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Abstract—The present study brings together two aspects of
electromagnetic theory: the recently discussed low-frequency series
expansions based on the concept of Consistent Maxwell Systems, and
Einstein’s Relativistic Electrodynamics. Combined, this facilitates
the analysis of pertinent low-frequency scattering problems involving
objects moving with arbitrary constant velocities in free space.

The low-frequency series expansions start with leading terms
that are prescribed by solutions of the vector Laplace equation,
thus significantly simplifying the conventional analysis in terms of
the Helmholtz wave equation. The method is demonstrated by
deriving relativistically exact explicit results leading terms for perfectly
conducting circular-cylindrical and spherical scatterers. The results
apply to arbitrary reference frames where the objects are observed
in motion. For simplicity of notation expressions are given in
terms of spatiotemporal coordinates native to the object’s rest-
frame. Subsequent substitution of the Lorentz transformation for the
coordinates is then a straightforward matter.

Previous exact relativistic results for scattering by moving objects
have demonstrated the existence of velocity induced mode coupling. It
is shown that the low-frequency expansions used here display the same
effects for various orders of the partial fields appearing in the series.

1. INTRODUCTION

Einstein’s Special Relativity theory [1] relates the measurement of
electromagnetic fields in relatively moving inertial systems. Thus
using the “frame hopping” method (a term coined by Van Bladel [2]),
whereby boundary value problems are solved in one reference frame
and the fields are then transformed into another one, facilitates the
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discussion of scattering by moving objects. This class of problems has
been comprehensively reviewed, [2], (also citing early results by the
present author), but relativistic electromagnetic scattering is still a
wide open area and new investigations are constantly reported.

Another important class of problems in electromagnetic scattering
involves low-frequency series representations of the scattered fields.
Recently [3] the theory has been based on the Consistent Maxwell
Systems approach, as summarized below. The main feature of the
low-frequency series is the fact that leading terms involve the solution
of the vector Laplace equation, rather than the full blown solutions of
the more complicated vector Helmholtz equation.

Combining these two subjects facilitates the analysis of low-
frequency scattering by moving objects.

1.1. Relativistic Electrodynamics

Einstein’s Relativistic Electrodynamics [1] is based on two main
postulates: The first is the kinematical postulate of the constancy
of c, the speed of light in free space (vacuum), leading to the Lorentz
transformation

r′ = Ũ · (r − vt), t′ = γ
(
t − v · r/c2

)

γ =
(
1 − v2/c2

)−1/2
, Ũ = Ĩ + (γ − 1)v̂v̂, v̂ = v/v, v = |v|

(1)

relating the spatiotemporal coordinates of two relatively moving
inertial reference systems, with v denoting the constant velocity of
the origin of reference system Γ′ as observed from Γ. The role of Ũ is
to multiply coordinates parallel to v by γ. The inverse transformation
is obtained by solving (1), which yields

r = Ũ′ · (r′ − v′t′) , t = γ′ (t′ − v′ · r′/c2
)

v′ = −v, Ũ′ = Ũ, γ′ = γ
(2)

where upon using the notation v′ = −v, the Lorentz transformations
(1), (2), become form-invariant. The second postulate concerns
the dynamics, i.e., the model involving physically measurable fields.
Einstein postulated “the principle of relativity” as he dubbed it, stating
that in both Γ, Γ′, Maxwell’s equations for the electromagnetic field are
form-invariant. In source-free regions we have, for Γ, Γ′, respectively

∂r × E = −∂tB, ∂r × H = ∂tD, ∂r · B = 0, ∂r · D = 0
∂r′ × E′ = −∂t′B′, ∂r′ × H′ = ∂t′D′, ∂r · B′ = 0, ∂r · D′ = 0 (3)

Throughout we consistently use ∂r, ∂r′ , instead of the traditional
∇ symbol, in order to keep track of the coordinates involved [4].
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In (3) and throughout, except where otherwise indicated, the fields
are denoted as functions of the native spatiotemporal coordinates,
compacted by the symbols

Γ = (r, t), Γ′ =
(
r′, t′

)
(4)

i.e., E = E(Γ) = E(r, t), etc., and E′ = E′(Γ′) = E′(r′, t′), etc.. Thus
Γ′[Γ] and Γ[Γ′] can be used to symbolize (1), (2), respectively.

Using the chain rule of calculus, (1) and (2) yield the form-
invariant Lorentz transformations for derivatives

∂r′ = Ũ ·
(
∂r + v∂t/c2

)
, ∂t′ = γ (∂t + v · ∂r)

∂r = Ũ′ ·
(
∂r′ + v′∂t′/c2

)
, ∂t = γ′ (∂t′ + v′ · ∂r′)

(5)

Combining (1)–(5) Einstein [1] derived the field transformation
formulas

E′ = Ṽ · (E + v × B), B′ = Ṽ ·
(
B − v × E/c2

)

D′ = Ṽ ·
(
D + v × H/c2

)
, H′ = Ṽ · (H − v × D) (6)

Ṽ = γĨ + (1 − γ)v̂v̂

where in (6) all the fields are functions of Γ, whether measured in Γ
or Γ′ , i.e., we derive for example E′(Γ) = Ṽ · (E(Γ) + v ×B(Γ)), but
E′(Γ) is the electric field measured in Γ′. The form-invariant inverse
of (6) is

E=Ṽ′ ·(E′+v′×B′) , B=Ṽ′ ·
(
B′ − v′×E′/c2

)
D=Ṽ′ ·

(
D′+v′×H′/c2

)
, H=Ṽ′ ·(H′−v′×D′) , Ṽ′=Ṽ

(7)

with E(Γ′) etc..
The present study assumes free space (vacuum) as the ambient

propagation medium, therefore the exterior of the scattering objects is
characterized by the constitutive relations

D = εE, B = µH, D′ = εE′, B′ = µH′, c = (µε)−1/2 (8)

considerably simplifying the above formulas (6), (7). In a nutshell, this
is the statement of Einstein’s Relativistic Electrodynamics.

