
Progress In Electromagnetics Research, PIER 72, 47–59, 2007

A NEW INTERPOLATION TECHNIQUE FOR THE
RECONSTRUCTION OF UNIFORMLY SPACED
SAMPLES FROM NON-UNIFORMLY SPACED ONES IN
PLANE-RECTANGULAR NEAR-FIELD ANTENNA
MEASUREMENTS

V. Dehghanian

Department of Electrical Engineering
Islamic Azad University-Garmsar Branch
Garmsar, Iran

M. Okhovvat

Imam Hussain University
Tehran, Iran

M. Hakkak

Department of Electrical Engineering
Tarbiat Modares University
Tehran, Iran

Abstract—A novel fast and accurate interpolation technique for
recovering the uniformly distributed samples from the irregularly
spaced samples, collected non-uniformly due to the probe position
error in planar near-field antenna measurements, is presented. The
technique employs Yen’s interpolator and tries to make it as practical
as possible for the use in near-field antenna measurements. A
comprehensive simulation capability is developed and through out the
simulations the speed and precision of this accurate and timely efficient
interpolation technique is compared with some other techniques which
are also based on Yen’s interpolators. The results well demonstrate the
advantages of our technique we termed “The Cross-Rail Technique”.
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1. INTRODUCTION

Near-field antenna measurement techniques are traditionally divided
into planar, cylindrical, and spherical techniques, where each has
its own particular advantages, depending upon the antenna under
test, AUT, and the measurement requirements [1]. Recently, a new
technique based on spiral scanning has been described [2]. The planar
near-field techniques can be further subdivided into plane-rectangular,
plane-polar, and bipolar technique. All of the near-field measurement
techniques rely heavily on data processing of measured data. However,
the planar techniques are of more practical interest since they employ
rather simple scanners. Also NF to FF transformation for planar
techniques is of less order of time complexity, comparing to those
of cylindrical or spherical techniques. Among planar techniques the
plane-rectangular (PR) configuration is the most-common near-field
scanner in use today. In this technique a raster scanning of the
probe produces planar measurement samples on a regular rectangular
grid in Cartesian coordinates. These uniformly distributed samples
can be processed into the far-field using an FFT algorithm [3].
A. C. Newell [4] has identified 18 error sources in the planar near-
field measurement. Three of them are directly related to alignment
or position error associated with the probe or the AUT. Position
accuracy for near-field measurements will vary depending upon the
test requirements. However an accuracy of λ/100 is considered
adequate for most application. For an L-band antenna this represents
an accuracy requirement of approximately 6.3 mm, and for Ku-band
0.075 mm is required. Near-field scanners have been operated for
as high as 550 GHz requiring an accuracy of 0.005 mm [5]. For
these antennas, careful attention to the design and construction of
the near-field scanner is essential, though not enough. Special error
correction techniques are necessary to achieve this level of accuracy
[6]. Also, some phase delay and phase velocity aspects in the near-field
measurements have to be observed [7].

Although uniform sampling techniques can be used in a variety
of situations, there are many circumstances for which it may not be
practical to directly utilize uniform sampling techniques, i.e., when
one performs antenna measurements for which it may not be possible
to control the antenna or probe movements to the desired locations
in space. One example is the measurement of large antennas aboard
the space shuttles. Similar situations may also occur for the in-orbit
measurement of satellite antennas using ground-based terminals [8]. In
order to predict the far-field from the non-uniformly distributed near-
field samples in planar near-field antenna measurements, two necessary
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steps shall be taken. First, a two-dimensional optimal-sampling-
interpolation (OSI) is to be deployed to reconstruct the near-field data
in a regular rectangular grid. Subsequently, the FFT algorithm shall
be utilized to predict the far-field.

The problem of signal reconstruction from non-uniformly spaced
data can be found in various contexts. Many types of interpolation
algorithms have been devised for reconstruction of band-limited signals
from non-uniform samples. But the most accurate interpolation
algorithm was first derived by Yen [9].

