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Abstract—Electromagnetic waves scattering in turbulent anisotropic
collision magnetized ionospheric plasma is investigated using complex
geometrical optics approximation. Correlation function of the
phase fluctuations of scattered radiation is obtained taking into
account both electron density and magnetic fields fluctuations.
The features of the angular power spectrum of scattered radiation
are investigated analytically and numerically. The expressions of
broadening of the spatial spectrum have been obtained for both power-
law and anisotropic Gaussian correlation functions of electron density



308 Jandieri et al.

fluctuations. Gaussian spectral function takes into account the axial
ratio of the field-aligned irregularities and the angle of inclination of
prolate irregularities with respect to the external magnetic field. The
variance of the phase and scintillation level of scattered radiation are
calculated numerically for F -region irregularities of the ionosphere.
The conditions of non-fully and fully developed diffraction patterns
have been determined.

1. INTRODUCTION

At the present time the features of light propagation in random media
have been rather well studied [1]. Many excellent reviews related to EM
waves propagation and observations [2, 3] in the ionosphere have been
published, whereas statistical characteristics of scattered radiation are
less studied. In most of the papers statistically isotropic irregularities
have been considered. However, in reality, irregularities in the
ionosphere are anisotropic and mainly elongated along the geomagnetic
field. Investigation of statistical characteristics of scattered radiation
in randomly inhomogeneous magnetized plasma is of great practical
importance. Multiple scattering of EM waves by a plane layer of
turbulent collision magnetized plasma has been studied in [4]. The
influence of the distance between the emitter and the receiver has
been analysed analytically and numerically. Effect of electron density
fluctuations on the shape of the angular (spatial) power spectrum
(APS) of scattered radiation at arbitrary angles of refraction on plasma
vacuum boundary and inclination of the external magnetic field has
been investigated in small-angle scattering approximation using the
geometrical optics approximation [5, 6]. Statistical simulation has been
made utilizing Monte Carlo method. The simulated results have shown
that the APS has a double-humped shape, which is caused due to
the mutual effects of anisotropy, absorption and shape of the single-
scattering phase function. The features of statistical characteristics of
the APS of scattered radiation (broadening and shift of its maximum)
in turbulent collisionless magnetized plasma have been considered in
[7] on the basis of stochastic eikonal equation.

In Section 2 of this paper, general expression of the phase
fluctuation is given in complex ray-(optics) approximation. General
analytical expressions of statistical characteristics of the APS of
scattered radiation are obtained in Section 3. They are expressed
through the power spectrum of spatial correlation functions of both
electron density irregularities and magnetic field fluctuations. The
power-law and anisotropic Gaussian 3D power spectrum are reviewed
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in Section 4. These results are applied to radio propagation in
turbulent collision magnetized plasma as the wavefront travels away
from the vacuum-plasma boundary (Section 5). In Section 6, the
theory is applied to the F -region of ionosphere; scintillation index has
been computed. Conclusion is given in Section 7.

2. FORMULATION OF THE PROBLEM

Let a plane EM wave with frequency ω be incident from vacuum on a
semi-infinite slab of turbulent collision magnetized plasma. We choose
a Cartesian coordinate system such that XY plane is the vacuum-
plasma boundary, Z axis is directed in the plasma slab, Y Z plane is
generated by the external magnetic field vector B0 and the wavevector
k of the refracted wave. Electrical features of the ionospheric plasma
layer are described by second rank tensor [8]:

ε̃xx = ε̃yy ≡ η̃ = 1 =
v(1 − is)

(1 − is)2 − u
, ε̃xy = −ε̃yx ≡ µ̃ = −i

v
√

u

(1 − is)2 − u
,

ε̃zz ≡ 1 − v

1 − is
,

ε̃xz = ε̃zx = ε̃yz = ε̃zy = 0, (1)

where: u = ω2
H/ω2, v = ω2

p/ω
2 and s = νeff /ω are non-dimensional

plasma parameters, ωp = (4πe2N/m)1/2 is the electron plasma
frequency, N is electron density, ωH = |e|H/mc is the electron
gyrofrequency, ω = 2πf , f is frequency of the wave, e and m are
the charge and mass of an electron, c is the speed of light in vacuum,
N and H are the function of the spatial coordinates, νeff is the effective
electron collision frequency. Frequency of the incident wave is assumed
to be much higher than the plasma frequency. The general dispersion
relation and analytic expressions for dyadic Green’s functions for
electrically gyrotropic medium, particularly for ionosphere have been
obtained in [9, 10].

