
Progress In Electromagnetics Research, PIER 71, 277–294, 2007

SINGLE-SERIES SOLUTION TO THE RADIATION
OF LOOP ANTENNA IN THE PRESENCE OF A
CONDUCTING SPHERE

C. A. Valagiannopoulos

School of Electrical and Computer Engineering
National Technical University of Athens
GR 157–73. Zografou, Athens, Greece

Abstract—A ring source of arbitrary current backed by a perfectly
conducting sphere is analyzed through Green’s function formulation.
The infinite double sum of the Green’s function is written in terms
of a single series by performing a transformation of the coordinate
system. The resulting form is used for the numerical evaluation of the
scattering integral. The operation of the coupled loop–sphere structure
is understood via the discussion of several numerical results.

1. INTRODUCTION

The circular loop antenna is a popular radiator model studied through
a variety of mathematical formulations and computational techniques.
Electric currents on ring antennas have been extensively examined.
In [1] analytical expressions of the near-zone integrals for a loop of
arbitrary current are deduced with use of Lommel expansion. In [2]
Pocklington’s integral equation is formulated and method of moments
is applied for the determination of the current on an arbitrarily large
ring radiator in terms of step-pulse basis functions. Also in [3] exact
series representations and far-zone approximations are given for the
field of a loop with traveling-wave current distribution.

The radiation of loop antennas in the presence of other structures
has also attracted much attention. In [4] two rings with different radii
placed into a radially inhomogeneous cylinder are analyzed with use of
cylindrical vector wave functions. Moreover, [5] provides a study of the
effect of a multilayered chiral cartesian slab on the features of a ring
antenna. A practical application of the model is given in [6] where the
loop radiator is idealized as a magnetic dipole and its radiation between
an anisotropic ionospheric plasma and the sea surface is investigated.
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Finally, Felsen [7] presents a rigorous treatment for a structure with a
ring source and an infinitively long cone which imitates the excitation
of leaky-wave arrays.

Spherical structures are most commonly employed to modify the
operation of the loop antenna. In [8] the magnetostatic theory is used
for the determination of the image of a circular loop current in front of
a permeable sphere. In [9] a complete analysis for a circular antenna
inside a spherical biisotropic medium is provided. Also in [10] the
method of moments is implemented to specify the current distribution
of a circular loop in the presence of a layered chiral sphere. Even a
spheroid scatterer is regarded in [11] where dyadic Green’s functions
are used for investigating the transmitted and reflected waves between
the prolate multilayered spheroid and a radiating thin circular loop
antenna.

In the present work a circular wire with arbitrary current radiates
under the presence of a uniaxial perfectly conducting sphere. Spherical
eigenfunctions, spherical harmonics and their attributes are used for
the derivation of the azimuthal component of the dyadic Green’s
function. The double-series expression of this function is reduced to
single-series form for the special case of a source posed on the axis of the
spherical coordinate system. This property is expanded to have general
validity regardless of the position of the source by a transformation of
the coordinate system. Two successive rotations of the axes make the
general term of the series more complicated but the double sum is
converted into a single one.

The scattering integral is computed and the far-field formulas are
obtained by using the single-series expression of the Green’s function.
After the validation of its formula we compared the time demanded for
the evaluation of both expressions and in average the double-series is
much more time consuming. To this end, a typical three-dimensional
radiation pattern of the antenna is presented and a quite strong far-
field power at the horizontal plane is observed. The variation of this
power is shown with respect to the vertical loop-sphere distance. Many
cases are examined corresponding to different operating frequencies,
different loop radii and different physical dimensions of the sphere.
Specific conclusions are drawn, some of them expected by physical
intuition.

2. MATHEMATICAL FORMULATION

Suppose a spherical coordinate system with geometrical coordinates
(r, θ, φ) and unitary vectors (r̂, θ̂, φ̂). We use it to define an
electromagnetic problem of suppressed harmonic time dependence
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e−iωt inside vacuum area with wavenumber k0. Each of the
unitary vectors alters its direction for moving observation point and
consequently the homogeneous vectorial Helmholtz equation (which is
satisfied by the electromagnetic field) cannot be reduced to a scalar
one. Therefore the three spherical eigenfunctions are employed for the
field representation [12].