1.2. Consistent Maxwell Systems and Low-frequency Series

Low-frequency scattering has been recently discussed [3]. It has
been shown that the Maxwell equations (3) can equivalently be
stated by either of the two sets of so-called Consistent Maxwell
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Systems. Substituting (8) into (3) yields in Γ (or Γ′ with appropriate
apostrophes)

∂r × E = −µ∂tH, ∂r × H = ε∂tE, ∂r · E = 0, ∂r · H = 0 (9)

Further substitution within (9) yields the first Consistent Maxwell
System in the form

(
∂2
r − c−2∂2

t

)
E = 0, ∂r × E = −µ∂tH, ∂r · E = 0, ∂r · H = 0 (10)

Similarly we obtain the second Consistent Maxwell System
(
∂2
r − c−2∂2

t

)
H = 0, ∂r × H = ε∂tE, ∂r · E = 0, ∂r · H = 0 (11)

For time-harmonic fields with a time factor e−iωt, we replace in (10)
and (11)

∂t ⇔ −iω (12)

yielding the time-domain Fourier transformed fields
(
∂2
r + k2

)
E = 0, ∂r × E = iωµH, ∂r · E = 0, ∂r · H = 0(

∂2
r + k2

)
H = 0, ∂r × H = −iωεE, ∂r · E′ = 0, ∂r · H = 0, k = ω/c

(13)
for the first and second Consistent Maxwell Systems, respectively.

The Taylor expansion for a plane wave yields a series in terms of
ascending powers of the location vector r

E(Γ) = êe0e
ik·r, H(Γ) = ĥh0e

ik·r

eik·r = Σ∞
n=0(ik)n

(
k̂ · r̂r

)n
/n!, e0 = E0e

−iωt, h0 = H0e
−iωt(14)

E0/H0 = e0/h0 = Z = (µ0/ε0)
1/2 , êi · ĥi = 0, ê × ĥi = k̂

Inasmuch as the Helmholtz Equations (13) are linear, an arbitrary
solution, in particular the scattered fields Es, Hs, can be represented
as superposition or integral of plane waves, generally propagating in
complex directions specified by a complex contour C, e.g., see [5–10].
The choice of C is dictated by the pertinent geometry of the scatterers
and the associated boundary conditions. Thus we have Taylor series
(14) for the plane waves in the integrand, and upon interchanging
summation and integration, we find, e.g., see [3], for the electric field

Es(Γ) = e0
∫
C eikk̂·rg

(
k̂
)
dΩk̂ = e0Σ∞

n=0(ik)nEn(r)/n!

En(r) =
∫
C g

(
k̂
) (

k̂ · r̂r
)n

dΩk̂

(15)
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where the weighting function g in (15) is usually referred to as the
scattering amplitude.

Accordingly the low-frequency series representations for the
scattered waves, as solutions of the Helmholtz wave equation, can be
represented as series of partial fields in ascending powers of the constant
parameter ik = iω/c

Es(Γ) = e0Σ∞
n=0(ik)nEn(r)/n!, Hs(Γ) = h0Σ∞

n=0(ik)nHn(r)/n!
(16)

as given for the scalar case by Morse and Feshbach [11, p. 1085].
It is very suggestive to consider (16) as power series in k, as done,

e.g., by [12–15]. Some reflection on the structure of (16) reveals that
this is a misconception, because the series (16) involve k only to the
extent that this is the constant parameter appearing in the Helmholtz
equation. A power series proper involves powers of a variable, not a
constant. Consequently we cannot substitute (16) in (8) and equate
equal powers of k.

Instead, the fields (16) must be substituted in the corresponding
Helmholtz equations in (13). The Helmholtz equation is not satisfied
term by term by (16), only by pairs of terms of the pertinent series. To
bring this out, one can re-adjust indices to derive recurrence equations
on the partial fields. Thus from the first line (13) we obtain the first
Consistent Maxwell System for the partial fields

∂2
rEn(r) = n(n− 1)En−2(r), ∂r × En(r) = ikHn(r)

∂r · En(r) = 0, ∂r · Hn(r) = 0 (17)

Similarly, the second Consistent Maxwell System for the partial fields
is

∂2
rHn(r) = n(n− 1)Hn−2(r), ∂r × Hn(r) = −ikEn(r)

∂r · En(r) = 0, ∂r · Hn(r) = 0 (18)

The special feature characteristic of the low-frequency series
expansions is that for the leading terms n = 0, n = 1, the Consistent
Maxwell Systems (17) and (18) prescribe solutions of the vector
Laplace equation, rather than the vector Helmholtz equation.

As a consequence of (17) we have

∂r × ∂r × En(r) = ∂2
rEn(r) = n(n− 1)En−2(r) = ik∂r × Hn(r) (19)

prescribing for the leading terms in first Consistent Maxwell System
∂r × H0(r) − 0, ∂r × H1(r) = 0. Similarly from (18), for the second
Consistent Maxwell System we have

∂r×∂r×Hn(r) = ∂2
rHn(r) = n(n−1)Hn−2(r) = −ik∂r×En(r) (20)

prescribing for the second Consistent Maxwell System ∂r ×E0(r) = 0,
∂r × E1(r) = 0.
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1.3. Vector Solutions of the Helmholtz and Laplace
Equations

The vector Laplace equation is discussed in [11, p. 1784 ff.], and
specifically for spherical coordinates, see [11, p. 1799 ff.]. In view
of the fact that when formally taking k = 0 the vector Helmholtz
equation reduces to the vector Laplace equation, many properties can
be gleaned by mere inspection. Stratton [5, p. 392 ff.] derives three
independent vector solutions for the vector Helmholtz equation based
on the solutions of the scalar Helmholtz equation solution

(
∂2
r + k2

)
C(r) = 0, C = L,M,N

L = ∂rϕ, ∂r · L = ∂2
rϕ = −k2ϕ �= 0, ∂r × L = 0

M = ∂r × âϕ = −â × L, ∂r · M = 0 (21)
kN = ∂r × M, ∂r · N = 0, kM = ∂r × N

where in (21) â is an arbitrary constant unit vector. We thus have a
longitudinal solution L characterized by nonzero-divergence and zero-
curl, and two transverse solutions M, N, with zero-divergence and
nonzero-curl.

