q(O)} hohihihy (253)

+ {@40) + 31 _ 0 _ (o) Q(O)} hihihihy  (254)

u

+ {&)(04) + ¢i):())04) _ Q(OQ) _ Q(Ol) + QS))} h2h2h2h2:| ) (255)

In this formula we have to identify the terms ®22Wk with the
corresponding terms X P5H 11 SPM. In the same way I3kl and
$BVUK are identified with 7(13)ijkl and f(gl)ijkl respectively, also,
@10 @0 with 7(40), X (The calculation of the operators X to

the fourth order is in progress). The terms ®3 are given by Eqs. (194)-
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(209). We introduce new definitions

—(1
x\ = XV (plpo),

—(1
x) = X (plpo),

11)% —~(11)25
X! X ”(P\Ellpo)
S(02,(20) _ 5(02),20) (

(21)ijk

pl€1|po),

- _ <@ zjk<p’€1|£2‘p0
< _ %12 zjk<p’€1|£2‘p0

% (03).(30) _ 5(03). 30)(p!£1\€2’170

(12)ijk

—(1)ijkl ==(22)ijkl

X VIR I e |55 ]po),
—(13),(31 13),(31

x 1960 _ x19) )(P’€1\€2’€3|p0)
—(04),(40 04),(40

xO000 _ x4 )(P’€1\€2’€3|p0)

After some calculations, (For all these calculations we have used the
MAPLE software, Waterloo Maple Inc.) we find for the operators of

order 3, (12) $(21) $(30) and $(03).

S22 (p po, &1, €0, €5) = —ao(;?gfi?g( ){

1 1 _ _ _
: [X(22)1221 L2221 20 032221 X(13)2212]
1 —(21)
— 29X
+izgs (@0(p) + ao(po)) |7
+138X 12 gex 1

211 21)121

n 18520112

(30)

+ 90X
(12)221

Y122

4 216X +oux B0 4 1207(03)]

1 _ _ _
530 (@0(®) + ao(0))? [312)((”)12 + 516X 4 7400

n 389X(2°)}

s 3 (1) (1)
i (a0(p) + ao(po) (1445Xu +1837X ) } (256)
$12)212 __ iao(po)
(pap07£17£27£3) ( )+Oé()(p(]){
é 7(22)2121 n 7(22)1212 n X(22)2112 " 7(13)2122 n 7(13)2212}
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+12}TO (a0 (p) + ao(po)) [727(2”2“ s DR 5
246X P22 | o xR | pex 2122 487(03)}

1 9 —(02) —(20) —(11)12
~ 55 (@0(P) + ao(po)) [535X +391X Y 4 552X
n 540X(“>21}
_-4%0(040( ) + ao(po))? (173575}) n 18957&1)) } (257)
SUD12(p po, &1, €9, €3) = %{
% T2 1212 | (N2 | 03)2122 7(13)1222}
‘H%O (00(p) + a0(po)) [787(21)112 L 1gxX L gexpnizn
+144X(12)212 + 2227(12)122 + 667(12)221 + 24Y(30) + 1207(03)}
—ﬁ(ao(p) + ao(po))? [5407(”)12 + 324X 4 764
+404X(2°)}
—iﬁ(ao(p)+a0(pg))3(1504f7(j)+1896Y&1))}, (258)
SCVI2(p py &1, 60, 65) = %{
% b LI LI - COIEE I -CINEE 7(31)1112}
= glo (a0(p) + a0 (o)) [2167(21)112 4138V 2021
oo (D212 | gg12220 | o212 o 05p(30) | 247(03)}
—;To(ao( )+ ao(po)” [516X "2 4 312X 4 389X
+749X(2°)}
—14%0(050( ) + ao(po))® (1445fil)+18377§1)> } (259)
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é(21)121 (pap07 El? EQ? 53) = #I;?O)(I)O){

1 r— _ _ _
: [X(22)1221 n < (221212 +X(22)2121 n < BD1121 +X(31)1211]

