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Abstract—Using fractional curl operator, impedance of the surface
which may be regarded as intermediate step between the perfect elec-
tromagnetic conductor (PEMC) and dual to the perfect electromag-
netic conductor (DPEMC) has been determined. The results are com-
pared with the situation which is intermediate step of perfect electric
conductor (PEC) and perfect magnetic conductor (PMC).

1. INTRODUCTION

Perfect electric conductor (PEC) and perfect magnetic conduc-
tor (PMC) are basic concepts in electromagnetics. Lindell has recently
introduced perfect electromagnetic conductor (PEMC) as generaliza-
tion of the perfect electric conductor (PEC) and perfect magnetic con-
ductor (PMC) [1–4]. It is well known that PEC boundary may be
defined by the conditions

n × E = 0, n.B = 0

While PMC boundary may be defined by the boundary conditions

n × H = 0, n.D = 0

The PEMC boundary conditions are of the more general form

n × (H + ME) = 0, n.(D − MB) = 0

where M denotes the admittance of the PEMC boundary. It is
obvious that PMC corresponds to M = 0, while PEC corresponds
to M = ±∞. It may be noted that PEMC boundary is non-reciprocal.
Non-reciprocity of the PEMC boundary can be demonstrated by
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showing that the polarization of the plane wave reflected from PEMC
surface is rotated. Problems involving PEMC boundaries with the
admittance parameter M and air or other isotropic medium can be
transformed to problems involving PEC or PMC boundaries using
duality transformation [3].

Another generalization of PEC and PMC reveals from the
concept of fractional curl operator, i.e., (∇×)α [6]. The boundary
is known as fractional dual interface with PEC and PMC as the two
special situations of the fractional dual interface [6–11]. The surface
impedance of the interface which may be regarded as intermediate step
between the PEC and PMC may be written as [6]

Zfd = jη0 tan
(

k0z +
απ

2

)

where fd stands for fractional dual. It may be noted that for normal
incidence, impedance of the interface corresponding to fractional
situations is isotropic. It is also known that for oblique incidence,
impedance of the interface, which describes intermediate situations,
becomes anisotropic [7, 10, 11]. PEC corresponds to value of fractional
parameter α = 0 while PMC corresponds to α = 1. These results may
be obtained using the following relations [6]

Efd =
1

(jk0)α
(∇×)αE

η0Hfd =
1

(jk0)α
(∇×)αη0H

It may be noted that above two equations are Faraday-Ampere’s
Maxwell equations with fractionalized curl operator. Above relations
yield solutions which may be regarded as intermediate step between the
solution (E, ηH) and (ηH,−E), when the value of fractional parameter
changes between zero and one.

In present discussion, our interest is to explore intermediate
situations between the PEMC boundary and dual to PEMC
boundary (DPEMC) using the idea of fractional curl operator.
Behavior of the impedance dealing with intermediate situations is
of interest. Time dependency is time harmonic, ejwt, and has been
suppressed throughout the dissscussion.

2. FRACTIONAL DUALITY FOR PEMC AND DPEMC
BOUNDARIES

Consider reflection of a normal incidence TEM plane wave from a
planer PEMC interface which is located at z = 0. For z < 0 as a
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region of interest, the expression for the normal incident plane wave is
given by

Ei = x̂E0 exp(−jk0z) (1a)
η0Hi = ŷE0 exp(−jk0z) (1b)

Above expressions may be written as

Ei = [A1 + A2]E0 exp(−jk0z)
η0Hi = −j[A1 − A2]E0 exp(−jk0z)

where

A1 =
(

x̂ + jŷ

2

)

A2 =
(

x̂ − jŷ

2

)

Incident fields (Ei, η0Hi) must satisfy the Maxwell’s equations,
therefore we can write

ẑ × Ei = [−jA1 + jA2]E0 exp(−jk0z)
ẑ × η0Hi = −j[−jA1 − jA2]E0 exp(−jk0z)