For cylindrical coordinates in particular, we can choose the
constant unit vector as ẑ, along the cylindrical axis. Moreover, if the
functions are independent of the z coordinate, then we can choose

M = ẑϕ, ∂r · M = 0,
(
∂2
r + k2

)
M = ẑ

(
∂2
r + k2

)
ϕ = 0

L = ∂rϕ, ∂r · L = ∂2
rϕ = −k2ϕ �= 0, ∂r × L = 0

kN = ∂r × M = ∂r × ẑϕ �= 0, ∂r · N = 0 (22)(
∂2
r + k2

)
kN = k

(
∂2
r + k2

)
∂r × ẑϕ = k∂r ×

[(
∂2
r + k2

)
ẑϕ

]
= 0

∂r × N = ∂r × ∂r × M/k = −∂2
rM/k = kM

As shown below, the special case (22) is of interest for the present
analysis. This solution is usually not given in general references.

The case of spherical coordinates deserves special attention, see
[11, p. 1864 ff.], [5, p. 414 ff.] the latter also citing early work on the
subject. The special solutions involve r, which is a non-constant vector.
The proof is outlined by [5], yielding

(
p2
r + k2

)
C(r) = 0, C = L,M,N

L = ∂rϕ, ∂r · L = ∂2
rϕ = −k2ϕ �= 0, ∂r × L = 0

M = ∂r × rϕ = −r × L, ∂r · M = 0 (23)
kN = ∂r × M, ∂r · N = 0, kM = ∂r × N
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Consider now the vector Laplace equation, which is relevant for
the leading partial wave terms n = 0, n = 1 in (17)–(20). In order
to derive vector solutions in terms of the solutions ϕ of the scalar
Laplace equation, one is tempted to simply assume k → 0 in (21)–(23).
However we run here into inconsistencies resulting from the degeneracy
of the Helmholtz system of solutions [11, p. 1784 ff.].

The upshot is that we have only two independent solutions, with L
merging with one of the transversal solutions, say N. Therefore instead
of (21) we end up with

∂2
rϕ(r) = 0, ∂2

rC(r) = 0, C = L,M,N = L

L = ∂rϕ, ∂r · L = ∂2
rϕ = 0, ∂r × L = 0 (24)

M = ∂r × âϕ = −â × L, ∂r · M = 0

with (24) displaying two zero-divergence solutions, where L is zero-curl
and M is nonzero-curl.

For the vector Laplace equation (22) becomes

M = ẑϕ, ∂r · M = 0, ∂r × M �= 0, ∂2
rM = ẑ∂2

rϕ = 0
L = N = ∂rϕ, ∂r · L = ∂2

rϕ = 0, ∂r × L = 0 (25)

resulting in two zero-divergence solutions, with one nonzero-curl
solution M, and zero-curl solution L.

As indicated [11, p. 1799 ff.], for spherical coordinates the solution
of the vector Laplace equation follows from (23). Similarly to (24) we
now have

∂2
rϕ

µ
ν (r) = 0, ∂2

rC
µ
ν (r) = 0, Cµ

ν = Lµν , Mµ
ν , Nµ

ν = Lµν
Lµν (r) = ∂rϕ

µ
ν (r), ∂r · Lµν (r) = ∂2

rϕ
µ
ν (r) = 0, ∂r × Lµν (r) = 0

Mµ
ν (r) = ∂r × rϕµν (r) = −r × Lµν (r), ∂r · Mµ

ν (r) = 0 (26)
∂r × Mµ

ν (r) �= 0, ϕµν (r) = ϕµν (r, θ, ψ) = r−ν−1Y µ
ν (r̂)

Y µ
ν (r̂) = Y µ

ν (θ, ψ) = Pµ
ν (Cθ)Rµψ, Rµψ = Cµψ, Sµψ

with ϕµν denoting solutions of the scalar Laplace equation in spherical
coordinates, in terms of associated Legendre functions Pµ

ν , and where
Rµψ are linear combination of the trigonometric azimuthal functions
Cµψ, Sµψ. Thusly by operations on the solutions of the scalar Laplace
equation, nonzero-curl and zero-curl vector solutions are generated,
both types possess zero-divergence.

2. STATEMENT OF THE SCATTERING PROBLEM

The scattering problem in the present case involves two main aspects:
Firstly we have the problem of relativistically transforming the given
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incident wave from the “laboratory” reference frame Γ into the “co-
moving” frame Γ′ where the scatterer is at rest. Secondly we have to
address the scattering problem in Γ′, using the low-frequency series
representations. Finally we have to implement the “frame hopping”
scheme in the reverse direction and transform the scattered fields back
into Γ.

As already mentioned, the scattered fields measured in Γ will
be left in terms of Γ′ coordinates. There is no point in substituting
the Lorentz transformations at this stage and deriving everything in
terms of Γ coordinates, because the result is cumbersome and totally
non transparent. The subject will be better served if the latter step
is understood, but only implemented when actual calculations are
contemplated.