+1% (co(p) + ao(po)) [787(21)2” 72X PN ggex P
+72X(12)122 + 1507(12)212 + 787(12)221 + 487(30)]
—ﬁ(ao(p) + ao(po))? [540?“”12 552X M 4 391
+535X %0
_14%0(@0(;)) + ap(po))? (1895?55) + 1735?&”) } (260)
SV (p po, &1, 62, &3) = %{
é 7(22)2112 + 7(22)2211 + 7(22)2121 + 7(31)2111 + 7(31)1211:|
" glo (a0(p) + ao(po)) [2227(21)211 L XN L xpe
Log D22 | gD | (2221 | o0sp(30) | 247(03)}
—;To(ao( ) + ao(po))? [324X(”) + 540X " 4 404x
+764X(20)}
—1Fi0(ag(p) + ao(po))? (189678) + 1504?&”) } (261)
BE0) (p. po, €1, £0, &) = %{Y“O)
+ (a0(p) + ao(po) X — T (a0(p)

+ao(po? X — i (ao(p) + o) PXL ), (262)
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p(03) __ ao(po) (00

PP P8 aO(P)+a0(P0){X

+3 (a0(p) + a0(p0) X = Zfao(p)

+ao(po) X — i (ao(p) + ao(p) XL} (263)

We have checked that the numerical coefficients in front of the
operators X are equal when the symmetry hy < ho is applied, so we

verify through this symmetry the correspondence: ®(12122 , $(21)211
$12)221 _, D112 F12)212 _, $(2D121 §(30) , §(03)

9.2. Expressions of the Scattering Matrices

Once we have calculated the functionals @) up to the order 3, we
are in a position to deduce the expressions of the scattering matrices
which are defined in Section 3. We define a new integration operator

Jm
(n) _ 2,320,/ dQE d? 5/ d? 31 dgﬁn
JV = /d rd°r r2 2n)E @2n)2 " 2 (264)

exp [—i(p—po—&) T —ilp—po—&)-r
—i(a(p) + a(po)) (hi(r) + ha(r))] .

With this operator R(ij) can be written (we give inside brackets the
reference equation of the formulas obtained for ®)

/

R (plpo) = 7VS10) (p, po, £1)h1 (€1)

[ (139)]. (265)
R (plpo) = 7V (p, po, £1)ha(€1)

[ (140)]. (266)
R(ll)(p\po) [ 11)12 (P, P0,&1,&2)h1(&1)h2(€2)

SOV (p, po, 1, €2)ha(€2)n (61)]

[Eq. (190, 191)] (267)
R (plpo) = TP (p, po, &1, &2, €)hy (&1)ha (€2)

[ ( 92)] (268)
R (plpo) = T8 (p, o, &, &1, €2)ha(€1)ha(£2)

[ ( 93)] (269)
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R (plpo) = 7@ [S@N2(p py &1 €5, €3)hy (€1)h1 (€2)ha(£s)

+ RV po €1 €y, €5 (€1)ha(€3)ha(€2)

+@E)AL (. Po,51752,53)h2(53)h1(51)h1(£2)}

[Egs. (259 — 261)] (270)
(plpo) = T | U222 (p, o, &1, &, €3)h2(61)ha(€2) ha (€3)

112212 b0 e £) €3)ho(€1) R (€3)ha(€2)

T2, p07€1,€2,€3)h1<€3)h2(£1)h2(£2):|

[Eq (256 — 258)] (271)

0 (p, po, &1, €2, €3) 1 (€1)ha (€)1 (€3)
2)], (272)
(

) (p, po, €1, €2, &3)ha(€1) ha(€2)ha(€3)
3)] -

R(U)

R™ (plpo) =
[Eq (26
R (plpo) =7 &
[Eq. (26

Using the same notations as in the SPM case, the average [32]
over the surface realizations are given by:

(273)

<R" (p!p ) © R (plpo) >=
ao(p ao{Po

" / ar / A2 expl= (P=P0)-(r=r")] o [(@0(P)+a0(p0)? Wi (r—r)]