Mmn(r, θ, φ) =
√
n(n+ 1)zn(k0r)Cmn(θ, φ) (1)

Nmn(r, θ, φ) = n(n+ 1)
zn(k0r)
k0r

Pmn(θ, φ)

+
√
n(n+ 1)

zd
n(k0r)
k0r

Bmn(θ, φ) (2)

The third vectorial function L is indispensable only in the case
of inhomogeneous materials and is excluded from the current
consideration. The spherical harmonics P,C,B are defined as follows:

Pmn(θ, φ) = r̂eimφPmn(θ) (3)

Cmn(θ, φ) =
eimφ√
n(n+ 1)

(
θ̂
im

sin θ
Pmn(θ) − φ̂P d

mn(θ)
)

(4)

Bmn(θ, φ) =
eimφ√
n(n+ 1)

(
θ̂P d

mn(θ) + φ̂
im

sin θ
Pmn(θ)

)
(5)

where Pmn(θ) is the Legendre function of order m, degree n and
argument cos θ. Its derivative with respect to θ is denoted as P d

mn(θ).
The function zn(k0r) can be either the spherical Bessel jn(k0r) (for
regions including the origin) or the spherical Hankel of the first kind
hn(k0r) (for regions including the infinite) [13]. The Riccati-Bessel
function is defined as: zd

n(k0r) = ∂(k0rzn(k0r))/∂(k0r). In expressions
(3)–(5) a change in the scalar arguments (θ, φ) affects the direction of
the vectors (r̂, θ̂, φ̂).

The spherical eigenfunctions are chosen suitably for easier
application of the curl operator. Hence, the computations for the
Faraday’s or Ampere’s law are carried out directly [14].

∇× Mmn(r, θ, φ) = k0Nmn(r, θ, φ) (6)
∇× Nmn(r, θ, φ) = k0Mmn(r, θ, φ) (7)

As far as the spherical harmonics are concerned, they exhibit certain
orthogonality properties:∫ 2π

0

∫ π

0
Cmn(θ, φ) · Cµν(θ, φ) sin θdθdφ =

4π
2n+ 1

(−1)mδm(−µ)δnν (8)
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0

∫ π

0
Bmn(θ, φ) · Bµν(θ, φ) sin θdθdφ =

4π
2n+1

(−1)mδm(−µ)δnν (9)∫ 2π

0

∫ π

0
Cmn(θ, φ) · Bµν(θ, φ) sin θdθdφ = 0 (10)

where δmn is the Kronecker’s delta. By inspection of (3)–(5), one
can extract the following relations, useful when applying boundary
conditions on spherical surfaces:

r̂ × Pmn(θ, φ) = 0 (11)
r̂ × Cmn(θ, φ) = Bmn(θ, φ) (12)
r̂ × Bmn(θ, φ) = −Cmn(θ, φ) (13)

The orthogonality equations (8)–(10) are valid only for integer
indices, that is why we use the symbol δmn. The parameterm is integer
only when the considered structure is azimuthally entire because a 2π
periodicity for the φ-dependent quantities is demanded. In the same
way when the configuration is θ-entire the parameter n is integer,
otherwise the Legendre functions are singular at θ = 0, π. We are
interested in both φ — and θ — entire constructions. By taking into
account that Pmn(θ) = P d

mn(θ) = 0 for |m| > n and by exploiting
the opposite-order relations of Bessel functions, the value intervals of
integers m,n are restricted. In particular, the linearly independent
terms of the double sums with respect to m,n are only those with
m ∈ [−n, n] and n ∈ [1,+∞). Even though the sum with respect to
m is not infinite, the difficulties of computing a double series for each
field quantity remain.