2.1. Relativistic Considerations

A plane time-harmonic incident wave (14) is assumed in Γ. The
transformation of plane waves from one inertial system to another is
elementary [1, 2, 4, 7]. By exploiting (6), we derive in Γ′ an expression
given in terms of Γ coordinates

E′(Γ) = ê′e′0e
ik·r, H′(Γ) = ĥ′h′0e

ik·r, e′0 = E′
0e

−iωt, h′0 = H ′
0e

−iωt

E′
0/H

′
0 = e′0/h

′
0 = Z = (µ0/ε0)

1/2 , ê′i · ĥ′
i = 0, ê′ × ĥ′

i = k̂′

(27)
The plane wave is unique in that it can be represented also in Γ′ as
a form invariant expression, i.e., once again in a time-harmonic plane
wave of the form (14), with the appropriate apostrophes

E′(Γ′) = ê′e′0e
ik′·r′ , H′(Γ′) = ĥ′h′0e

ik′·r′

eik
′·r′ = Σ∞

n=0(ik
′)n

(
k̂′ · r̂′r′

)n
/n!, k̂′ · r̂′ = Cψ′ , e′0 = E′

0e
−iω′t′ ,

h′0 = H ′
0e

−iω′t′

(28)
The transformation from (27) into (28) is performed by substituting
(2) in (27) and defining in Γ′ the new wave parameters according to

k′ = Ũ ·
(
k − vω/c2

)
, k = Ũ ·

(
k′ − v′ω′/c2

)
ω′ = γ(ω − v · k), ω = γ (ω′ − v′ · k′) (29)

often referred to as the relativistic Fresnel Drag Effect and the
relativistic Doppler Effect, respectively. We have thus used the so-
called principle of phase invariance k′ · r′ − ω′t′ = k · r − ωt.

Retracing the argument (14)–(16), it follows from (28) that in Γ′
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we now have for the scattered fields

E′
s(Γ

′) = e′0Σ
∞
n=0(ik

′)nE′
n(r

′)/n!, Hs(Γ′) = h′0Σ
∞
n=0(ik

′)nH′
n(r

′)/n!
(30)

As an alternative to (6), one can substitute from the Maxwell
equations (3) into (6), (7), deriving transformation differential
operators [7, 16, 17]

E′(Γ) = W̃ · E(Γ), H′(Γ) = W̃ · H(Γ)

E(Γ′) = W̃′ · E′(Γ′), H(Γ′) = W̃′ · H′(Γ′)

W̃ = Ṽ ·
(
Ĩ − v × ∂−1

t ∂r × Ĩ
)

= Ṽ ·
(
Ĩ + βv̂ × ∂r × Ĩ/(ik)

)
(31)

W̃′ = Ṽ ·
(
Ĩ − v′ × ∂−1

t′ ∂r′ × Ĩ
)

= Ṽ ·
(
Ĩ + βv̂ × ∂r′ × Ĩ/(ik′)

)

= Ṽ ·
(
Ĩ − βv̂ × ∂r′ × Ĩ/(ik′)

)
, β = v/c

where in (31) ∂−1
t indicates the primitive integral with respect to

time, or equivalently, upon multiplying by ∂t we obtain ∂tW̃ =
Ṽ ·

(
∂tĨ − v × ∂r × Ĩ

)
etc.. This compact operator representation is

convenient for analyzing the scattering problems at hand.
Substitution from (16), (17), into (6), shows that for the partial

waves associated with the first Consistent Maxwell System we have

E′
s(Γ) = Ṽ · (Es(Γ) + µv × Hs(Γ)) = e0Σ∞

n=0(ik)nW̃ · En(r)/n!

H′
s(Γ) = Ṽ · (Hs(Γ) − εv × Es(Γ)) (32)

Similarly, substituting from (16), (18), into (6), yields in terms of the
second Consistent Maxwell System partial waves

H′
s(Γ) = Ṽ · (Hs(Γ) − εv × Es(Γ)) = h0Σ∞

n=0(ik)nW̃ · Hn(r)/n!

E′
s(Γ) = Ṽ · (Es(Γ) + µv × Hs(Γ)) (33)

where it is noted that in (32), (33), the use of the operator W̃ is
limited to one of the fields only. The inverse relations follow in an
obvious manner, yielding

Es(Γ′) = Ṽ·
(
E′
s(Γ

′)+µv′×H′
s(Γ

′)
)
=e′0Σ

∞
n=0(ik

′)nW̃′ · E′
0(r

′)/n!

Hs(Γ′) = Ṽ·
(
H′
s(Γ

′)−εv′×E′
s(Γ

′)
)

Hs(Γ′) = Ṽ·
(
H′
s(Γ

′)−εv′×E′
s(Γ

′)
)
=h′0Σ

∞
n=0(ik

′)nW̃′ · H′
n(r)/n! (34)

Es(Γ′) = Ṽ·
(
E′
s(Γ

′)+µv′×H′
s(Γ

′)
)
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where in (34) the first two lines, the last two lines, apply to the first,
second, Consistent Maxwell System, respectively.

Some manipulation of indices in (34) yields for the first Consistent
Maxwell System

Es(Γ′) = Ṽ ·
(
Ĩ − βv̂ × ∂r′ × Ĩ/(ik′)

)
e′0Σ

∞
n=0(ik

′)nE′
n(r

′)/n!

= e′0Σ
∞
n=0(ik

′)nṼ·E′
n(r

′)/n!−γβe′0Σ
∞
n=0(ik

′)n−1v̂×∂r′×E′
n(r

′)/n!

= e′0Σ
∞
n=0((ik

′)n−1/n!)
[
nṼ · E′

n−1(r
′) − γβv̂ × ∂r′ × E′

n(r
′)

]

(35)

and the analogous expression for Hs(Γ′) follows in an obvious manner.
It has been shown previously [18] that velocity-dependent scattering
is characterized by multipole mode-coupling. In (35) it is seen that
for the low-frequency representation the same effect, in terms of the
partial fields modes, appears again, i.e., the velocity couples terms of
indices n and n− 1.