{ [7(;) (p, o)

i(ao(p) + ao(po)) [ d%€
i d 0(Po /(27T)2

o X p.po)

i(ao(p) + ao(po)) [ d*¢
_i(ao : o(Po /(2)

W11 (€)(exp' &™) —1>§u<prpo|£>}

Wi (€) (exp' € ") —1>§u<p|po|s>]

1 d2 _ _
1 [ OB wimle) © Bulplpole) | (274
< B (plpo) o R (plpo) >=

—ag(po)ao(p) —(ao(p)+ao(po))? 03/2]

expl
(a0(p) + ao(po)2 7
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“ / a2r / A2r expl=i (P20 (=) gy [(@0 (P +a0(p0)? Waa(r—r)]

{ [X(l) (P, Po

o o § i ' ]
) U O(P); 0(p0))/(SW§QW22(£)(exp1§'("‘”—1)2d(p!po\€>]

o [ o)

_i(ao(P)+a0(po))/ d*¢
2 (2m)?2
1

2
+1 [ Sl € Eapile) © Tutwipole) | (275)

Was (&) (exp' € ") —1>§d<prpoe>]

<R (plpo) © B (plpo) >=
exp[ (a0(p)+a0(p0))?/2(W11 (0)+Wa2(0))]

x /d2m1 d2m2 d2$3 exp—i((P—Po)(ml—ms) exp[—i((P—po)(mz—ms)] %

% eXp[(ao(P)+ao(P0))2(W11(w1*w3)+W22(032*a:3))]

d*¢s d?€ i1 (1 —3)] [i€2(z2—3)]
</ (2 :/ @mp =P o :

2
X / ((;75)32 [(I)(ll 12(17’190»53»51 + & — 53)
+6(11)21(p7p07 51 + €2 — 537 £S)j|
© {5(11)12(1),1)0,53,51 & — &)

+$(11)21(P7 Do, &1+&2—&3, 53)} * Wi1(€3)Waa(€1+8€2—&3), (276)

< B (plpo) © B™ (plpy) >= expl (o) +eom)?/2Wi(0)]

« / Py Py expli PP (@1—22)] oy [(@0(P) a0 (p0))? Wi (@1-2)
d2¢; —
{[ Goe®™ e —e0Win(e)

2
@/ %5(2‘])*(1&4)0,&,—Ez)WH(@)
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d2£ i€1(z1—x2) d2£
+2/ (27r)12 exp!! / (27[.)22 3 (P, Po, &2, &1 — &2)
@6(20) *(p7 Do, 52) El - 62)W11(£2)W11(€1 — 52)} , (277)

< R (plpo) © B (plpo) >= expl- (0@ +oo(m))?/21722(0)]
% /d2cc1d2a:2 exp[’i(p*po)(“’r“’?)] eXp[(Oéo(P)-irOfo(Po))2 Wasa (z1—2)]

2
x{/ a6 3 (P, o, &1, —&1)Wa2 (1)

(2m)?
d%€5 —(02) «
@/ (275)22'@(02) (P, Po, &2, —&2)Wa2(&2)
2 , 265 —
+2/ (C; £)12 explié1 (= 7e2) / ((1275)22‘1’(02) (P, o, &2, &1 — &2)
@‘I)(OQ) (pvp[)a 525 51 - &2)W22(£2)W22(£1 a 52)} ’ (278)

< B (plpo) © B (plpo) >= expl (o(Pioolpo)?/ 20 0)

x /d2m1 2z, exp[ﬂ(P*po)(mrwﬂ} exp[(ao(P)-FaO(Po))QWu(931—002)]

d? ; d?

[6(30)<p7 p075a£27 52) O] ¢(10)*(

+3° (p, po, &2,€, —£2) © 2" (p, po, &)
+6(30) (pa Do, 527 527 5) (10) *(pv Po, 5):| 3 (279)

P, Po, &)
10) *

< B (plpo) © B (plpo) >= expl (o (Pioolpo))?/202:00)

x /d2m1 A x5 exp[ﬂ(P*po)(mrwz)} exp[(ao(P)-FaO(Po))QWn(031—002)]

d? ; d?