Although Yen’s interpolation algorithm is best in theory,
practically there are severe difficulties in computing the interpolated
values numerically such as the very high computer time and the
ill condition phenomenon of Q2 × Q2 matrix (Q2 is the number
of samples) especially for cases with high quantity of samples [10].
Efforts have been made in order to decrease the time complexity of
Yen’s interpolation algorithm [10–13]. In this paper we introduce an
optimal fast and simple interpolation technique for the reconstruction
of regularly spaced samples from the irregularly distributed ones in
planar near-field antenna measurements. In our technique we term
’The Cross-Rail Technique’; one dimensional (1-D) Yen interpolator
is employed to reconstruct the two dimensional (2-D) uniform near-
field data from the non-uniformly distributed samples. This approach
extremely reduces the time complexity of interpolation algorithm,
while the far-field pattern can yet be almost precisely predicted.

A comprehensive simulation capability has been developed and
representative numerical results are presented. In order to assess
the usefulness of the Cross-Rail technique, the speed and precision of
Cross-Rail is compared to those of two other interpolation techniques,
the Minimax technique [12] and the overlapping window technique [13].
Results so far indicate that the Cross-Rail technique is very powerful
and can be used very advantageously for a variety of antenna pattern
constructions from a set of non-uniform sampled points.

2. CROSS-RAIL TECHNIQUE

Yen’s algorithm is an optimal (in the least square sense) band limited
interpolation which is of great accuracy if being correctly used.
According to Yen’s algorithm, if E is a function band-limited to ømax

and is non-uniformly sampled due to Nyquist rate, then E at any
location in its domain can be exactly calculated by [14]

E(r) =
N∑

i=1

E(ξi)Ψi(r) (1)
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where N is the total number of sampled points and Ψi(r) is the
interpolation function chosen to be a combination of Sinc functions
expressed as follows

Ψi(r) =
N∑

k=1

AikSinc(ømax(ξk − r)) (2)

where
[A] = [C]−1 (3)

and
Ckj = Sinc(wmax(ξk − ξj)) (4)

The above formulation can easily be expanded for two-dimensional
cases, as well.

As pointed out earlier, if the quantity of samples increases,
the computational complexity of Yen’s algorithm extremely increases
which makes this algorithm practically inefficient. Also, matrix [C] in
(4) is highly ill conditioned. This phenomenon aggravates as the size
of matrix [C] increase.

To overcome these problems, one may suggest setting Ckj = 0 for
k − j > M as in the Minimax interpolator [12]. This choice of {Ckj}
is reasonable since [C] frequently has large elements on its diagonal,
with relatively small off-diagonal elements that quickly decrease away
from the diagonal. This process reduces the time complexity of the
interpolation algorithm since it makes [C] a sparse matrix.

Other may suggest using a P × P overlapping window with the
desired point in the center [13]. This approach is also reasonable since
each sample is highly correlated to its nearby samples.

The Cross-Rail technique is also based on the Yen’s interpolator.
While, the framework in Cross-Rail differs from the other techniques
in which the Cross-Rail implements 1-D interpolators to 2-D signals.
In Cross-Rail we assume that every 2-D signal band-limited to (øx, øz),
consists of 1-D signals in either dimensions ‘x’ or ‘z’ that are band-
limited to øx or øz, respectively. In other words, if we consider any
plane parallel to, for example the ‘yz’ plane (P : x = c), the near-field
pattern (which is spatially band-limited to (øx, øz)) will map a 1-D
signal on P that is certainly band-limited to ø ≤ øz.

As stated earlier, the near-field samples in a plane-rectangular
sampling process, Fig. 1, may distribute non-uniformly on the scan
plane due to probe position error as shown in Fig. 2. As a result the
sample points will locate on/off the lines L : x = c or L : z = k. Let
us assume that the error in the position of probe does not exceed an
upper bound of ∆l as shown in Fig. 2.
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Figure 1. The plane-rectangular near-field scan plane located above
an array of infinitesimal dipoles.

Figure 2. A representation of the Cross-Rail technique applied to
non-uniformly distributed samples.

Also consider that Es(xi, zj) is the tangential component of the
measured electric field at (xi = c, y = d, zj). It can be seen from
Fig. 3 that z = zj on L : x = c is the closest point to (xi = c, zj).
Assuming Eapp(zj) to be the tangential component of electric field
at (x = c, y = d, zj). Since the radiated near-field is a spatially
band-limited function of scan plane dimensions and Es(xi, zj) is just
a fraction of wavelength away from L : x = c, we can approximately
assume that the field intensity at (x = c, y = d, zj) equals Es(xi, zJ).
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Figure 3. Eapp(zj) is to be approximated by its nearby sample point
Es(xi, zj).