Assuming ε̃ik to be time independent, electric field E satisfies the
differential equation:(

∂2

∂xi∂xk
− ∆δik − k2

0 ε̃ik

)
Ek = 0, (2)

where ε̃ik is the relative complex permittivity tensor, which is expressed
through the medium parameters determined by (1), k0 = ω/c is
the wavenumber. We assume that the characteristic spatial scale
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of inhomogeneities is much greater that the wavelength λ. This
assumption enables us to utilize geometrical optics approximation
ignoring the interaction between normal waves. Solution of the
Equation (2) is sought as Ei(r) = Ai(r) exp[iS̃(r)]. Substituting this
expression into (2), for the complex phase S̃(r) we have:

Det

[(
∆S̃

)2
δik − ∂S̃

∂xi

∂S̃

∂xk
− k2

0 ε̃ik

]
= 0. (3)

We investigate statistical characteristics of scattered radiation in
turbulent magnetized plasma caused by phase fluctuations, as in ray-
(optics) approximation phase fluctuations substantially exceed the
amplitude fluctuations [1, 11].

Dielectric permittivity submit as sum ε̃ik =< ε̃ik > +δε̃ik (<
ε̃ik >� δε̃ik, the angular brackets indicate the ensemble average) of the
mean and fluctuating components caused due to both electron density
(N) and magnetic field (H) fluctuations:

δε̃ik =
(

∂ε̃ik

∂N

)
H

N1 +
(

∂ε̃ik

∂H

)
N

H1. (4)

As fluctuations of both electron density N1 and magnetic field H1 are
random functions of spatial coordinates, solution of Equation (3) we
will seek as:

S̃(r) = k0Ñ(τr) + ϕ̃1(r), (5)

where Ñ is complex refractive index of cold collision magnetized plasma
[8]:

Ñ2 ≡ (N∗ − iæ)2 = 1 −
2v(1 − v − is)

2(1 − is)(1 − v − is) − u sin2 θ ±
√

u2 sin4 θ+ 4u(1 − v − is) cos2 θ
(6)

Signs “+” and “−” refer to the ordinary and extraordinary waves,
respectively; æ is an absorption coefficient, θ is the angle between the
direction of wave propagation k and the geomagnetic field B0, τ is the
unit vector along wave propagation, ϕ̃1 is phase fluctuation of scattered
wave. Without loss of generality we assume that the vector τ lies in
Y Z plane (principle plane).

Substituting (5) into (3), in a zero approximation complex
refractive index satisfies the equation (∇S̃)2 = k2

0Ñ
2. Fluctuation

component of the complex phase satisfies linear stochastic differential
equation:

ay
∂ϕ̃

∂y
+ az

∂ϕ̃1

∂z
= k0 (k0Aνδν + Ahδh) , (7)
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with

a =
(
a′za

′′
y − a′ya

′′
z

)
/a′2z , b = a′y/a

′
z,

ay = a′y + ia′′y,

a′y = N∗ sin θ
[(

η′ − n2
1

) (
η′ + ε′

)
+ sin2 θ · n2

1

(
ε′ − η′

)
− µ′′2

]
,

a′′y = N∗ sin θ
{(

η′ + ε′
) (

n2
2 − η′′

)
−

(
η′ − n2

1

) (
η′′ + ε′′

)
+ sin2 θ

[
n2

1

(
η′′ − ε′′

)
− n2

2

(
ε′ − η′

)]
− 2µ′µ′′

}
,

az = a′z + ia′′z ,

a′z = N∗ cos θ
[
2ε′

(
η′ − n2

1

)
+ sin2 θ · n2

1

(
ε′ − η′

)]
,

a′′z = N∗ cos θ
{
2

[
ε′

(
n2

2 − η′′
)
− ε′′

(
η′ − n2

1

)]
+ sin2 θ

[
n2

1

(
η′′ − ε′′

)
− n2

2

(
ε′ − η′

)]}
,

Aν = A′
ν + A′′

ν ,

A′
ν = ε′

(
η′ − n2

1

) (
η′ − 1

)
+

1
2

sin2 θn2
1

(
η′ − 1

) (
n2

1 − 2η′ + ε′
)

+
1
2

(
n2

1 − η′
) (

n2
1 cos2 θ − η′

) (
ε′ − 1

)
−1

2
µ′′2 (

ε′ − 1
)
− µ′′2

(
ε′ − n2

1 sin2 θ
)
,

A′′
ν =

[
ε′

(
n2

2 − η′′
)
− ε′′

(
η′ − n2

1

)] (
η′ − 1

)
− ε′

(
η′ − n2

1

)
η′′

−1
2

sin2 θ
{
n2

1

(
η′ − 1

) (
n2

2 − 2η′′ + ε′′
)

+
[
n2

2

(
η′−1

)
+n2

1η
′′
](

n2
1−2η′+ε′

)}
− 1

2

(
n2

1−η′
)(

n2
1 cos2θ−η′

)
ε′′

+
1
2

(
ε′−1

)[(
n2

1−η′
)(

η′′−n2
2 cos2 θ

)
+

(
η′′−n2

2

)(
n2

1 cos2 θ−η′
)]

−1
2

[
−ε′′µ′′2 + 2µ′µ′′ (ε′ − 1

)]
− µ′′2

(
n2

2 sin2 θ − ε′′
)

−2µ′µ′′
(
ε′ − n2

1 sin θ
)