[6(03) <p7 Do, Ea £2a _52) © 6(01) *(pv Po, E)

+3® (p,po,&2,&, —&2) © 3 “(p, po, €)
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+$(03) (p7 Do, 527 _525 5) © 6(01) *(pa Do, E):| ) (280)

< B (plpo) © B (plpo) >=
expl— (@0 (P)Fa0(P0))*/2(Wi (0 +W22(0))]

/ Pz expl i(P—Po ‘”]/ 5 €XP €2 7711 (p — po + €)

2
X/(d 5)1 sz(&)[ 12)122(197170,1?*170+E,§1,*51)

+<I>(12)212(

D,po,&1,P — po + &, —&1)
—i—‘b( —(10)*(

12)221
) (P, po, &1, —&1,p — Po + S)} oL

P, Po,P—Po+§)
“ / 2y expl—i€21] xpl(@0(®)Ha0(P0)* Wi (@—e1)] (281)

<R" (P\Po) oR" (p|Po) >=
expl(@0(B) o (o) /2(W11 (0) 4 W22 0)] / Pz expl 1P

d2 i€x —(10
X/(27§ expl€ W11 (p — po + )8 (p,po,p — po + &) ©

d2 —
/ (2 5)1 Waa(&1) ‘I’(12)122(P7P0,P —po+§,&,-&1)

+¢)( 22t (pap07£1’p*p0+£v *51)
—(12)221 *
+31? (P,po,El,—El,P—po-i-f)}

/ Py expl-i€21] expl(@0(P)ao(po) Wi (@—e1)] (282)

< R (plpy) © B (plpo) >=
exp[ (a0(p)+a0(P0))?/2(W11(0)+W22(0))]

—i(p—po)x d2
x/dZ:nexp[ (P—po) ]/(2752

2
) / (d 5)1 Wii(&1) [6(21)112(1771?0,19 —po+& &, &)

expl€® Way (p — po + €)
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+5(21)121

+5(2l)211

(p7p07£17p — Do + €) _El)
(pap0a£17 _Slvp — Do + E)] © 6(01)*(19727071) — Po + E)

< [ P exptieel explenthootmWestoer) (283)

—(01 (21
<R (plpo) © B* (p|po) >=
exp[7(ao(P)+a0(P0))2/2(W11(0)+W22(0))] /de eXp[—i(p—po)a:}

d2 ifx 3
. / (27r§2 expl€el W (p — po + )3 (p.po,p — po + €) ©

2
/%Wu(&) 5(21)112(177170717—170+5,€17—51)

—(21)121
+3CV (p po, &1, p — po + €, —&1)

—(21)211 *
+‘I)( ) (pap07€17_£17p_p0+£)1|

x/d2w1 explié=i] exp[(ao(P)+a0(Po))2W22(w*m1)] . (284)

In these formulas W is given by Eqgs. (4), (9).
To compute the coherent cross-sections we need the following
averages:

—(10
<R )(plpo) >=

20(Po)  [-(@o(p)rrao(p)? /2011 0) / P expli(P—PO)T]
ao(p) + ao(po)

_ a a d*¢
{XS)(p,poH-( o(p)z o(po))/ (27T§22u(P|P05)W11(5)}’ (285)

<R (plpo) >= exp[—(ao(P)-i-ao(Po))2/2W11(0)]

. 2 J—
< [ el iomn [ SEF e —eWin(e). (256)

< BP0 (plpy) >= expl-(eo(P)tao(p)?/2W1(0)]

. 2 2
x/d2rexp[_l(p_p0)"]/gTSIQWn(Sl)/%WH(&)
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6(30) (pv Do, éla £2a _62)‘}'6(30) (p’ Po, 527 El? _52)

" (p,po, &2, —2.61)] (287)

< R"(plpy) >=
(a0 (p) + ao(po))? expl(@0@)+a0(0)*/2(W11 (0)+Wae(0))]