2.2. Scattering by Objects at Rest

We are now in Γ′, where the scatterer is at rest, excited by a time
harmonic plane wave (28). Thus the “frame hopping” approach
reduced the boundary value problem to the usual one for objects at
rest.

The total fields in the exterior domain, denoted by E′
T , H′

T , are
the sum of the incident fields E′, H′, in (28), and the scattered fields
E′
s, H′

s. Together with E′
in, H′

in, in the interior domain, the boundary
conditions for the tangential components of the fields prescribe

n̂′ × (E′
T − E′

in) = 0|S′ , n̂′ × (H′
T − H′

in) = 0|S′

E′
T = E′ + E′

s, H′
T = H′ + H′

s
(36)

on the surface S′, which together with its associated outwardly directed
unit normal vector n̂′ defines the scatterer’s geometry in Γ′. It is
important to note that in view of the linearity of the problem (36)
applies to individual terms of the low-frequency series as well.

For simplicity, the present discussion is limited to perfectly
conducting objects hence the internal fields vanish, leaving us with

n̂′ × E′
T = 0|S′ (37)

and for circular-cylinders and spheres of radius a, the surface S′ is
defined by r′ = a, and n̂′ = r̂′. As far as low-frequency series and
relativistic scattering considerations are involved, these simplifications
do not affect the generality of the present discussion.
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3. SCATTERING BY MOVING CYLINDERS AND
SPHERES

3.1. Scattering by a Moving Cylinder, Leading Terms

Scattering by a perfectly conducting moving circular cylinder, at rest
in Γ′, has been investigated before [2–4, 16, 18]. Here the emphasis
is placed on the fields expressed in terms of the low-frequency series
expansions. In Γ, the incident time harmonic plane wave (14) is now
specialized to ê polarized along the cylindrical axis ẑ and propagating
in the k = x̂ direction.

In order to have a simple example of velocity-dependent scattering,
we choose

v̂ = x̂ = x̂′ (38)

It follows that the transformed wave (28) observed in Γ′ is given
by

E′(Γ′) = ẑ′e′0e
ik′x̂′·r′ , H′(Γ′) = −ŷ′h′0e

ik′x̂′·r′ , x̂′ = x̂, ŷ′ = ŷ, ẑ′ = ẑ

eik
′x̂′·r′ =Σ∞

n=0(ik
′)n(x̂′ · r̂′r′)n/n!=Σ∞

n=0(ik
′)n

(
r′Cψ′

)n
/n!, Cψ′ =cosψ′

(39)
with ψ′ in (39) denoting the azimuthal angle, and r̂′ pointing away
from the cylindrical axis.

For perfectly conducting circular cylinders and E′ polarization as
in (39), we choose nonzero-curl solutions M for the vector Laplace
equation in two-dimensional geometries as in (25), with the appropriate
apostrophes. This solution is required according to (17), (18), for the
terms n = 0, n = 1.

The term n = 0 in (39) prescribes a solution of the Laplace
equation in cylindrical coordinates which is independent of ψ′.
Therefore the nonzero-curl solution is

E′
s,0(Γ

′) = e′0E
′
0(r

′), E′
0(r

′) = ẑϕ′
0(r

′) = ẑ′A0 ln(k′r′)
∂2
r′E

′
0(r

′) = 0, ∂r′ · E′
0(r

′) = 0, ∂r′ × E′
0(r

′) �= 0
(40)

On the surface r′ = a, (37) prescribes

A0 = −1/ ln(k′a), E′
0(r

′) = −ẑ′ ln(k′r′)/ ln(k′a) (41)

In accordance with (17) (with apostrophes), the associated partial
magnetic field is given by

H′
0(r

′) = ∂r′ × E′
0(r

′)/(ik′) = ẑ′ × ∂r′ ln(k′r′)/(ik′ ln(k′a))

= ψ̂′/
(
ik′r′ ln(k′a)

)
, (42)

H′
s,0(Γ

′) = ∂r′ × E′
s,0(Γ

′)/(Zik′) = h′0H
′
0(r

′)
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with the usual notation of ψ̂′ pointing in the direction of increasing ψ′.
The corresponding zero-curl solutions (with apostrophes) in (25)

that is independent of ψ′ is given by the radial field proportional to

∂r′ϕ
′
0(r

′) = ∂r′ ln(k′r′) = r̂′/r′ (43)

Obviously the r̂′ component in (43) is perpendicular to the tangential
boundary conditions (36), (37), and cannot be compensated by the
ẑ′-direction components of the incident wave (39). It must be born
in mind that equations satisfying the boundary conditions are the
mechanism creating the scattered fields, therefore the solution (43)
is extraneous to our problem and should be ignored.

From (34), and substituting (40), (42), the scattered field in Γ is
obtained as

Es,0(Γ′) = −ẑ′e′0γ
[
ln(k′r′) + βCψ′/(ik′r′)

]
/ ln(k′a)

∂2
r′Es,0(Γ′) = 0, ∂r′ · Es,0(Γ′) = 0, ∂r′ × Es,0(Γ′) �= 0

(44)

also a solution of the vector Laplace equation with vanishing divergence
and nonzerocurl. Similarly to (35), in (43) the velocity effect term
with factor β is a dipole term, demonstrating the mode-coupling effect.
Once again it is emphasized that Es,0(Γ′) is the field measured in Γ,
but expressed in terms of Γ′ native coordinates.