Ah = A′
h + A′′

h,

A′
h =

1
1 − u

{(
η′−n2

1

)
ε′

(
η′−1

)
u+

1
2
u sin2θn2

1

(
η′−1

)(
n2

1−2η′+ε′
)

+µ′2
(
ε′ − n2

1 sin2 θ
)}

,
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A′′
h =

u

1 − u

{(
n2

2 − η′′
)
ε′

(
η′ − 1

)
−

(
η′ − n2

1

) [
ε′′

(
η′ − 1

)
+ η′′ε′

]}

+
u sin2 θ

2(1 − u)

{
n2

1

(
η′ − 1

) (
2η′′ − n2

2 − ε′′
)

−
[
n2

1η
′′ + n2

2

(
η′ − 1

)] (
n2

1 − 2η′ + ε′
)}

+
1

1 − u

[
µ′2

(
n2

2 sin2 θ − ε′′
)
− 2µ′µ′′

(
ε′ − n2

1 sin2 θ
)]

, (8)

where real and imaginary components in (8) are determined as [8]:

η̃ = η′ − iη′′ = 1 =
v

(
1 + s2 − u

)
(1 − s2 − u)2 + 4s2

− i
sv

(
1 + s2 + u

)
(1 − s2 − u)2 + 4s2

,

µ̃ = µ′ − iµ′′ =
2sv

√
u

(1 + s2 − u)2 + 4s2
− i

v
√

u
(
1 − s2 − u

)
(1 + s2 − u)2 + 4s2

,

ε̃ = ε′ − iε′′ = 1 − v

1 + s2
− i

sv

1 + s2
.

n2
1 = N2

∗ − æ2 and n2
2 = 2N∗æ,

N2
∗ − æ2 =1 − 2v

(1−v)
[
2(1−v−s2)−u sin2θ±P

]
−s[2s(v−2)±U ][

2 (1−v−s2)−u sin2θ±P
]2+[2s(v−2)±U ]2

,

N∗æ = −v
s

[
2(1 − v − s2) − u sin2 θ ± P

]
+ (1 − v)[2s(v − 2) ± U ][

2 (1 − v − s2) − u sin2 θ ± P
]2 + [2s(v − 2) ± U ]2

,

P + iU ≡
√

p + iq =

√
0, 5

(√
p2 + q2 + p

)
+ i

√
0, 5

(√
p2 + q2 − p

)
,

q = 8su(v − 1) cos2 θ, p = u2 sin4 θ + 4u
[
(v − 1)2 − s2

]
cos2 θ.

Fluctuation component of the phase expand in terms of 2-D
Fourier transform:

ϕ̃1(x, y, z) =
∞∫

∞
dkx

∞∫
∞

dkyϕ̃1 (kx, ky, z) exp (ikxx + ikyy) , (9)

with the boundary condition ϕ̃1|z=0. As a result the solution of
Equation (7) can be written as

ϕ̃1(x, y, z) = k0

∞∫
∞

dkx

∞∫
∞

dky exp (ikxx + ikyy)
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


 D

N0

z∫
0

dξN1 (kx, ky, ξ) +
F

H0

z∫
0

dξH1 (kx, ky, ξ)




+i


 E

N0

z∫
0

dξN1 (kx, ky, ξ) +
G

H0

z∫
0

dξH1 (kx, ky, ξ)







exp[(−a + ib)ky(ξ − z)], (10)

the distance z traveling by the wave in turbulent collision magnetized
plasma satisfies the condition z 	 k03

2
i (3i = min {3N , 3H}), 3N and

3H are characteristic spatial scales of electron density and magnetic
field fluctuations), D = A′

ν/a
′
z, E = (A′′

νa
′
z − A′

νa
′′
z) /a′2z , F = A′

h/a
′
z,

G = (A′′
ha

′
z − A′

ha
′′
z) /a′2z .

3. STATISTICAL CHARACTERISTICS OF THE
ANGULAR POWER SPECTRUM

Relationship between the transverse correlation function of the phase
fluctuations, caused due to large-scale irregularities (λ/2π3 	 1, λ
is the radio wavelength) and the 3-D spectral shapes of both electron
density WN (kx, ky, kz) and magnetic field fluctuations WH (kx, ky, kz),
having in general different characteristic spatial scales (we took into
account statistical independence of δν = N1/N0 and δh = H1/H0), for
turbulent collision magnetized plasma is expressed as follows:

Wϕ (ρx, ρy, z) = < ϕ̃1 (x + ρx, y + ρy, z) ϕ̃∗
1(x, y, z) >= 2πk2

0
∞∫

−∞
dκx

∞∫
−∞

dκy

[(
D2 + E2

)
σ2

NWN (κx, κy,−bκy)

+
(
F 2 + G2

)
σ2

HWH (κx, κy,−bκy)
] 1

2aκy

[1−exp(−2aκyz)]exp(iκxρx+iκyρy+2aκyz) . (11)