The preceding formulas are necessary for the analysis of the
investigated device. Consider a perfectly conducting (PEC) sphere
of radius a the center of which coincides with the origin of the
spherical coordinate system. Cartesian (x, y, z) coordinates can be
used alternatively. A thin circular wire, parallel to the horizontal x−y
plane, is located across the edge {r = R0, θ = Θ0} with an external
radius of R0 > a and Θ0 ∈ (0, π). The radius of the loop equals
b = R0 sin Θ0 and I(φ) (in Amperes) stands for the arbitrary azimuthal
function of the line current flowing the wire. The whole structure is
appeared in Fig. 1 and placed inside vacuum area (k0, ζ0). Our purpose
is to find a computationally effective method to evaluate the influence
of the spherical scatterer on the radiation of the loop antenna.

3. DOUBLE-SERIES GREEN’S FUNCTION

Successful treatment of the aforementioned problem requires the
explicit form of the electric-type dyadic Green’s function of the
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Figure 1. The physical configuration of the device. A circular loop
antenna with arbitrary electric current I(φ) and radius b = R0 sin Θ0

is placed at distance d = R0 cos Θ0 above the center of a sphere with
radius a. The sphere is perfectly conducting (PEC) and scatters the
field produced by the antenna.

PEC sphere [15]. This is a matrix that contains the electric field
vectors developed by an infinitesimal electric dipole for all possible
polarizations in the presence of the sphere. The quantities refer to an
observation point (r, θ, φ), while the source is located on the point
(R,Θ,Φ) and has a specific magnitude [15]. As we are interested
for points far from the radiation device, we suppose r > R. The
imposed excitation is azimuthal (loop current) and therefore only
the φ component of the dyadic Green’s function is necessary for the
determination of the scattered field. For this reason the electric field
of a φ-polarized dipole is the only prerequisite to proceed farther.

This vectorial function is denoted by G(r, θ, φ) (the variables
R,Θ and Φ are implicit) and can be readily derived. One can
describe the electric field as weighted double sums of the spherical
eigenfunctions (1),(2) and deduce the magnetic field via (6),(7). By
imposing continuity of the tangential electric and singular discontinuity
(due to the point source) of the tangential magnetic field at r = R,
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the first two boundary conditions are derived. The third one emanates
from the demand for vanishing tangential electric field on the spherical
scatterer at r = a and use of (11)–(13). The arbitrary coefficients of
the sums are specified by projecting the three boundary conditions on
the sets of the spherical harmonics and exploiting the orthogonality
properties (8)–(10). The desired Green’s function for the outer region
r > R is given by

G(r, θ, φ) =
+∞∑
n=1

n∑
m=−n

[
(U0(m,n)+U1(m,n))n(n+1)

hn(k0r)
k0r

Pmn(θ, φ)

+(V0(m,n) + V1(m,n))
√
n(n+ 1)hn(k0r)Cmn(θ, φ)

+(U0(m,n)+U1(m,n))
√
n(n+1)

hd
n(k0r)
k0r

Bmn(θ, φ)

]
(14)

where the weighting coefficients are defined by the following
expressions:

U0(m,n) =m
2n+ 1
n(n+ 1)

(n−m)!
(n+m)!

jdn(k0R)
4πR

Pmn(Θ)
sin Θ

e−imΦ (15)

U1(m,n) = −mj
d
n(k0a)
hd

n(k0a)
2n+ 1
n(n+1)

(n−m)!
(n+m)!

hd
n(k0R)
4πR

Pmn(Θ)
sin Θ

e−imΦ (16)

V0(m,n) = −i 2n+ 1
n(n+ 1)

(n−m)!
(n+m)!

k0jn(k0R)
4π

P d
mn(Θ)e−imΦ (17)

V1(m,n) = i
jn(k0a)
hn(k0a)

2n+ 1
n(n+ 1)

(n−m)!
(n+m)!

k0hn(k0R)
4π

P d
mn(Θ)e−imΦ (18)

The Green’s function in geometric units has dimensions of inverse
length.