The associated magnetic field in Γ, is derived from (34) , (40),
(42) in the form

Hs,0(Γ′) = Ṽ ·
(
H′
s,0(Γ

′) − εv′ × E′
s,0(Γ

′)
)

= h′0Ṽ ·
(
ψ̂′/(ik′r′) + βŷ′ ln(k′r′)

)
/ ln(k′a) (45)

ŷ′ = r̂′Sψ′ + ψ̂′Cψ′ , Sψ′ = sinψ′

The term n = 1 in (28) involves r′Cψ′ , hence Cψ′ must appear
in the scattered wave in order for the boundary condition (37) to be
satisfied. Similarly to (43), the zero-curl solution derived from (25)
having Cψ′ as a factor is proportional to

∂r′ϕ
′
1(r

′) = ∂r′
(
Cψ′/r′

)
= −

(
r̂′Cψ′ + ψ̂′Sψ′

)
/r′2 (46)

A similar solution is obtained for ϕ′
1 = Sϕ′/r′. Both solutions are

inadequate for compensating the incident field (39) in the ẑ′ direction
according to (37).

On the other hand the nonzero-curl solution prescribed by (25) is

E′
s,1(Γ

′) = ẑ′e′0ik
′ϕ′

1(r
′) = ẑA1e

′
0ik

′Cψ′/r′, A1 = −a2

∂2
r′E

′
s,1(Γ

′) = 0, ∂r′ · E′
s,1(Γ

′) = 0, ∂r′ × E′
s,1(Γ

′) �= 0
(47)
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with the value of A1 in (47) prescribed by (37).
The associated magnetic field is derived from (17)

H′
s,1(Γ

′) = ∂r′ × E′
s,1(Γ

′)/(Zik′)

= −h′0a2∂r′ ×
(
ẑCψ′/r′

)
=h′0(a/r

′)2
(
r̂′Sψ′−ψ̂′Cψ′

)
(48)

∂2
r′H

′
s,1(Γ

′) = 0, ∂r′ · H′
s,1(Γ

′) = 0, ∂r′ × H′
s,1(Γ

′) = 0

The analog of (44) for the present case is

Es,1(Γ′) = −ẑe′0γa
2
(
ik′Cψ′/r′ + βC2ψ′/r′2

)

∂2
r′Es,1(Γ′) = 0, ∂r′ · Es,1(Γ′) = 0, ∂r′ × Es,1(Γ′) �= 0

(49)

where the velocity effects adds a quadrupole term to the velocity
independent dipole.

The associated magnetic field, the analog of (45), is now derived
according to (34)

Hs,1(Γ′) = Ṽ ·
(
H′
s,1(Γ

′) − εv′ × E′
s,1(Γ

′)
)

= h′0Ṽ ·
(
(a/r′)2

(
r̂′Sψ′ − ψ̂′Cψ′

)
+ βŷ′a2ik′Cψ′/r′

) (50)

For an excitation wave with the magnetic field polarized along ẑ,
(39) is replaced by

H′(Γ′) = ẑh′0e
ik′x̂′·r′ , E′(Γ′) = ŷ′e′0e

ik′x̂′·r′ =
(
r̂′Sψ′ + ψ̂′Cψ′

)
e′0e

ik′x̂′·r′

eik
′x̂′·r′ = Σ∞

n=0(ik
′)n

(
x̂′ · r̂r′

)n
/n! = Σ∞

n=0(ik
′)n

(
r′Cψ′

)n
/n! (51)

The analog of (40) for the second Consistent Maxwell System (18)
for n = 0 and nonzero-curl solutions of the type (25) is

H′
s,0(Γ

′) = h′0H
′
0(r

′), H′
0(r

′) = ẑ′ϕ′
0(r

′) = ẑ′B0 ln(k′r′)
∂2
r′H

′
0(r

′) = 0, ∂r′ · H′
0(r

′) = 0, ∂r′ × H′
0(r

′) �= 0
(52)

The associated electric field is the analog of (42)

E′
s,0(Γ

′)=−
(
e′0/k

′
0

)
∂r′×H′

s,0(Γ
′)/(ik′)=−e′0∂r′ × ẑ′B0 ln(k′r′)/(ik′)

= e′0B0ẑ′ × ∂r′ ln(k′r′)/(ik′) = e′0B0ψ̂
′/(ik′r′) (53)

∂2
r′E

′
s,0(Γ

′) = 0, ∂r′ · E′
s,0(Γ

′) = 0, ∂r′ × E′
s,0(Γ

′) = 0

Presently the boundary condition (37) for the perfectly conducting
cylinder, is specified on the tangential component of the associated
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electric field in (51). Inasmuch as (51) for n = 0 possesses a factor
ψ̂′Cψ′ which is missing in (53), we conclude that B0 = 0 must
be assumed, i.e., the monopole term solution does not exist in this
problem.

We therefore consider the next multipole term, namely the dipole-
type field H′

s,1(Γ
′), analogous to (47)

H′
s,1(Γ

′) = ẑ′h′0ϕ
′
1(r

′) = ẑh′0B1Cψ′/r′

∂2
r′H

′
s,1(Γ

′) = 0, ∂r′ · H′
s,1(Γ

′) = 0, ∂r′ × H′
s,1(Γ

′) �= 0
(54)

and its associated electric field E′
s,1(Γ

′), the analog of (48)

E′
s,1(Γ

′) = −
(
e′0/h

′
0

)
∂r′ × H′

s,1(Γ
′)/ik′ = −e′0B1∂r′ ×

(
ẑ′Cψ′/r′

)

= e′0B1ẑ′ × ∂r′
(
Cψ′/r′

)
= −e′0B1ẑ′ ×

(
r̂′Cψ′ + ψ̂′Sψ′

)
/r′2

= e′0B1

(
r̂′Sψ′ − ψ̂′Cψ′

)
/r′2 (55)

∂2
r′E

′
s,1(Γ

′) = 0, ∂r′ · E′
s,1(Γ

′) = 0, ∂r′ × E′
σ,1(Γ

′) = 0

Subject to (37), (51), for n = 0, and (55) we find

B1 = a2 (56)

We also make the observation that the zero-curl solution according
to (25), proportional to

∂r′ϕ
′
1(r

′) = ∂r′
(
Cψ′/r′

)
= −

(
r̂′Cψ′ + ψ̂′Sψ′

)
/r′2 (57)

is inadequate for compensating the n = 0 or n = 1 electric field terms
in (39), according to (37). Similarly the magnetic zero-curl solution is
inadequate for compensating the n = 0 or n = 1 electric field terms in
(51), according to (37), because the zero-curl property means in (57)
that we do not have an associated electric field.