Here σ2
N ≡< N2

1 > /N2
0 and σ2

H ≡< H2
1 > /H2

0 are variances of
electron density and magnetic field fluctuations, respectively; kx and
ky are components of wavevector perpendicular to the magnetic field.
Equation (11) takes into account the oblique refraction of the wave
with respect to the imposed external magnetic field, anisotropy of
irregularities, dip angle of elongation of stretched inhomogeneities with
respect to the propagation of electromagnetic wave and fluctuations of
magnetic field. For turbulent collisionless magnetized plasma s = 0,
assuming that θ = 0◦ coefficients in Equation (11) are equal to: a = 0,
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E = 0, D2 = v2/ (1 ±√
u)2 [1 − v/1 ±√

u]. In high frequency bands,
u 	 1, D2k2

0 = N2
0 (reλ)2 (re is the classical electron radius) we

obtain the well-known formula [12]: Wϕ (kx, ky, z) = 2π < N2
1 >

(reλ)2 zWN (kx, ky, 0).
Correlation function of the complex field could be written as [4–7]:

WE (ρx, ρy, z) = < E (x + ρx, y + ρy, z)E∗(x, y, z) >

= E2
0 exp [ikyρy − 2 (Imkz) z] ×

×<exp{iϕ1(x+ρx, y+ρy,z)−iϕ∗
1(x, y, z)}>. (12)

It should be mentioned that the imaginary part of the wavenumber

kz =
√(

ω2Ñ2/c2
)
− k2

y appears in (12) as the argument of the

exponential term and its contribution to the statistical parameters
of phase fluctuations increases in proportion to the distance z. In
the most interesting case of multiple scattering, when the phase
fluctuations are strong < ϕ1ϕ

∗
1 >� 1, we can assume that they are

normally distributed [1, 11].
Correlation function sharply decreases as ρx and ρy increase and

the argument of the second exponential term could be expanded into
a series as follows [4–7]:

WE (ρx, ρy, z) = E2
0 exp [ikyρy − 2 (Imkz) z]

exp

(
∂Wϕ

∂ρy
ρy +

1
2
∂2Wϕ

∂ρ2
x

ρ2
x +

1
2
∂2Wϕ

∂ρ2
y

ρ2
y

)
, (13)

where the phase correlation function Wϕ is given by (11). The
derivatives of the phase correlation function are taken at ρx = ρy = 0.

The 2-D APS of scattered radiation could be defined in terms of
Fourier transformation of the 3-D spatial correlation function [11]:

S (kx, ky, z) =
1

(2π)2

∞∫
∞

dρxdρyWE (ρx, ρy, z) exp (−ikxρx − ikyρy) .

(14)
This characteristic is equivalent to the ray intensity (brightness) in
radiation transport equation [1, 11]. In the most interesting case of
strong fluctuation of the phase < ϕ1ϕ

∗
1 >� 1, APS is expressed as

follows [4–7]:

S (kx, ky, z) = S0 exp

[
− k2

x

2 < k2
x >

− (ky − ∆ky)
2

2 < k2
y >

]
, (15)
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where: S0 is the amplitude of spectral curve, ∆ky determines the shift
of spectral maximum, < k2

y > and < k2
x > are the broadening of

the APS in the principle Y Z plane and perpendicular XZ planes,
respectively. Knowledge of the phase correlation function allows us to
calculate the width of the angular spectrum and the displacement of
its maximum utilizing the following expressions [4–7]:

∆ky =
1
i

∂Wϕ

∂ρy

∣∣∣∣
ρx=ρy=0

,

< k2
y >= −∂2Wϕ

∂ρ2
y

∣∣∣∣
ρx=ρy=0

, < k2
x >= −∂2Wϕ

∂ρ2
x

∣∣∣∣
ρx=ρy=0

. (16)

The parameter range in which expressions (15) and (16) correctly
describe the angular power spectrum of scattered radiation is
determined by the following inequalities [5]: |∆kx| 	 2π/λ,√

< k2
x > 	 2π/λ,

√
< k2

y > 	 2π/λ. These conditions are not in
contravention to the assumption of strong phase fluctuations because
in a smoothly inhomogeneous medium mean spatial scale of plasma
inhomogeneities of the phase correlation function substantially exceeds
the wavelength of scattered electromagnetic waves, 3 � λ [11] and the
angle of the normal to the random wavefront ∆θ ∝ λ

√
< ϕ2

1 >/3 can
remain small even at < ϕ2

1 >� 1. Further we will consider only
electron density fluctuations, as we do not have any information about
magnetic field fluctuations in F -region of the ionosphere.

4. ANISOTROPIC GAUSSIAN AND POWER-LAW
CORRELATION FUNCTIONS

Irregularities that are responsible for fluctuations of radiation from
discrete sources and satellites are mainly located in F -region of the
ionosphere at a height of 250 ÷ 400 km. Data obtained from spaced
receiver measurements made at Kingston, Jamaica (during the periods
August 1967–January 1969 and June 1970–September 1970) show
that the irregularities between heights of 153 and 617 km causing the
scintillation of signals from the moving earth satellites (BE-B and BE-
C) are closely aligned along the magnetic field lines in the F -region
[13]. The orientation of the irregularities in the ionosphere has been
measured with respect to the geographic north observing a diffraction
pattern of the satellite signals (41 MHz) on the ground. The dip angle
of the irregularities with respect to the field lines was within 16◦. The
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anisotropic spectral features in F -region are defined for Gaussian and
power-law spectra.