In other words,
Eapp(zj) ∼= Es(xi, zj) (5)

Therefore, the 1-D Yen interpolation algorithm can be deployed on
non-uniformly spaced samples, Eapp(zj), along L : x = c in order to
reconstruct the uniformly distributed data on the line.

Throughout this process, the Yen’s interpolator is used to
rearrange the sample points based on their correct locations in the
direction of L : x = c while, the differences between E(c, zj) = Eapp(zj)
and Es(xi, zj) are neglected. The same process shall be repeated to
rearrange the samples locating along L : z = k. As can be seen
in Fig. 2, each point is to be reconstructed twice, once along a rail
parallel to z axis and the other along a rail parallel to x axis. A linear
combination of both estimations shall then define the field intensity at
the intersection point.

As illustrated earlier, Cross-Rail is successful both for its good
precision and its low computational complexity. Let us assume that
the computational time complexity of Yen’s interpolation algorithm is
proportional to the time complexity of the inversion of matrix [C] which
is the most time taking part of the algorithm. Let us also assume that
an aggregate number of Q×Q irregularly spaced samples are enclosed
by Q parallel rails, each contains Q samples, as shown in Fig. 2.

The computational time complexity for direct implementing 2-
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D Yen’s algorithm to the above set of non-uniform samples is then
proportional to TCd ≈ Q4 log2(Q2) [15].

While, the time complexity of Cross-Rail technique (TCCR) being
implemented to the same set of data is proportional to

TCCR ≈ Q3 log2(Q) (6)

which is far less than TCd.
Also, the ill condition phenomenon of the rather smaller Q × Q

matrix [C] as in the Cross-Rail technique is less than that of the Q2×Q2

matrix as in the 2-D Yen’s algorithm which is of a great practical
importance.

3. SIMULATION

A general and comprehensive simulation capability has been developed
to compute the near and far field of an arbitrarily configured array
of infinitesimal dipoles. Each dipole in the array can have a unique
excitation, location, and orientation, as specified by its amplitude,
Cartesian coordinates and Eulerian angles, respectively. The array far-
field can be computed either by a direct summation, which produces
an exact far-field pattern, or by computing the near-field using optimal
interpolation sampling (OSI) techniques and processing the near-field
data into the far-field using the FFT algorithm. This capability allows
for direct comparison of the Cross-Rail technique, the overlapping
window technique, the Minimax technique, and the exact far-field of
the array.

In order to demonstrate the power of Cross-Rail technique, two
different configuration of dipole arrays have been developed. The
planar array under consideration is depicted in Fig. 4.

The first configuration is a low-gain dipole array consisting of 6
by 6 dipoles arranged on a half-wavelength-square lattice, creating an
array with side dimensions of D = 3 wavelengths. All of the 36 dipoles
are z-directed except for 6 randomly selected ones which have been
rotated by a randomly selected angle between 0 and 90 degrees. The
array elements also have excitations of different magnitude. The second
configuration is a high-gain dipole array consisting 16 by 16 dipoles,
also arranged on a half-wavelength-square lattice, creating an array
with side dimensions of D = 8 wavelengths. All of the 256 dipoles are
z-directed and have the same excitation and orientation.

The length of the scan plane, L, and the distance of the scan plane
from the antenna under test (AUT), d, for the low-gain array and the
high-gain array is set to be L = 16λ, d = 2λ and L = 24λ, d = 3λ,
respectively. This yields a valid angle of θ = 72 degrees (sin(θ) = 0.94)
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Figure 4. The simulated infinitesimal dipole array arranged on a
half-wavelength-square lattice.

for both configurations. Also, the aggregate number of near-field
samples for the low-gain and the high-gain arrays are 1089 and 2401
samples, respectively.