The transformation of (54) back to Γ is once again prescribed by
(34). Accordingly we obtain for the scattered electric field

Hs,1(Γ′) = W̃′ · H′
s,1(Γ

′) = Ṽ ·
(
Ĩ − βv̂ × ∂r′ × Ĩ/(ik′)

)
· H′

s,1(Γ
′)

= γh′0a
2
(
ẑ′ik′Cψ′/r′ + βv̂ ×

(
ψ̂′Cψ′ − r̂′Sψ′

)
/ik′r′2

)

= ẑγh′0a
2
(
ik′Cψ′/r′ + βC2ψ′/

(
ik′r′2

))
(58)

∂2
r′Hs,1 = 0, ∂r′ · Hs,1 = 0, ∂r′ × Hσ,1 �= 0
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Once again (58) displays mode coupling, in terms of Γ′ coordinates,
where in the first line the first and second terms in parentheses
correspond to a dipole and a quadrupole, respectively. Transformation
of the associated electric field (55) is prescribed by (34), and constitutes
the analog of (45) in the form

Es,1(Γ′) = Ṽ ·
(
E′
s,1(Γ

′) + µv′ × H′
s,1(Γ

′)
)

= Ṽ · a2e′0
((

r̂′Sψ′ −ψ′Cψ′
)
/r′2 − µv × ẑh′0/e

′
0Cψ′/r′

)

= Ṽ · a2e′0
((

r̂′Sψ′ − ψ̂′Cψ′
)
/r′2 + βŷ′Cψ′/r′

)
(59)

With this we end the discussion on scattering by a cylinder. As
commented above, for brevity the last step of substituting (1) in order
to express results explicitly in terms of Γ native coordinates Γ is left
for mathematical simulations.

3.2. Scattering by a Moving Sphere, Leading Terms

The present analysis, in terms of spherical solutions of the Laplace
equation, is similar to the cylindrical case. As in (39) the incident
plane wave is propagating in the k′ = x̂′ direction, and is polarized
along the spherical polar axis ẑ′, with r̂′ denoting now the spherical
radius unit vector. Hence we have

E′(Γ′) = ẑ′e′0e
ik′x̂′·r′=

(
r̂′Cθ′−θ̂′Sθ′

)
e′0e

ik′x̂′·r′ , H(Γ′)=−ŷ′h′0e
ik′x̂′·r′

eik
′x̂′·r′ = Σ∞

n=0(ik
′)n

(
x̂′ · r̂′r′

)n
/n! = Σ∞

n=0(ik
′)n

(
r′Sθ′Cψ′

)n
/n! (60)

r̂′ = x̂′Sθ′Cψ′ + ŷ′Sθ′Sψ′ + ẑ′Cθ′

with θ′ in (60) denoting the polar angle, subtended by ẑ′ and r̂′, with
θ̂′ pointing in the direction of increasing θ′, and with ψ′ standing for
the azimuthal angle, as commonly denoted.

Here too the scatterer is chosen as a perfectly conducting sphere,
hence similarly to the case of the circular cylinder, the boundary
condition (37) prescribes that at the surface r′ = a the total tangential
electric field vanishes.

Consider the solutions ν = 0, µ = 0 of (26). In analogy with (43),
the radial lowest order zero-curl solution, proportional to

∂r′ϕ
′0
0 = ∂r′

(
1/r′

)
= −r̂′/r′2 (61)

cannot be involved with the boundary condition (37) regarding
tangential fields. The associated M′0

0 is identically zero.
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In (26), the next term in the hierarchy is ν = 1, µ = 0, yielding
the nonzero-curl solution of the vector Laplace equation

M′0
1 (r′) = −r′ × ∂r′ϕ

′0
1 (r′) = −r′ × ∂r′

(
Cθ′/r

′2
)

= r′ ×
(
r̂′2Cθ′ + θ̂′Sθ′

)
/r′3 = ψ̂′Sθ′/r′

2, ∂r′ × M′0
1 (r′) �= 0

(62)

Obviously we cannot choose (62) to describe the scattered electric field
excited by (60), because it is pointing in the azimuthal direction ψ̂′,
and hence cannot compensate for the electric field, as prescribed by
(37). On the other hand, using the second Consistent Maxwell System
(18) with (30), and the magnetic field prescribed by (62), we derive for
the magnetic field and the associated electric field

H′
s,1(Γ

′) = B1h
′
0ik

′H′
1(r

′) = B1h
′
0ik

′M′0
1 (r′) = ψ̂′B1h

′
0ik

′Sθ′/r
′2

E′
1(r

′) = −∂r′ × H′
1(r

′)/ik′ = −
(
r̂′2Sθ′ + θ̂′Sθ′

)
/

(
ik′r′3

)

E′
s,1(Γ

′) = −e′0B1

(
r̂′2Cθ′ + θ̂′Sθ′

)
/r′3 (63)

∂2
r′H

′
s,1(Γ

′) = 0, ∂r′ · H′
s,1(Γ

′) = 0, ∂r′ × H′
s,1(Γ

′) �= 0

∂2
r′E

′
s,1(Γ

′) = 0, ∂r′ · E′
s,1(Γ

′) = 0, ∂r′ × E′
s,1(Γ

′) = 0

Application of the boundary condition (37) to the sum of the tangential
electric fields of (60) for n = 0 and (63) yields