Firstly, we consider the anisotropic Gaussian correlation function
describing anisomeric irregularities. Let longitudinal spatial scale of
large-scale irregularities 3‖ substantially exceeds a transversal scale
3⊥ = {3x, 3y}. Generally, the direction of elongated irregularities does
not coincide neither with the direction of wave propagation τ ∈ Y Z
(vector τ makes the angle θ with geomagnetic field), nor with the
direction of an external homogeneous magnetic field (along Z axis). If
axis X and X ′ coincide and axis Y ′ and Z ′ are rotated at an angle
α with respect to the axis Y and Z (α is the orientation angle of
anisotropy elongation of irregularities with respect to the external
magnetic field), utilizing the rotational matrix the anisotropic 3D
Gaussian spatial power spectrum is defined as:

WN (kx, ky, kz) = σ2
N

32
⊥3‖

8π3/2
exp

{
−

k2
y3

2
‖

4
1

χ2 cos2 α + sin2 α[
1 +

(
1 + χ2

)2

χ2
sin2 α cos2 α

]
− k2

x3
2
⊥

4

−χ2cos2α+sin2α

4χ2
k2

z3
2
‖−

χ2−1
2χ2

sinαcosα32
‖kykz

}
. (17)

χ = 3‖/3⊥ is the axial ratio of the field-aligned irregularities defined
as a ratio of longitudinal and transversal linear scales of electron
density irregularities, kz is the wavevector component parallel to the
geomagnetic field. Expression (17) could be rewritten as:

WN (kx, ky,−bky) = σ2
N

3‖3
2
⊥

8π3/2
exp

[
−k2

x3
2
⊥

4
− Q2(α, χ)

k2
y3

2
‖

4

]
. (18)

where

Q2(α, χ) =
1

sin2 α + χ2 cos2 α

[
1 +

(
1 − χ2

)2

χ2
sin2 α cos2 α

]

+b2 sin2 α + χ2 cos2 α

χ2
− 2b

χ2 − 1
χ2

sinα cosα,

If we suppose that kx = 0 and ky → k⊥, we obtain pictorial illustration
of a contour of equal spectral density, isospectroid, for different values
of angle of inclination α of prolate irregularities with respect to the
external homogeneous magnetic field:

m2Mk2
⊥ +

χ2

m2
k2

z + 2
(
1 − χ2

)2
sinα cosαk⊥kz = const, (19)
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where m2 = χ
sin2 α+χ2 cos2 α

, M = 1 + (1−χ2)2

χ2 sin2 α cos2 α.
For isotropic irregularities χ = 1, isospectroid represents the circle

(k2
⊥ + k2

z = const) in the principle Y OZ plane. Isospectroid for
anisotropic Gaussian irregularities is stretched in a plane normal to
the magnetic field as presented in Figure 1.

(b)(a)

Figure 1. (a) 2D isospectroid for different parameter of anisotropy if
prolate irregularities are oriented along the geomagnetic field α = 0◦,
(b) 2D isospectroid for different parameter of anisotropy if the angle
of inclination of prolate irregularities with respect to the external
magnetic field is α = 5◦.

Measurements of satellite’s signal parameters passing through
ionospheric layer and measurements aboard of satellite show that
in F -region of the ionosphere irregularities have power-law spectrum
with different spatial scales. Observations suggest that the power-
law spectrum is believed to be the most suitable model of ionospheric
irregularities. We will utilize a model of 3-D anisotropic power-low
spectrum of irregularities. Generalized correlation function for power-
law spectrum of electron density irregularities with a powerlaw index
p has been proposed in [14]. The corresponding spectral function has
the form:

WN (k) =
σ2

N

(2π)3/2

r3
0 (k0r0)

(p−3)/2(
r0

√
k2 + k2

0

)p/2

Kp/2

(
r0

√
k2 + k2

0

)
K(p−3)/2 (k0r0)

, (20)

where Kν(x) is McDonald function, r0 is the inner scale of turbulence,
L0 = 2π/k0 is the outer scale; it is supposed that k0r0 	 1. In the
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interval of wavenumber k0r0 	 kr0 	 1 spatial spectrum is written as
[14]:

WN (k) =
σ2

N

2π
Γ

(p
2

)
Γ

(
3
2

)
Γ

(
p−3
2

) L3
0(

1 + L2
0k

2
)p/2

, (21)

Utilizing functional expression for the gamma function Γ [15] Γ(z)Γ(1−
z) = π/ sin(πz), instead of L0 we introduce two spatial correlation
lengths of electron density irregularities 3‖ and 3⊥. Hence, for p > 3
spatial power-law spectrum could be rewritten as:

WN (k) =
σ2

N

2π2

Γ
(

p

2

)
Γ

(
5−p

2

)

Γ
(

3
2

) sin
[
(p − 3)π

2

]
32
⊥3‖[

1+32
⊥

(
k2
⊥+χ2k2

‖

)]p/2
,

(22)
Experimental investigations of Doppler frequency shift of

ionospheric signal show that index of the power-law spectrum of
electron density fluctuations is in the range of 3.8 ≤ p ≤ 4.6.
Experimental value of the power-law spectrum of the ionosphere (<
p >≈ 4) , measured by translucence of satellite signals [16], is within
the limits of p. Experimental observations of backscattering signals
from the artificially disturbed region of the ionosphere by the powerful
HF radio emission shows that a lot of artificial ionospheric irregularities
of the electron density are stretched along the geomagnetic field.
Power-law spectral index was within the limits p = 1.4 ÷ 4.8 for
different heating sessions using “Sura” heating facility in the frequency
range of 4.7÷9 MHz (ordinary mode) with the effective radiated power
50 ÷ 70 MW beamed vertically upwards [17].

5. NUMERICAL CALCULATION OF STATISTICAL
CHARACTERISTICS

Knowledge of the correlation function of the phase allows us to
calculate both the broadening and displacement of the maximum of
the APS in the geometrical optics approximation. Substituting (18)
into (16) expression for the broadening of the APS in the principle
plane for anisotropic Gaussian power spectrum is obtained:

< k2
y >

k2
0

= 2
√

πσ2
N

(
D2 + E2

) z

Q33‖χ
. (23)

Figure 2 illustrates the behavior of the normalized broadening of
the APS versus angle of refraction θ. Statistical characteristics are
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normalized on the wavenumber of an incident EM wave. Numerical
calculations for the anisotropic Gaussian power spectrum have been
carried out in F -region at a height of 280 km for the basic frequency
40 MHz under the following plasma parameters: σ2

N = 10−6, k03‖ =
5 · 103, z/3‖ = 100. Figures show that when the angle α between
elongated electron density irregularities and external magnetic field
increases, amplitude of broadening of the APS decreases. Spatial
spectrum narrows in proportion to the parameter of anisotropy χ
at a fixed angle α (Figure 2(b)). Simple relationship between a
displacement of a maximum of the APS and its broadening could be
written as ∆ky = az < k2

y >. Numerical estimations for displacement
of maximum of the APS have been made for the fixed angles: θ = 20◦
and α = 5◦: ∆ky/k0 = 2 · 10−7 (at χ = 3), ∆ky/k0 = 5 · 10−7 (at
χ = 5) and ∆ky/k0 = 6 · 10−7 (at χ = 10).

(b)(a)

Figure 2. (a) Normalized broadening of the angular power spectrum
versus angle of refraction θ for different angle of inclination of prolate
irregularities α, parameter of anisotropy χ = 3, (b) normalized
broadening of the angular power spectrum versus angle of refraction θ
for different parameter of anisotropy χ at angle of inclination of prolate
irregularities α = 30◦.

The phase scintillations are often not measured directly, but rather
as a difference of scintillations at two points separated by a distance
ρy. For simplicity we will consider two observation points in mutually
perpendicular directions normal to the radio path. Setting (22) into
(11), taking into account smallness of the parameter a and expanding
the exponential term into the series, correlation function of the phase
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has the form:

Wϕ (0, ρy, z) = 2(4−p)/2σ2
N

(
D2 + E2

) Γ
(

5 − p

2

)

Γ
(

3
2

)

sin
[
(p − 3)π

2

]
k2

0z3‖χ
(p−2)/2

(1 + b2χ2)p/4

(
ρy

3‖

)(p−2)/2

×K(p−2)/2

(
χρy

3‖
√

1 + b2χ2

)
. (24)

Variance of correlation function of the phase at p > 3 is given by the
following expression:

σ2
ϕ =

1√
π
σ2

N

(
D2+E2

)
Γ

(
5−p

2

)
Γ

(
p−2

2

)
sin

[
(p−3)π

2

]
k2

0z3‖√
1+b2χ2

. (25)

Knowledge of the correlation function of the phase (11) allows
us to calculate the broadening of the APS of scattered EM
waves caused due to electron density irregularities in turbulent
collision magnetized plasma. Utilizing the expression < k2

x >=
−

[
∂2Wϕ (ρx, ρy, z) /∂ρ2

x

]
ρx=ρy=0 [5–7] we will have:
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zχ2

3‖ (1+b2χ2)3/2
. (26)

Broadening of the APS in the principal plane is equal to(
< k2

y > /k2
0

)
=

(
< k2

x > /k2
0

)
/

(
1 + b2χ2

)
. Hence, spatial spectrum

of scattered radiation in the principal plane narrows inversely
proportional to the anisotropy factor χ.