2 2
x/d 7 expl AP~ por]/ d& a6

(2m)?
—(11)12
X [‘1’ (Papo,P—Po+€1,—(P—P0+§2))
3" (p, o, —(p — po + &).p — po + 51)}

xWii(p—po+&1)Wa(p—po+£2), (288)

<R"(plpy) >=
—i(ag(p) + ao(po)) expl— (@0 Fa0(P0)?/2(W11 (0)+ W2 (0))]

2 2
/dZTeXp[ 2i(p—po) /((1275)1 /((;75)2 Wii(p — po + &1)Waz(&2)

12)221
12 (p,po, &1, —&1,p — Po + &2)

x[$

$12212

P, po, &1, P—Po+&2,—€1)
(p Po,P— p0+£27£17_£1):| (289)

F12122

9.3. Applications

As an example of application we take a slab of thickness H = 500 nm,
with an upper rough surface characterized by the parameters: rms
height 01 = 15nm, correlation length {; = 100 nm, and a lower rough
surface: 09 = bnm, ls = 100nm. The permittivity of the successive
media is: g = 1, g = 2.6896 + 70.0075, and €3 = —18.3 4+ ¢0.55.
Incident angles: 6; = 0°, ¢; = 0°, wavelength A\ = 632.8 nm.

The incoherent bistatic cross-sections for the 4 polarization states
as a function of the scattering angle are shown in Fig. 41. The
calculations are performed with 16 Fourier modes. The results are
qualitatively similar to those obtained in the SPM case (see [27] Fig. 4),
we notice for the polarization H — H that the maximum and minimum
are larger. The Fig. 42 shows the enhancement of the backscattering
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Figure 41. Incoherent cross-sections to the order 3 for an incident
polarized wave A\ = 632.8nm. Permittivity of the media: ¢ = 1,

€1 = 2.6896 +0.0075, e = —18.3 4+ 0.55¢. Slab thickness H =
Upper rough surace; height 01 = 15 nm, correlation length [; =

500 nm.
100 nm,

lower rough surface: oo = 5nm, I = 100nm. Angles: 6; = 0°, ¢; = 0°.
Polarizations: V'V (dashed-dotted line), HH (solid line), HV (dashed
line), VH (dotted line). Calculations are done with 16 Fourier modes.
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Figure 42. Incoherent cross-sections contribution to order 2.
Polarization TE-TE (solid line), TM-TM (dashed line).

for & = 0° due to the order 2 contribution, this phenomena was also
observed in the SPM case [27]. In order to get an estimate of the
magnitude of the different order contributions, we show in Fig. 43 the
cross-sections for the different polarizations states according to the
order. We notice that the cross-section values decrease with increasing
order, giving a justification of a perturbative development, although,
no proof of convergence exists. The order 1 polarizations TE-TE,
TM-TM are dominant, the polarizations TE-TM, TM-TE give smaller
contributions and the order 1 and 2 are close. The order 3 polarizations
are 40dB lower compared to order 1 or 2.

In the calculations of the cross-sections the number of Fourier
modes plays a significant role on their magnitude. A calculation with
256 modes at the order 1, is given in Fig. 44, the results show a better
agreement with the SPM case. We have studied the contributions given
by the upper and lower surfaces separately. In Fig. 45 are drawn for
the 4 states of polarization the corresponding cross-sections limited to
order 1, the lower surface contributes less than the upper one for the
polarizations TE-TE, TM-TM, while for TE-TM, TM-TE we observe
the opposite effect.
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Figure 45. Contribution of the order 1 to different polarizations states
due to the upper rough surface (dashed line), the lower surface (solid
line). Same parameters as in Fig. 44.