Figures 5 and 6 contain plots of the far-field E-plane co-polarized
patterns of the low-gain and the high-gain arrays, respectively. Each
figure includes two plots. One is the exact expression for the array’s
far-field and the other is the far-field computed through the NF
to FF transformation of the uniform near-field samples that are
reconstructed from the irregularly spaced measurements using the
Cross-Rail technique. Agreement is seen to be excellent even to the
side lobe levels of −60 dB in the high-gain array which has elements of
uniform excitation and orientation. Also, for the low-gain array that
contains elements with random excitation and orientation the results
are satisfactory and show good agreement.

Fig. 7 demonstrates the normalized energy of error in the far-field
of the high-gain dipole array for different values of maximum error in
the position of probe (2∆l) calculated from Equation (7),

Error =
Q∑

i=1

Q∑

j=1

log[|Eexact| − |Eint.|] (7)

where Eexact and Eint. stand for the exact far-field and the far-field
obtained from the OSI-FFT techniques, respectively. As can be seen
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from Fig. 7, the rail width (2∆l) is assumed to change in the range
of [0.05λ, 0.25λ]. The energy of error is computed for the Cross-
Rail technique, the overlapping window technique (p = 3, 5), and the
Minimax technique (M = 1). It should be noted that the energy
of interpolation error in the near-field is also very similar to the
energy of error in the far-field based on the Parsevals relation. Also,
Table 1 shows the computation time complexity of the above mentioned
techniques.

Table 1. The computational time complexity of the Minimax
technique, the Overlapping window technique, and the Cross-Rail
technique.

Overlapping window
Technique Minimax

(P=3) (P=5)
Cross-Rail

Time
Complexity

)log( 24 QQ 22 )9log(9 Q× 22 )25log(25 Q× )log(3 QQ<− ~~ ~~ ~~

It can be seen from Fig. 7 and Table 1 that the Minimax technique
does neither give a good precision nor have a good time efficiency
comparing to the other techniques. It should be noted that the
precision of the Minimax interpolation technique might improve if
larger integers were devoted to M which instead, would increase the
computational time complexity of this technique.

The overlapping window technique gives relatively acceptable
precision and low time complexity. A better precision will be obtained
by enlarging the size of the overlapping window while a higher time
complexity shall be tolerated in return.

The Cross-Rail technique, in comparison, enjoys both a good
precision and a low time complexity. For example, for the case of
256-dipole array it can be seen from Table 1, that the time complexity
of the Cross-Rail is at least one tenth of the time complexity of the
overlapping window technique if a 5×5 window is deployed. However, it
should be noted that the precision of the Cross-Rail is highly dependant
on the upper bound of the probe position error. In other words, unlike
the other two techniques, the precision of the Cross-Rail technique may
not be simply improved. This poses limitations on the use of the Cross-
Rail technique specifically in cases where the upper bound of error in
the position of the measuring probe is not under control. But, for most
applications with limited error in the position of the measuring probe
the Cross-Rail is a fast, accurate and practical choice.



56 Dehghanian, Okhovvat, and Hakkak

Figure 5. The E-plane co-polarized far-field pattern of the 36-element
dipole array. The upper bound for error in the position of probe is set
to be 0.1λ.

Figure 6. The E-plane co-polarized far-field pattern of the 256-
element dipole array. The upper bound for error in the position of
probe is set to be 0.1λ.
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Figure 7. The normalized energy of error versus the rail-width (2∆l).

4. CONCLUSION

A new approach for the reconstruction of non-uniformly spaced planar
near-field data is presented. It is shown through the simulations that
this simple but highly efficient interpolation technique enjoys a very
low computational time complexity and yet reconstructs the uniformly
distributed near-field data with a good accuracy. The rearranged near-
field data then was processed into the far-field and excellent agreement
between the processed data and the exact far-field was obtained even
for the side lobe level of −60 dB. It should be noted that in practice,
the accuracy for far-field prediction through the use of planar-near-field
scanners is limited to side lobe levels of 55–60 dB below the AUT’s peak
far-field as in the measurement facility of national institute of standard
and technology, NIST, [16].

Simulations were conducted in order to evaluate the accuracy and
the computational time complexity of Cross-Rail technique comparing
to some other Yen based interpolation techniques. The results well
demonstrate the performance and advantages of this fast, accurate
and practically-interesting interpolation technique.
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