It may be noted that for time harmonic fields given in (1), quantity(
− 1

jk0
∇×

)
in Maxwell equations is equivalent to cross product

operator (ẑ×). Two vectors A1 and A2 are the eigen vectors of the
cross product operator (ẑ×) while (−j) and (+j) are the respective
eigen values. According to the recipe for the fractionalization of a
linear operator [6, 12], fractionalization of the curl operator means
fractionalization of the cross product operator. Fractionalization of
cross product operator means fractionalization of corresponding eigen
values. In order words, fractional dual solutions corresponding to
original solutions given in (1) may be written as

(ẑ×)αEi = [(−j)αA1 + (j)αA2]E0 exp(−jk0z)
(ẑ×)αη0Hi = −j[(−j)αA1 − (j)αA2]E0 exp(−jk0z)

Above may be simplified as

(ẑ×)αEi =
[
x̂ cos

(
απ

2

)
+ ŷ sin

(
απ

2

)]
E0 exp(−jk0z)

(ẑ×)αη0Hi =
[
−x̂ sin

(
απ

2

)
+ ŷ cos

(
απ

2

)]
E0 exp(−jk0z) (2)
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Field reflected from the planer PEMC surface located at z = 0
may be obtained using the following relations [3]

Er = ¯̄R(θ).Ei = [cos 2θ¯̄I − sin 2θẑ × ¯̄I].Ei

η0Hr = − ¯̄R(θ).η0Hi = [− cos 2θ¯̄I + sin 2θẑ × ¯̄I].η0Hi (3)

In above equations admittance M of the PEMC interface has been
expressed in terms of another parameter θ by the relation Mη0 = tan θ.
It is obvious that PEC means θ = π/2 and PMC means θ = 0. Above
may be written as

Er = (cos 2θx̂ − sin 2θŷ)E0 exp(jk0z)

η0Hr = (− sin 2θx̂ − cos 2θŷ)E0 exp(jk0z)

Above expressions may be expanded in terms of eigen functions of the
cross product operator (ẑ×) as

Er =
[
exp(j2θ)

2
A1 +

exp(−j2θ)
2

A2

]
E0 exp(jk0z)

η0Hr = j

[
exp(j2θ)

2
A1 −

exp(−j2θ)
2

A2

]
E0 exp(jk0z)

Above fields must satisfy the Maxwell equations. Substitution of above
equations in Maxwell equations yields the following

(−ẑ×)Er =
[
exp(j2θ)

2
(j)A1 +

exp(−j2θ)
2

(−j)A2

]
E0 exp(jk0z)

(−ẑ×)η0Hr = (−1)j
[
exp(j2θ)

2
(−j)A1−

exp(−j2θ)
2

(j)A2

]
E0 exp(jk0z)

Fractionalization of the cross product gives

(−ẑ×)αEr = (−1)α
[
exp(j2θ)

2
(−j)αA1 +

exp(−j2θ)
2

(j)αA2

]

×E0 exp(jk0z)

(−ẑ×)αη0Hr = (−1)αj

[
exp(j2θ)

2
(−j)αA1 −

exp(−j2θ)
2

(j)αA2

]

×E0 exp(jk0z)
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Simplification yields fractional dual fields for reflected fields

(−ẑ×)αEr = exp(jαπ)
[
x̂ cos

(
2θ − απ

2

)
− ŷ sin

(
2θ − απ

2

)]

×E0 exp(jk0z)

(−ẑ×)αη0Hr = − exp (jαπ)
[
x̂ sin

(
2θ − απ

2

)
+ ŷ cos

(
2θ − απ

2

)]

×E0 exp(jk0z) (4)

Fractional dual fields corresponding to the total fields, means sum
of incident and reflected, is

Efd = E0 exp
(

jαπ

2

)

×
[
x̂

{(
cos

(
απ

2

)
+ cos

(
2θ − απ

2

))
cos

(
k0z +

απ

2

)

+ j

(
− cos

(
απ

2

)
+ cos

(
2θ − απ

2

))
sin

(
k0z +

απ

2

)}

+ŷ

{(
sin

(
απ

2

)
− sin

(
2θ − απ

2

))
cos

(
k0z +

απ

2

)

− j

(
sin

(
απ

2

)
+ sin

(
2θ − απ

2

))
sin

(
k0z +

απ

2

)}]
(5a)

