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Abstract—In this paper, ray propagation in stratified semi-infinite
percolation lattices consisting of a succession of uniform density
layers is considered. Two different mathematical approaches for
analytically evaluating the penetration depth are presented. In order
to compare performances and to assess the range of validity of the
two approaches, an exhaustive set of numerical Monte-Carlo-like
experiments is presented.

1. INTRODUCTION

Wave propagation and scattering in random media is a challenging
topic because of the large number of applications and involved research
areas [1–9]. By considering the percolative model proposed in [10],
where authors described the urban environment in terms of a uniform
random lattice [11], this paper is focused on the analysis of propagation
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in stratified random media consisting of a discontinuous succession
of layers with uniform density. In particular, such a work is aimed
at providing an exhaustive numerical validation of two mathematical
approaches, the former based on the result in [10], the latter applying
the theory of the Markov chains [12].

This paper is organized as follows. In Section 2, the problem is
briefly described and two mathematical approaches aimed at evaluating
the propagation depth are introduced. Section 3 provides the results
of a representative set of numerical experiments, while final comments
and conclusions are drawn in Section 4.

2. PROBLEM STATEMENT AND MATHEMATICAL
FORMULATION

Let us consider a stratified random lattice (Fig. 1) described by the
following obstacles density distribution

q(j) =




q1, r0 = 0 < j ≤ r1 ⇒ j ∈ L1

q2, r1 < j ≤ r2 ⇒ j ∈ L2
...
qn, rn−1 < j ≤ rn ⇒ j ∈ Ln
...

(1)

where q(j) is the probability that a site belonging to the j-th row is
occupied and Ln denotes the n-th layer characterized by an occupancy
probability qn and constituted by the rows between (rn−1 + 1) and rn.

The electromagnetic source is assumed to be located in the
above empty half-plane and to radiate a monochromatic plane wave
impinging on the lattice with a known incidence angle θ. Each site
is large compared to the wavelength, therefore the incident wave
is modeled in terms of a collection of parallel rays. Such rays
undergo specular reflection on obstacles, while other electromagnetic
interactions are neglected. The propagation is then described by
determining the probability that a single ray reaches a prescribed level
k inside the lattice before being reflected back in the above empty
half-plane, Pr {0 �−→ k ≺ 0}.

2.1. Martingale Approach (MTGA)

The first mathematical approach is based on the theory presented in
[10], where Pr {0 �−→ k ≺ 0} in a random uniform grid is evaluated
by applying the theory of the Martingale random processes [13]. Let
us notice that a description of the ray propagation in terms of a
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Martingale random process requires that ray jumps following the first
one are independent, identically distributed and zero mean. Such
an assumption is generally verified provided that the incident angle
is not too far from 45◦ and the lattice is dense [14]. An extension
of such an approach to the inhomogeneous case has been proposed
in [15]. However, mathematical considerations as well as numerical
experiments have shown that the obtained solution is reliable in
correspondence with obstacles’ density profiles with small variations.
Therefore, an ad-hoc formulation when dealing with stratified random
lattice is mandatory.

A stratified environment can be modeled as a succession of
uniform layers {Ln; n = 1, 2, 3, ...} and at each layer the propagation
is mathematically described through the solution proposed in [10].
In particular, the probability that a ray freely crosses layer Ln [i.e.,
the probability that a ray traveling with positive direction in the
level (rn−1 + 1) reaches level rn before being reflected back in level
(rn−1 + 1)] is equal to

Pn =̂ Pr {(rn−1 + 1) �−→ rn ≺ (rn−1 + 1)}

=




1, rn = rn−1 + 1,
pn

qenNn

[
1 − pNn

en

]
, rn > rn−1 + 1,

(2)

where pen = 1 − qen = ptan θ+1
n is the effective probability that a ray

crosses a level with occupancy probability qn without any reflections
and Nn = (rn − rn−1 − 1).