B1 = −a3 (64)

The transformation tion of H′
s,1 in (63), (64), back into Γ is the

analog of (58), once again prescribed by (34). Accordingly we obtain
for the scattered electric field

Hs,1(Γ′) = h′0a
3Ṽ ·

(
−ψ̂′ik′Sθ′/r

′2 + βv̂ ×
(
r̂′2Cθ′/r′

3 + θ̂′Sθ′/r′
3
))

v̂ = x̂ = r̂′Sθ′Cψ′ + θ̂′Cθ′Cψ′ − ψ̂′Sψ′ (65)

Using (63), (64), and the transformation prescribed by (34), the
analog of (59) is derived

Es,1(Γ′) = Ṽ ·
(
E′
s,1(Γ

′) + µv′ × H′
s,1(Γ

′)
)

= Ṽ · e′0a3
((

r̂′2Cθ′ + θ̂′Sθ′
)
/r′3 + βv̂ × ψ̂′ik′Sθ′/r

′2
)

(66)

v̂ × ψ̂′ = x̂ × ψ̂′ = −θ̂′Sθ′Cψ′ + r̂′Cθ′Cψ′
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For completeness consider the incident wave with the magnetic
field polarized along ẑ′. Instead of (60) we now have

H′(Γ′) = ẑ′h0e
ik′x̂′·r′ =

(
r̂′Cθ′ − θ̂′Sθ′

)
h′0e

ik′x̂′·r′

E′(Γ′) = ŷ′e′0e
ik′x̂′·r′ =

(
r̂′Sθ′Sψ′ + θ̂′Cθ′Sψ′ + ψ̂′Cψ′

)
e′0e

ik′x̂′·r′(67)

eik
′x̂′·r′ = Σ∞

n=0(ik
′)n

(
x̂′ · r̂′r′

)n
/n! = Σ∞

n=0(ik
′)n

(
r′Sθ′Cψ′

)n
/n!

To satisfy the boundary condition (37) we need in (26) the solution
ν = 1, µ = 1

M′1
1 (r′) = −r′ × L′1

1 (r′) = −r′ × ∂r′
(
ϕ′1

1

)
= −r′ × ∂r′

(
Sθ′Sψ′/r′2

)

= −r′ ×
(
−r̂′2Sθ′Sψ′ + θ̂′Cθ′Sψ + ψ̂′Cψ′

)
/r′3 (68)

=
(
−ψ̂′Cθ′Sψ′ + θ̂′Cψ′

)
/r′2, ∂r′ × M′1

1 (r′) �= 0

which is assigned to the magnetic field in the form

H′
s,1(Γ

′) = C1h
′
0ik

′H′
1(r

′) = C1h
′
0ik

′
(
−ψ̂′Cθ′Sψ′ + θ̂′Cψ′

)
/r′2,

∂r′ × H′
1(r

′) �= 0 (69)

involving the yet undetermined constant C1. Inasmuch as (69) involves
a nonzero-curl magnetic field, we are working within the second
Consistent Maxwell System, (18).

The electric field associated with (69), is now derived as

ik′E′
1(r

′) = −∂r′ × H′
1(r

′) = ∂r′ ×
((
ψ̂′Cθ′Sψ′ − θ̂′Cψ′

)
/r′2

)

= r̂′Sψ′
(
C2θ′ + Sψ′

)
/

(
r′3Sθ′

)
+

(
θ̂′Cθ′Sψ′ + ψ̂′Cψ′

)
/r′3

E′
s,1(Γ

′) = C1e
′
0ik

′E1(r′) (70)

Application of the boundary condition (37) to the tangential
electric fields in (67), (70), yields

C1 = −a4 (71)

The final step of transforming the Γ′ scattered fields (69)–(71) into
the scattered fields measured for a moving scatterer in Γ follows once
again from (34), and is the analog of (66). Inasmuch as the technique
is identical, this final step will be left to the interested reader. This
ends the analysis for the leading terms of the low-frequency expansion
in spherical coordinates.
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4. CONCLUDING REMARKS

The Consistent Maxwell Systems and their application to low-
frequency theory has been recently discussed [3]. Presently this method
and Einstein’s special relativity theory are incorporated in order to
investigate scattering by moving objects in the low-frequency regime.

The leading terms of the low-frequency series are solutions of the
vector Laplace equation. This is of special interest because solutions of
the Laplace equation are simpler than wave solutions of the Helmholtz
equation. Furthermore, the Laplace equation is separable in more
coordinate systems than the Helmholtz equation, thus offering more
canonical solutions.

The pertinent theoretical aspects are revisited and adapted to the
present class of problems. In order to facilitate future simulations,
explicit solutions have been derived. The resulting formulas are
relativistically exact, but must be kept in sufficiently simple form to
avoid unnecessary encumbering of the presentation. To this end we
employ a few strategies. Firstly, the arguments of the relativistically
exact formulas describing the fields in the reference system Γ, where
the objects are observed in motion, are expressed in terms of the
space-time coordinates of the Γ′ system where the objects are at
rest. Another simplifying aspect is achieved by assuming the ambient
propagation medium to be free space (vacuum). Finally, simple
geometries of circular-cylinders and spheres are considered, and the
boundary relations are limited to perfectly conducting surfaces.

The results show how velocity dependent mode coupling enters
in the formulas. This effect has been noted previously for the exact
scattering solutions. Essentially low-frequency solutions are derived in
the near field, and the extension to large distances from the scatterer
involves the corresponding scalar and vector Kirchhoff diffraction
integrals, explained elsewhere [3].

The present study should be considered as a general introduction
to the subject area. Different scattering geometries, velocity directions,
and higher order terms will be derived for this class of problems
enhancing our understanding of the subject.
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