Numerical calculations for the power-law spectrum in F -region
of the ionosphere at a height 280 km have been carried out for the
following parameters: k03‖ = 104, σ2

N = 10−4 [18] z/3‖ = 7.0.
Figure 3(a) illustrates that normalized correlation function of the
phase (NCF) of electron density irregularities decreases in proportion
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(b)(a)

Figure 3. (a) Dependence of the normalized correlation function
of the phase of scattered radiation versus normalized distance of the
base for different values of anisotropic factor χ, (b) Dependence of
the normalized correlation function of the phase of scattered radiation
versus anisotropic factor for different values of refraction angle θ
(ρy/3‖ = 0.5).

to a distance ρy normalized on the longitudinal characteristic spatial
scale of elongated irregularities 3‖ at θ = 10◦ with a power-law
index of p = 4. Calculations show that curve smoothly decreases in
isotropic case (χ = 1). At small distance of ρy/3‖ the curves of NCF
sharply decrease inversely proportional to the factor of anisotropy χ.
Figure 3(b) illustrates the dependence of the NCF versus parameter of
anisotropy χ. With increasing the angle of refraction θ with respect to
the external magnetic field, NCF decreases and beginning from χ = 13
tends to saturation (for θ = 10◦). Anisotropy of electron density
irregularities has a substantially effect on the broadening of the APS of
scattered EM waves. Figures 4(a) and 4(b) illustrates the broadening of
the spatial spectrum versus coefficient of anisotropy at different angles
of refraction θ = 10◦, 15◦, 20◦. Firstly, APS of scattered radiation
increases and then smoothly decreases in proportion to the anisotropy
factor at a power-law index p = 4.5. The reason is that in geometrical
optics approximation, in non-absorbing media (neglecting fluctuations)
when both amplitude and phase S are real quantities, vector of energy-
flux density and vector ∇S are collinear and directed to the normal
of the phase front, while in absorptive media the directions of wave
propagation ∇S1 and the direction of fastest dumping of the wave ∇S2

are not coincided [5, 7]. Particularly, normalized broadening reaches its
maximum in XOZ plane at χ = 8 (if θ = 10◦); at χ = 5.3 (if θ = 15◦)
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and at χ = 4 (if θ = 20◦); in the principle plane Y OZ at χ = 4.7 (if
θ = 10◦), at χ = 3 (if θ = 15◦) and at χ = 2.2 (if θ = 20◦).

(b)(a)

Figure 4. (a) Dependence of the normalized broadening of the angular
spectrum versus anisotropic factor for different values of refraction
angle θ in XOZ plane, (b) Dependence of the normalized broadening
of the angular spectrum versus anisotropic factor for different values
of refraction angle θ in Y OZ plane.

6. SPECTRAL APPROACH OF IONOSPHERIC
SCINTILLATION

R.m.s phase level and the scintillation level S4 are computed as [19]:

< ϕ2
1 >1/2=

∞∫
−∞

dkxdkyWϕ (kx, ky, z) , S2
4 =

∞∫
−∞

dkxdkyWS (kx, ky, z) ,

(27)
where WS (kx, ky, z) is 2D scintillation spectrum (see below).

Scintillation of radio signals are related with the structure
of ionospheric irregularities, i.e., with spatial-temporal behavior
of electron density fluctuations. Irregularities of electron density
embedded in the F -region impose an angular deviation of the
incident radio wavefront that produces an interference pattern as the
wave travels inside the turbulent collision magnetized plasma. The
condition of a non-fully developed interference pattern is associated
with significant Fresnel filtering factor; severe attenuation in the
interference pattern of the long period fluctuations is associated with
large irregularities. The standard relationship for weak scattering



Progress In Electromagnetics Research, PIER 70, 2007 323

between the 2D scintillation spectrum and the 2D phase spectrum is
given by [20]:

WS (kx, ky, z) = 4Wϕ (kx, ky, z) sin2
(
k2
⊥/k2

f

)
, (28)

where k2
⊥ = k2

x + k2
y, kf = (4π/λz)1/2 is the Fresnel wavenumber.

Scintillation level S4 that gives additional information about the
irregularities is expressed as follows [19]:

S2
4 =

∞∫
−∞

dkxdkyWS (kx, ky, z) . (29)

Equations (28) and (29) describe 2D diffraction pattern at the ground.
Scintillation model is based on Gaussian irregularity. Substituting (17)
into (28) and then into (29), after integration we obtain:

S2
4 = 2 < ϕ2

1 > G, (30)

where

< ϕ2
1 >=

√
πσ2

N

(
D2 + E2

) k2
03‖z

Qχ
, (31)

G = 1 −
(

1 + 4
k4
⊥

k4
f

)−1/4 (
1 + 4

k2
⊥

Q4χ4k4
f

)−1/4

cos

(
1
2
arctg

2k2
⊥

k2
f

+
1
2
arctg

2k2
⊥

Q2χ2k2
f

)

is the Gaussian filtering factor. Equation (31) yields the relationship
between the large-scale electron density irregularities and the emerging
wavefront in terms of the phase spectrum. It is expressed through
an anisotropy coefficient, angle of refraction of the wave and angle
of inclination of prolate inhomogeneities with respect to the external
magnetic field. The dependence of the level on the anisotropic
features is illustrated in Figure 5 based on the Gaussian spectral
form for different values of coefficient of anisotropy χ. The condition
k⊥ 	 kf/