By assuming that the level k belongs to the layer LK and NK =
(k− rK−1 −1), the ray propagation inside the whole lattice is modeled
through the Markov chain [12] shown in Figure 2, where states j+ and
j− denote a ray traveling inside the level j with positive and negative
direction, respectively, and Qn=̂1 − Pn. Accordingly, the following
solution is obtained

Pr {0 �−→ k ∈ LK ≺ 0} =
p1

1
P1

+ p1

K∑
n=2

[
1 − Pn

pnPn
+

qn

pnpn−1

] . (3)

2.2. Markov Approach (MKVA)

In such an approach the original 2D ray-propagation problem is recast
as a simple 1D random walk problem where the dependence on the
incidence angle θ is avoided [16]. As a matter of fact, whenever a
ray hits a vertical face it does not change its vertical direction of
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Figure 1. Sketch of ray propagation in a four-layers random lattice
realization (left-hand side) and the obstacles’ density distribution
relative to the random lattice realization (right-hand side).

propagation. Thus, just reflections on horizontal faces, whose number
is independent from θ, are taken into account. Accordingly, under
the assumption that the propagating ray never crosses cells that it
has already encountered along its path (verified when θ is not too far
from 45◦ and in the case of sparse random lattices), ray propagation in
a generic nonuniform random lattice is modeled through the Markov
chain shown in Fig. 3 whose solution is

Pr {0 �−→ k ≺ 0} =
p1p2

1 + p1p2

k−3∑
i=0

[
qk−i

pk−ipk−i−1

] , k ≥ 1, (4)

where qj = 1 − pj denotes the occupancy probability of the j-th level.
Unlike that in [15], such a formulation satisfactorily works in

dealing also with high discontinuities [14] and therefore, it holds true
for stratified profiles, as well. Thus, it is enough to customize (4) to
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Figure 2. Martingale approach — Markov chain mathematically
modeling the ray propagation towards level k in a stratified random
lattice.

1

empty
halfplane

q q

2

q

level k-1 level klevel 3level 2level 1

+
0

+
1

+
2

+
3

+ +

q
1

q

p
1

2

3 4

qq

1
p
2

p1

p
k

p
k-1

p
3

p
2

- - - -
1 20 3 k-1

k-1 k

-

q
k-2

p
k-2

k

Figure 3. Markov approach — Markov chain mathematically
modeling the ray propagation in a generic non-uniform half-plane
random lattice with obstacles’ density distribution q(j) = qj , j being
the level index.

stratified profile detailed in (1). After some algebra we get

Pr{0 �−→k ∈ LK ≺ 0}=
p2
1

1+p2
1

[
q1

p2
1

(N1−1)+
K∑

n=2

(
qn

pnpn−1
+

qnNn

p2
n

)] .

(5)
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3. NUMERICAL VALIDATION

In order to validate and compare the proposed solutions, an exhaustive
set of numerical experiments has been carried out. In particular, both
three- and four-layers configurations have been taken into account
by varying the occupation probability of each layer {qn; n = 1, ..., K}
between 0.05 and 0.35 with step 0.1. No higher occupancy probability
values have been considered since, in order to ensure propagation, the
occupancy probability must be lower than the so-called percolation
threshold qc [11] (qc ≈ 0.40725 for the two-dimensional case).
Moreover, for completeness, different values of the incidence angle have
been evaluated, θ = {15◦, 30◦, 45◦, 60◦, 75◦}.

As a reference, the propagation depth has been estimated by
Monte-Carlo-like ray-tracing experiments. In particular, for each
density profile and incidence angle, 100 random grids have been
generated and for each of them 500 rays have been launched from
different entry positions. Then, Pr {0 �−→ k ∈ LK ≺ 0} has been
estimated from the collection of paths in the first kmax = 32 levels.