4. SINGLE-SERIES GREEN’S FUNCTION

The derived quantity (14) can be used straightforwardly for the
computation of the total electric field in the far region of the antenna.
It would be preferable though to supply an alternative derivation of the
Green’s function to avoid the cumbersome double series calculation.
In this analysis the observation point will be notated with primes
(r′, θ′, φ′), corresponding to a duplicated spherical coordinate system,
just for the sake of generality. If one evaluates the formulas (14)–(18)
for Θ → 0+ (at the primed observation point), only two terms of the
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summation with respect to m will be nonzero (m = ±1). In other
words, due to the following property of the Legendre functions

lim
Θ→0+

Pmn(Θ)
sin Θ

= lim
Θ→0+

P d
mn(Θ) =




1/2 ,m = −1
−n(n+ 1)/2 ,m = 1
0, ,m �= ±1

(19)

the electric field of a dipole posed on the axial direction Θ = 0 (or
the antipodal one Θ = π) is given by a single series (the second sum
contains only two terms). We also suppose Φ = 0 to regard a φ′-
polarized (or alternatively y′-polarized) dipole source posed at height
R on the z′ axis of the primed coordinate system. Its field is given by
the following simplified function G′:

G′(r′, θ′, φ′) =
+∞∑
n=1

[
(U+

0 (n) + U+
1 (n))n(n+ 1)

hn(k0r′)
k0r′

P1n(θ′, φ′)

+(V +
0 (n) + V +

1 (n))
√
n(n+ 1)hn(k0r′)C1n(θ′, φ′)

+(U+
0 (n) + U+

1 (n))
√
n(n+ 1)

hd
n(k0r′)
k0r′

B1n(θ′, φ′)

+U−
0 (n) + U−

1 (n))n(n+ 1)
hn(k0r′)
k0r′

P(−1)n(θ′, φ′)

+(V −
0 (n) + V −

1 (n))
√
n(n+ 1)hn(k0r′)C(−1)n(θ′, φ′)

+ (U−
0 (n) + U−

1 (n))
√
n(n+ 1)

hd
n(k0r′)
k0r′

B(−1)n(θ′, φ′)

]

(20)

The complex coefficients are determined by the pairs of equations
below:

U−
0 (n) = −(2n+ 1)

jdn(k0R)
8πR

U+
0 (n) =

U−
0 (n)

n(n+ 1)
(21)

U−
1 (n) = (2n+ 1)

hd
n(k0R)
8πR

jdn(k0a)
hd

n(k0a)
U+

1 (n) =
U−

1 (n)
n(n+ 1)

(22)

V −
0 (n) = −i(2n+ 1)

k0jn(k0R)
8π

V +
0 (n) = − V −

0 (n)
n(n+ 1)

(23)

V −
1 (n) = i(2n+ 1)

k0hn(k0R)
8π

jn(k0a)
hn(k0a)

V +
1 (n) = − V −

1 (n)
n(n+ 1)

(24)
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5. COORDINATE TRANSFORMATION

Hitherto, the two coordinate systems (unprimed and primed) were not
correlated while primed one was considered as arbitrary. Now, we
define the primed spherical coordinate system as that with respect to
which the electric field of the φ-polarized dipole source at (R,Θ,Φ) is
given by (20). To put it another way, the φ′-polarized source at (R, 0, 0)
produces the field of (14). This procedure is aiming at expressing
(14) as a single series by finding the transformation relations between
the primed system’s parameters (geometrical coordinates and unitary
vectors) and the unprimed ones. To specify the primed coordinate
system, rotate the unprimed with respect to z axis by angle Φ and the
resulting one (call it double primed) with respect to its own y′′ axis by
angle Θ. To this end, the transformation formula connecting the two
sets of cartesian parameters is found instantly [16].
 x′ x̂′

y′ ŷ′

z′ ẑ′


 =


 cos Θ 0 − sin Θ

0 1 0
sin Θ 0 cos Θ


·


 cos Φ sin Φ 0

− sin Φ cos Φ 0
0 0 1


·


 x x̂
y ŷ
z ẑ




(25)
The expressions converting the spherical unitary vectors to cartesian
and vice-versa are well-known.