10. CONCLUSION

In this paper, we have presented very new results on the small-slope
approximation. In the development of the SSA series, we have taken
into account the third-order SPM (small-perturbation method) kernel.
We have generalized the Voronovich ansatz to a layer bounded with two
randomly rough surfaces. The functional introduced by Voronovich is
expanded in a Taylor series in powers of the different heights h; and ho
of the rough surfaces taking into account the translational invariance.
We consider successively the terms of order n +m = 1,2, 3,4 where n
and m are the powers of h; and respectively hs. We have introduced
new terms in the SSA development to consider the coupling between
the two rough surfaces. We have given the complete expressions
of the scattering matrices and the expression of the needed cross-
section for the different polarization states by introducing the Muller
matrices. With this new formulation of the SSA, we have observed the
backscattering enhancement for a slightly rough layer. We also have
performed a comparison between our formulation of the small-slope
approximation (SSA) and the formulation of the small-perturbation
method (SPM) we have developed for different dielectric and metallic
structures. Four types of structure are studied: a rough surface
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separating two infinite media, a slab with upper rough surface and
a lower rough surface, and finally the general case where a slab is
delimited by two rough surfaces. The calculation of the scattering
amplitudes involves a knowledge of the SPM scattering matrices, we
have used those obtained in [26, 27].

We have calculated the scattered intensity up to the order 2 for
the first 3 structures, and up to the order 3 for the last one. The global
form of the intensity spectra for the 4 polarizations states are similar for
both methods, however, some differences exist concerning the maxima
and minima obtained, the SSA has a tendency to increase their values.
In the case of a slab delimited by two rough surfaces, it was difficult
to put in evidence the satellite peaks we observed in the SPM [27].
In fact, the SSA method combines different orders of the SPM, so the
resulting contributions can hidden this effect. Further studies with
more appropriate integration methods are required to address this
issue. The numerical calculation of the intensities is performed by
a FFT method and we have noticed a sensitivity of the results on the
number of Fourier modes which are used.

This type of simulation computation can give some experimental
conditions and specifications to realize highly integrated optical devices
that use metallic or metallo-dielectric nano-scale structures.

APPENDIX

In order to make the paper self-contained we give in the appendices
a summary of the formulas derived in [26] in the case of the small-
perturbation method. Appendix A contains the scattering matrices
for a rough surface separating two semi-infinite media, Appendix B,
for a rough surface on the bottom side of a slab, and Appendix C for
a rough surface on the upper side of a slab.

APPENDIX A. DEFINITION OF THE SCATTERING
MATRICES FOR A SINGLE ROUGH SURFACE

X, (o) =Dio(p0) - [Dio(po)] (A1)

X o (ulpo) =20 Q" (ulpo), (A2)
XO . (ulpilpo) =1 (w) @ (ulpo) + ao(po) @ (ulpo)

—2P(ulp1) - Q (p1|po). (A3)
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where
Q" (ulpo) E—al(gio(poé())(m [ (wfu)) !
L (ulpy) £ M (ufpo) - XV (po)]. (A4)

or explicitly:

Q (ulpo) = (e1 — €0) [Dy(w)] ™t

1

(61 llullllpol| — €0 a1 (u) ar(p)d-po  —ed Koo (u)(@ x ﬁo»)

1
—e2 Ko ai(p) (@ x po)» eo K24 - po

[Dy(po) 7", (A5)

Q@ (ulpo) = L (B ()

ao(po)
(eo s ()l fullpo| — €1 s (wad (o) o e Ko (u)a (p) (i x mz)
—€¢ Koerag(po)(t X po)- 0 K3 a1 (p)i - po
[Dio(po)] ™, (A6)

Pulp1) = (a1(u) — ag(w)) M (ufu)) ' M (ulpy) (A7)
(61 — co) [Dy(w)] -
<||u|||z;| +aa(w)ao(p) @ pr —e; Koo (u) (@ x fn)z>, (AS)

€ 2 Ko ao(p) (4 x p1)- K- p
where
—* (€ Oéo(p()) + €0 Oq(p) 0
D1y(po) = ( 0 ao(po) £ a1(p) ) - (A9)

APPENDIX B. DEFINITION OF THE SCATTERING
MATRICES FOR A SLAB WITH A ROUGH SURFACE
ON THE BOTTOM SIDE

YE:O) (po) = (Vlo(po)+VH2l(po)> {T—kvlo(po) .VHQI(pO)}_17 (B1)