In order to quantitatively evaluate the accuracy of the proposed
methods, let us define the following error indexes, namely the
prediction error δk

δk � |PrR {0 �−→ k} − PrP {0 �−→ k}|
max

k
[PrR {0 �−→ k}] × 100, (6)

and the mean error 〈δ〉

〈δ〉 � 1
kmax

kmax∑
k=1

δk, (7)

where the sub-scripts R indicates the value estimated with the
reference approach and P stands for the same value evaluated through
either (3) or (5). Moreover, let us define the global mean error ∆

∆ � 1
S

S∑
s=1

〈δ〉s , (8)

S being the total number of considered obstacles’ density profiles and
〈δ〉s the mean error relative to the s-th distribution.

Furthermore, in order to easily identify a profile, let us use the
indexes 1, 2, 3, 4 for indicating an occupation probability equal to
0.05, 0.15, 0.25, and 0.35, respectively. Accordingly, a sequence of
N indexes denote a N -layers stratified profile, each element of the
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sequence indicating the occupation probability of the corresponding
n−th layers. As an example, profile 3423 identifies a four-layers profile
where q1 = 0.25, q2 = 0.35, q3 = 0.15 and q4 = 0.25.

3.1. On the Role of the Obstacles Density

Let us refer to an incidence angle θ equal to 45◦ and consider low
density profiles (i.e., qn = {0.05, 0.15} , n = 1, ..., K) and high density
profiles (i.e., qn = {0.25, 0.35} , n = 1, ..., K). With reference to
Figures 4 and 5 and as expected, it can be noticed that the MKVA
outperforms the MTGA when dealing with low density profiles, while
the MTGA is better in correspondence with high density profiles. This
is further confirmed by the mean error values. As far as the three-layers
profiles are concerned,

[
〈δ〉MTGA
〈δ〉MKV A

]
121

= 2.22,
[
〈δ〉MTGA
〈δ〉MKV A

]
212

= 17.44,[
〈δ〉MKV A
〈δ〉MTGA

]
343

= 1.66, and
[
〈δ〉MKV A
〈δ〉MTGA

]
343

= 2.47. Concerning the four-

layers low density profiles, 〈δ〉MKV A = 0.71% vs. 〈δ〉MTGA = 1.55%
(profile 1212) and 〈δ〉MKV A = 0.17% vs. 〈δ〉MTGA = 2.98% (profile
2121). On the other hand, 〈δ〉MKV A = 1.42% vs. 〈δ〉MTGA = 0.92%
(profile 3434) and 〈δ〉MKV A = 1.7% vs. 〈δ〉MTGA = 0.69% (profile
4343).

For completeness, also mixed profiles [i.e., stratified random grids
made up in part of dense layers (qn ≥ 0.25) and in part of sparse layers
(qn ≤ 0.15)] have been considered. However, since similar conclusions
can be drawn both for three- and four-layers configurations, only the
mean error values of the three-layers profiles are reported (Fig. 6).

Thanks to such results, some rules-of-use of the two approaches
can be drawn. When the first layer is neither too sparse nor too dense
(i.e, 0.15 ≤ q1 ≤ 0.25), the MKVA outperforms the MTGA unless the
second layer has high occupancy probability (i.e., q2 = 0.35) or both
q2 ≥ 0.25 and q3 ≥ 0.25, whatever the occupancy probability value
of the remaining layers. When q1 = 0.05, the MTGA gives better
results when either q2 or q3 are equal to 0.35. On the other hand,
when q1 = 0.35, the MTGA outperforms the MKVA. Summarizing,
the MKVA outperforms the MTGA in 15 cases over 36 when we deal
with a three-layers profile and in 45 cases over 108 when four-layers
profiles are considered.