 x̂ŷ
ẑ


 =


 sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ
cos θ − sin θ 0


 ·



r̂

θ̂

φ̂


 (26)



r̂′

θ̂′

φ̂′


 =


 sin θ′ cosφ′ sin θ′ sinφ′ cos θ′

cos θ′ cosφ′ cos θ′ sinφ′ − sin θ′
− sinφ′ cosφ′ 0


 ·


 x̂′ŷ′
ẑ′


 (27)

To evaluate (27), one should also know the relations defining the
spherical coordinates as functions of the cartesian ones.

r′ =
√
x′2 + y′2 + z′2 = r θ′ = arccos

z′

r′
φ′ = arctan

y′

x′
(28)

It is noticeable that due to the nature of transformation (two successive
spherical rotations with no translation), both the radial coordinate
(r′ = r) and the corresponding unitary vector (r̂′ = r̂) are left
unaltered. The inverse relations of (28) are also needed to express
the Green’s function in spherical coordinates:

x = r cosφ sin θ y = r sin θ sinφ z = r cos θ (29)

By substituting (25)–(29) to (20) the single-series expression of the
requested Green’s function G is deduced.
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6. SCATTERING INTEGRAL

If the single-series formula of G(r, θ, φ) is evaluated at (R = R0,Θ =
Θ0), the final Green’s function required for the computation of the
total electric field is obtained. It is denoted as g(r, θ, φ,Φ) with an
extra azimuthal argument Φ which is the dummy integration variable.
The electric field is given by the following scattering integral [15]:

E(r, θ, φ) = ik0ζ0R0 sin Θ0

∫ 2π

0
g(r, θ, φ,Φ)I(Φ)dΦ (30)

Because of the complicated dependence of the function g on the
variable Φ (due to the successive transformation relations), an analytic
integration in (30) is not possible. For this reason numerical integration
is carried out instead by implementing the trapezoidal rule for F
equispaced points within the interval Φ ∈ (0, 2π). Through this
approach the arbitrary function of the current I(Φ) is integrated
straightforwardly with no need of prior expansion to Fourier series [9].
The basic disadvantage of the proposed method is the computational
cost owed to the numerical integration but such a procedure meets no
difficulty. The integration interval is finite, the integrands are smooth
and without rapid oscillations (for common current distributions I(Φ)).

To investigate the far-field quantities of the loop antenna
under the presence of the spherical scatterer, asymptotic evaluation
of the developed field for k0r → +∞ is required. As the
approximation concerns the radial coordinate which is not affected by
the transformation, the dependencies on r = r′ will be similar to these
in (20). Hence, the following asymptotic expressions can be used:

ihn(k0r), hd
n(k0r) ∼ (−i)n−1 e

ik0r

k0r
e−i π

4 , k0r → +∞ (31)

Thereby the radiated power of the antenna is computed via the
following well-known formula:

S(θ, φ) =
r2

2ζ0
lim

r→+∞

[
|Eθ(r, θ, φ)|2 + |Eφ(r, θ, φ)|2

]
(32)

7. NUMERICAL RESULTS

A set of computer programs has been developed for the calculation
of the far-field patterns of the coupled loop-sphere structure through
the single-series formula obtained from (20). In all the following
examples the infinite sums with respect to n are truncated by keeping
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N terms and the numerical integrations are executed by evaluating the
integrands at F equispaced points. Both parameters are chosen large
enough to achieve convergence for the investigated quantities. As far
as the number of trapezoidal integration points is concerned, a choice
of F = 40 is adequate for all the examined models.