X (plpo) =T )T ) X et 0lp0) - T 00 T o) (B2)
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X7 (plpilpo) =T (p) - T (p) - [ X122, (plp1Ip0)
—a1(p) X (plp1) - TV (p1) - V' (p1) - X2 (p110)
T (po) - T (po). (B3)
(@)

S€1,62

—H (n . —(n
XM (plpo) = exp(i(ai(p) + a1(po) H) Xo0) ., (plpo) ,  (B4)

where we have replaced the permittivities €y by €1, and €1 by €.
The expressions of the other matrices are given by:

In these formulas X are defined in Appendix A and

V" (po) = Dy (po)[Dip(po)] " (B5)
and D1y is defined by (A9).

V"' (po) = exp(2i aa(po) H) Dis (o) [Din(oo)] . (B6)
Do) = (2O G a®) ) B0
Tn) = o) (050" 0) Dol (B8)
T (po) = [T+ Vo) V" (w0)] (B9)

APPENDIX C. DEFINITION OF THE SCATTERING
MATRICES FOR A SLAB WITH A ROUGH SURFACE
ON THE UPPER SIDE

—ba o M (ulu) —H21 M (uu) |
Q " (ulpo) = o (po) [al(u) o) " (u) - a1 (w) + ao(u)
‘ [H1+’0+(u|po) 'XS?O,EI(PO) X aM1+’O_(u|po)

o712 () - (M (ulpo) - XL, (po) +a M (ulpo))]
(Gi
— B MH’M(U\U) —_H21 Ml_’0+(u|u) )
Y (“”’”:[m"‘ " o) + o)

. [M”’“(ulm)ﬂf”l(u) -Ml*’w(“'pl)] - ()
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where @ = £, b = + are the indices related to the direction of
propagation of the waves, — downward, + upward with respect to

z > 0 direction. After some calculations:

Q" (ulpo) = (e1 — e0) [Dp(w)] " -
(61 Z++ — 160 [e5] (u) Oél(po) Ei B —Eg (651 (u) 77 +>
—Eg Ozl(po) é+_ €0 Kg 6++
- [Dio(po)] 1,

Q " (ulpo) = (1 — eo) [Dip(u)]7*-
<el A —cqai(u)ai(po) B (w) BT~ on(u) 7**)

—eg a1(po) G «okiC "
- [Dio(po)l ",
Q" (ulp) = DY)
(60041(PO)Z+1_ —earar(w)ad(po)B T —eiar(u)ar(po)T
—cge10d(po)G ' coKgor(po)C '~
- [D3(po)l ™,
Q@ (ulpo) = D) -
1
(60061(170)2_1_ — 61041(u)04(2)(170)§++ —63041(u)041(170)7+ N
—egela%(pg)é_Jr eoKZ a1 (po)C
- [Do(po) 7,
where
A" = [Jul|llpol| FE (w)FY (po) ,
B"" = F¢(u) Fb(po) @~ Po .
C"" = Ffi(w)Fly(po) - po.
T = F(w)Fh (o) (@ x po)-
G"' = Fgy(u)FY (po) (@ x py)-
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(T ) = (7 ) (1700 7 )

the matrix 7 !0 represents the reflection coefficient of a planar surface
located at z = 0 and separating two media of permittivity €y et €1: (In
[26] Egs. (150), (151) have a misprint.)

X €1 o (Po)—€o 1(po) 0
*(po) = ( “ O‘O(”O)ggoo‘l(m) a0(po) —0 (o) ) (C13)
ao(po)+ai1(po)

v s given by Eq. (B6).
The explicit form of the matrices P s the following:

P (ulpo) = (61 — €0) [Di(w)]

<|u||p||fv+<u>+a1<> o(P)Fy )i —eéKom(u)Fv(u)(axm)z),(014)
o Koo (p)F; @) (@x ) K3Fj ()i py

P (ulpo) = (e1 — €0)[Dyp@)] " -
<|u||p||5v<u>+a1(u>ao<p>Fv+< Jipr —ef Koar @) Fyf @)(4 Xﬁﬂz). (C15)

g
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