√
2 is associate with a significant filtering, whereas k⊥ �

kf/
√

2 is associated with a fully developed diffraction pattern. The
shaded area corresponds to a transition region between these two
regions. Gaussian filtering factor G ≈ (k⊥/χQkf )4

(
1 + Q2χ2

)2
/2

at k⊥ 	 kf/
√

2 (or χ2λz 	 32
‖) and is independent on χ at
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Figure 5. Scintillation level as a function of distance in the layer
based on anisotropic Gaussian irregularities for different values of the
anisotropic factor χ at θ = 0◦, α = 5◦.

χQ � 1, G ≈ 1. For a fully developed interference pattern,
Fresnel filtering is negligible [19]. Gaussian irregularities have been
used for interpreting ionospheric scintillation measurements at meter
wavelength. Numerical calculations have been carried out in F -region
at a height 280 km for the basic frequency 40 MHz and under the
following plasma parameters: σ2

N = 10−6, k03‖ = 5·103, z/3‖ = 100. In
this case kf = 1, 67 km−1, k� = 2π/3‖ = 1, 05 km−1. The interference
pattern observing at the ground is an artifact of the Fresnel filtering
attenuating factor and is associated with the left portion of Figure 5.
The curves corresponding to different parameter of anisotropy are
very close to each other, which demonstrate an internal consistency
of the obtained results. Figure 6 illustrates the plots of variation of
the normalized scintillation level S4 as a function of 2 (k⊥/kf )2 =
2χ2λz/π32

‖ for anisotropic Gaussian power spectrum. It is clearly
shown that at small distances the scintillation index S4 increases and
then, with increasing z, tends to saturation. Particularly, at χ = 10,
3‖ = 6 km, 40 MHz, starting with z = 750 km scintillation level tends
to saturation. According to the experimental observations data S4 is
equal to 0.54 ± 0.04 at frequency 40 MHz [21]. From Figure 5 it could
be easily shown that scintillation index reaches this value at distance
z = 98 km from plasma-vacuum boundary at χ = 10.

At
√

< ϕ2
1 > < 1 radian diffraction pattern on the ground such as

correlation radius of the phase is equal to correlation radius of electron
density fluctuation in the ionosphere [22]. In our case dispersion of
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Figure 6. Normalized scintillation level as a function of distance in
irregular layer based on anisotropic Gaussian irregularities for normal
refraction of the wave θ = 0◦ and at angle of inclination of irregularities
α = 5◦ for different values of the parameter of anisotropy χ.

Table 1.

θ

(degree)

α

(degree)
χ

√
< ϕ2

1 >

(radian)

S4 for

2
(

k⊥
kf

)2

= 10−1

S4 for

2
(

k⊥
kf

)2

= 10

10 5 1 0.4736 0.0802 0.6674

10 5 4 0.4610 0.0743 0.6493

10 5 20 0.3342 0.0399 0.4644

10 10 1 0.4736 0.0802 0.6674

10 10 4 0.4736 0.0802 0.6674

10 10 20 0.4736 0.0802 0.6674

30 5 1 0.5072 0.0769 0.7139

30 5 4 0.3662 0.0431 0.5069

30 5 20 0.1739 0.0194 0.2219

30 30 1 0.5072 0.0769 0.7139

30 30 4 0.5072 0.0769 0.7139

30 30 20 0.5072 0.0769 0.7139
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the phase is equal to
√

< ϕ2
1 > = 0.47; 0.51 at θ = α = 10◦; 30◦,

respectively. Moreover, variances of the phase and the scintillation
levels for different θ, α and χ are summarized in Table 1. From
the Table 1, it follows that an increase of parameter of anisotropy
leads to decrease of variance of the phase at fixed ratio of θ: α.
Numerical calculations show that S4 is independent on parameter of
anisotropy χ, when radio wave is propagating in turbulent magnetized
plasma along the direction of prolate irregularities of electron density
irregularities. Particularly, at θ = α = 10◦, 30◦ index of scintillation is
equal S4 ≈ 0.08 (the left portion of Figure 5) and S4 ≈ 0.7 (the right
portion), respectively.

7. CONCLUSION

Statistical characteristics of the APS of scattered radiation have been
investigated for both Gaussian and power-law spectra of electron
density irregularities in the F -region of ionosphere. The applied
theoretical formulation could be useful for developing a spectral
model for F -region irregularities. The next step of our work is
the investigation of an influence of magnetic field fluctuations on
the APS in turbulent magnetized ionospheric plasma. Study of the
spatial spectrum of multiply scattered radiation emitted by cylindrical
antenna in a magneto-plasma [23, 24] is of a crucial importance under
conditions of actual experiment.
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