Before presenting the results, it is essential to validate the single-
series formula and check if its values coincide with those of double-
series expression. In Fig. 2 the real part of the azimuthal electric
field is represented as function of the normalized radial distance r
to the radius R0 for three different polar angles θ = π/4, π/3, π/2.
The field exhibits a slowly dumping behavior as the observation point
gets distant from the source. The curves are produced with (20)
and the discrete points with (14). In this example the operating
frequency equals f = 1200 MHz and we suppose a line current located
at Θ0 = π/2 which is constant I(Φ) = 1 A (that is why the azimuthal
angle φ of the observation point is not mentioned). The radius
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Figure 2. Variation of the real part of the dominant φ component of
the total electric field as function of the normalized radial distance for
three different polar angles of observation point. The curves correspond
to the single-series formula and the discrete points to the double-
series one. Plot parameters: R0 = 15 cm, a = 10 cm, Θ0 = π/2,
f = 1200 MHz, I(Φ) = 1 A.
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of the PEC sphere equals to a = 10 cm and the external one’s to
R0 = 15 cm. Each measurement series is normalized by its sample
with maximum magnitude. Only the azimuthal electric component is
depicted because it is dominant, a property imposed by the nature
of the excitation. As it is expected, the results from both formulas
are identical. Similar checks are performed for both parts (real and
imaginary) of all the components, for a variety of input parameters
with the same coincidence.

After validating the single-series expression, it would be
interesting to show how faster the evaluation gets due to its reduced
computational complexity. In Fig. 3 the time gain of using (20) instead
of (14) is presented as function of the truncation upper limit N for
a specific observation point (r = 20 cm, θ = π/4, φ = π/6) and
a constant source point (R = 10 cm, Θ = 4π/5, Φ = 2π/3). The
calculations were carried out on an ATHLON 2 GHz processor and
the results are expressed in db because of the large magnitudes. The
time gain is increasing with N and usually exceeds 50 db (more than
300 times faster). One could point out that if (14) demands a smaller
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Figure 3. Time gain in db of using the single-series formula instead
the double-series formula as function of the number of terms N . Plot
parameters: r = 20 cm, θ = π/4, φ = π/6, R = 10 cm, a = 0.7R0,
Θ = 4π/5, Φ = 2π/3, f = 1600 MHz.
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truncation limit for convergence than (20) does, the comparison shown
in Fig. 3 is unfair. This is not the case as the transformation of the
coordinates does not affect the radial dependencies and therefore the
adequate N for convergence is the same for both formulas. As a rule
of thumb N = 120 terms per wavelength of R0 is sufficient for all the
following examples.

A three-dimensional radiation pattern of the loop-sphere antenna
is presented in Fig. 4 for a nonuniform current distribution I(Φ) =
1 + cos 2Φ A located at Θ0 = π/6. The radii of the structure are
chosen equal to a = 10 cm and R0 = 15 cm combined with an operating
frequency of f = 1000 MHz. It is noticeable that the radiation power
follows the φ dependency of the excitation current. The far-field is
more powerful for θ < π/2 where two local maxima are exhibited,
contrary to the half plane θ > π/2 where the scatterer shadows the
region. The main lobes close to the angle θ = π/2 are flattened
and the radiation intensity is greater there. This property is general
for the range of device parameters we regard: at θ = π/2 local
maxima (which are global sometimes) are recorded. Even though the
radiator possesses an asymmetric pattern with respect to x-y horizontal
plane, the radiation along this surface is an interesting process to
be investigated. Despite the fact that significant portions of power
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Figure 4. Three-dimensional normalized radiation pattern of the loop
antenna backed by a conducting spherical reflector. Plot parameters:
R0 = 15 cm, a = 10 cm, Θ0 = π/6, f = 1000 MHz, I(Φ) = 1+cos 2Φ A.
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are channeled to other directions, the power propagation for the rays
θ = π/2 (which do not essentially correspond to main lobes) is worth
to be examined.

In Fig. 5a constant current I(Φ) = 1 A is supposed (azimuthal
independence) and the radiated power at θ = π/2 is presented as
function of the ratio d/a for a = 6 cm and b/a = 1.1. Four operating
frequencies are considered f = 400, 800, 1200, 1600 MHz and only
positive values of d are regarded due to symmetry with respect to
the observation plane. As it is expected, the fluctuation of the far-field
power with varying d/a becomes greater with increasing frequency.
Furthermore, within the considered spatial range, the peak power
achieved in each case is proportional to the oscillating frequency.
Specifically for the lower one (f = 400 MHz), the response of the
system is almost negligible. One could also notice that for d/a → 0
the power is diminishing for all the operating frequencies. That leads
us to the conclusion that the spherical scatterer disturbs the operation
of the antenna when its center coincides with the center of the loop.