Another interesting observation is concerned with the role of the
discontinuities. By analyzing the mean error values, it is evident
that the range of validity of both approaches does not depend on
the difference between the values of the occupation probabilities in
adjacent layers, but it is affected only by the density of the obstacles
at each layer.
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Figure 4. Three-layers profile, θ = 45◦, r1 = 8 and r2 = 16 —
Estimated values of Pr{0 �−→ k} versus k when θ = 45◦ for the profiles
(a) 121, (b) 212, (c) 343, and (d) 434.
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Figure 5. Four-layers profile, θ = 45◦, r1 = 8 and r2 = 16 and
r3 = 24 — Estimated values of Pr{0 �−→ k} versus k when θ = 45◦ for
the profiles (a) 1212, (b) 2121, (c) 3434, and (d) 4343.



168 Martini et al.

0

0.5

1

1.5

2

2.5

3

3.5

121 123 124 131 132 134 141 142 143

<
δ>

Profile

MKV approach
MTG approach

0

0.5

1

1.5

2

2.5

3

3.5

212 213 214 231 232 234 241 242 243

<
δ>

Profile

MKV approach
MTG approach

(a) (b)

0

0.5

1

1.5

2

2.5

3

3.5

312 313 314 321 323 324 341 342 343

<
δ>

Profile

MKV approach
MTG approach

0

0.5

1

1.5

2

2.5

3

3.5

412 413 414 421 423 424 431 432 434

<
δ>

Profile

MKV approach
MTG approach

(c) (d)

Figure 6. Three-layers profile, θ = 45◦, r1 = 8 and r2 = 16 — Mean
error 〈δ〉 for different values of qn, n = 1, 2, 3, being (a) q1 = 0.05, (b)
q1 = 0.15, (c) q1 = 0.25, and (d) q1 = 0.35.

Finally, let us point out that the MKVA returns mean error values
lower than 2%. As a matter of fact, by considering both four- and
three-layers profiles, 〈δ〉 ranges from 0.17% to 1.73%, while it grows up
to 3.13% when we apply the MTGA. As far as the global mean error
is concerned, we obtain ∆MKV A = 1.09% vs. ∆MTGA = 1.35% and
∆MKV A = 1.06% vs. ∆MTGA = 1.28% for the three- and four-layers
configurations, respectively.

3.2. On the Role of the Incidence Angle

As far as the role of the dependence on the incidence angle θ is
concerned, Figure 7 plots the behavior of the global mean error ∆
versus θ for a three-layers scenario. Similar results arise when dealing
with four-layers profiles.
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Figure 7. Three-layers profile, r1 = 8 and r2 = 16 — Global mean
error ∆ versus the incidence angle θ.

As expected, both approaches give better performances when θ
is close to 45◦. The plots are almost symmetric with respect to the
optimal value θopt = 45◦. Such a behavior points out that it does
not matter the value of the incidence angle, but only the distance
|θ − θopt|.

Moreover, it is interesting to observe that, although the MKVA
does not take into account the incidence angle, on average it
outperforms the MTGA when θ = 15◦, θ = 45◦ and θ = 75◦, since
the ratio ∆MTGA

∆MKV A
ranges from 1.24 to 1.39. On the other hand, when

θ = 30◦ and θ = 60◦, ∆MKV A
∆MTGA

= 1.14 and ∆MKV A
∆MTGA

= 1.39, respectively.
Finally, it should be noticed that, despite its independence on θ,

the MKVA is less sensitive to the incidence angle value, as confirmed by
the following indexes,

[
max ∆
min ∆

]
MKV A

= 3.65 vs.
[

max ∆
min ∆

]
MTGA

= 4.09.

4. CONCLUSIONS

Dealing with ray propagation in stratified random lattices, two
different mathematical models, namely the Martingale approach
(MTGA) and the Markov approach (MKVA), have been presented and
compared through an exhaustive numerical analysis.

The obtained results are: (a) both approaches give more faithful
estimate in correspondence with incidence angles close to 45◦ and the
mean error increases with the distance |θ − 45◦|, (b) both approaches
are not affected by the value of the discontinuities, (c) the MKVA
satisfactorily performs when dealing with sparse media, while the
MTGA works better in correspondence with dense lattices, (d) on
average, the MKVA returns lower mean error than the MTGA.
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