η0Hfd = E0 exp
(

jαπ

2

)

×
[
x̂

{
−

(
sin

(
απ

2

)
+ sin

(
2θ − απ

2

))
cos

(
k0z +

απ

2

)

+ j

(
sin

(
απ

2

)
− sin

(
2θ − απ

2

))
sin

(
k0z +

απ

2

)}

+ŷ

{(
cos

(
απ

2

)
− cos

(
2θ − απ

2

))
cos

(
k0z +

απ

2

)

− j

(
cos

(
απ

2

)
+ cos

(
2θ − απ

2

))
sin

(
k0z +

απ

2

)}]
(5b)

Impedance of the corresponding surface may be obtained as

Zxy
fd = η0




(Cα+Cθ) cos
(

k0z+
απ

2

)
+j(−Cα+Cθ) sin

(
k0z+

απ

2

)

(Cα−Cθ) cos
(

k0z+
απ

2

)
−j(Cα−Cθ) sin

(
k0z+

απ

2

)



(6a)
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Figure 1. Variation of Zxy w.r.t. kz and α (for θ = 0, π/4, π/2).

Zyx
fd = −η0




(Sα−Sθ) cos
(

k0z+
απ

2

)
−j(Sα+Sθ) sin

(
k0z+

απ

2

)

−(Sα+Sθ) cos
(

k0z+
απ

2

)
+j(Sα−Sθ) sin

(
k0z+

απ

2

)



(6b)

Zxx
fd = η0




(Cα+Cθ) cos
(

k0z+
απ

2

)
+j(−Cα+Cθ) sin

(
k0z+

απ

2

)

−(Sα+Sθ) cos
(

k0z+
απ

2

)
+j(Sα−Sθ) sin

(
k0z+

απ

2

)



(6c)
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Figure 2. Variation of impedance Zxy w.r.t. α and θ (kz = 0).

Zyy
fd = η0




(Sα−Sθ) cos
(

k0z+
απ

2

)
−j(Sα+Sθ) sin

(
k0z+

απ

2

)

(Cα−Cθ) cos
(

k0z+
απ

2

)
−j(Cα+Cθ) sin

(
k0z+

απ

2

)



(6d)

where

Cα = cos
(

απ

2

)

Cθ = cos
(

2θ − απ

2

)

Sα = sin
(

απ

2

)
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Figure 3. Zoom view of the variation of impedance Zxy w.r.t. α and
θ (kz = 0).

Sθ = sin
(

2θ − απ

2

)

As PEC means parameter θ = π/2 and PMC means θ = 0.
Therefore for θ = π/2, following is obtained

Zxy
fd(θ = π/2) = Zyx

fd(θ = π/2) = −jη0 tan
(

k0z +
απ

2

)

For θ = 0, we have

Zxy
fd(θ = 0) = jη0 cot

(
k0z +

απ

2

)

Zyx
fd(θ = 0) = jη0 cot

(
k0z +

απ

2

)
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Above results are same as had been obtained by Engheta [6]. It
means that for θ = 0 and θ = π/2 fractional impedance with Zxy

fd ,
Zyx

fd (Zxy
fd=Zyx

fd) will be intermediate between PEC and PMC. This is
because when θ = 0, π/2, then there is no polarization rotation.

When θ �= 0, π/2, then fractional impedance with Zxx and Zyy

will be intermediate between PEMC and DPEMC.

3. DISCUSSION AND CONCLUSIONS

It is obvious from the results given in the last section that even for
normal incidence, impedance of the fractional dual surface between
PEMC and DPEMC is anisotropic. On the other side, when dealing
with fractional dual situation between the PEC and PMC, we obtain
isotropic impedance for normal incidence. Behavior of the fractional
dual impedance with respect to fractional parameter α and kz is
studied. The plots are presented in Figure 1 to Figure 3. It is known
that for PMC (θ = 0) and PEC (θ = π/2), change in values of fractional
parameter α is equivalent to change in values of kz. It is also noted
from the plots that for non-limiting values of θ, variation in values of
fractional parameter α is not always equivalent to variation in values
of kz.
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