In Fig. 5b the same quantities are depicted as functions of the
same parameters but with a sphere two times larger: a = 12 cm.
The curves for f = 400, 800 MHz of Fig. 5b are identical to those of
Fig. 5a for f = 800, 1600 MHz. That is natural because the electrical
dimensions of the device are the same in the corresponding cases.
The increasing relation between the maximum radiated power and
the frequency indicated by Fig. 5a is not valid for the wider spatial
window shown in Fig. 5b. The magnitude of the far-field oscillations for
f = 800, 1200, 1600 MHz is almost the same and only the frequencies
of the oscillations change.

In Fig. 6a we regard a small sphere of a = 6 cm with f =
1000 MHz. Again the radiated power at θ = π/2 is observed with
respect to d/a for six different normalized radii of the loop: b/a =
0.3, 0.6, 0.9, 1.2, 1.5, 1.8. The current is again constant I(Φ) = 1 A. For
the cases with b < a, only the configurations of d > a are examined,
something imposed by the physical dimensions. It is obvious that when
the ring has smaller radius than the sphere and is located too close to
the spherical surface, the antenna operation fails. Opposite images are
developed in the internal of the scatterer neutralizing the excitation.
Moreover, the response of the radiator is more significant for larger
loops. It is natural because longer wires of constant current produces
more powerful fields. Finally, the blocking effect of the sphere for
d = 0 is attenuated for increasing b/a because the physical radius of
the sphere is reduced compared to the largest dimension of the device.

A similar set of curves for a larger sphere with a = 12 cm is
depicted in Fig. 6b. In the cases of b < a sharper maxima for greater
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Figure 5. Radiation power (in Watts) at the direction θ = π/2 as
function of the vertical position of the ring for four different operating
frequencies. Plot parameters: b/a = 1.1, I(Φ) = 1 A. The radius of
the sphere equals to: (a) a = 6 cm (b) a = 12 cm.
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Figure 6. Radiation power (in Watts) at the direction θ = π/2 as
function of the vertical position of the ring for six different radii of the
loop. Plot parameters: f = 1000 MHz, I(Φ) = 1 A. The radius of the
sphere equals to: (a) a = 6 cm (b) a = 12 cm.
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current loops are noticed, reflecting the impact of the source. Also
the curves corresponding to b/a = 1.2, 1.8 have an reverse dependency
on d/a: when the first is increasing the other is decreasing and vice-
versa. It is thus sensible to suppose that there is a specific ratio
1.2 < b/a < 1.8 (in the particular model) for which zero variation
of the radiation power with respect to d/a is achieved (as if the sphere
was absent). Indeed, the fluctuation of the investigated quantity is
much lesser for b/a = 1.5.

8. CONCLUSIONS

The effect of a perfectly conducting spherical scatterer on the features
of a circular loop antenna with arbitrary current is analyzed. Because
of the nature of the excitation, only the azimuthal component of the
dyadic Green’s function is required which is given in a double-series
expression. Through a transformation of the spherical coordinate
system consisting of two successive rotations, the double sum of the
solution is converted to a single sum. The last expression is less time
consuming than the first one. With use of this effective formula the
radiated power along the horizontal plane is observed. The variation
of this quantity with respect to the relative loop-sphere position is
presented. Various operating frequencies, numerous loop’s radii and
different sphere’s sizes are considered. Some conclusions concerning
the operation of the coupled structure are inferred such as the blocking
effect of the sphere when is located at the center of the loop.

The transformation of the coordinate system simplifying the
expression of the azimuthal Green’s function can be utilized for all
the other components. In this way the proposed method is useful to
obtain the dyadic Green’s function of a conducting sphere in single-
series form. As far as the characteristics of the antenna are concerned,
similar techniques can be utilized for understanding the influence of
permeable multilayered spheres or cylinders on the operation of loop
radiators.
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