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Abstract—Aim of this paper is to present an efficient scheme
of domain decomposition to study, in the time domain, multiple
scattering by separated obstacles and sources with any composition and
geometry, in an homogeneous media. A method of decomposition into
disjointed sub-domains is proposed, resting onto an homogeneous and
adaptable approximation of coupling terms and leading to a natural
parallelized and hybrid numerical schema. It permits to significantly
lower the cumulative error of dissipation and/or dispersion introduced
by classical scheme. It also leads to a suitable answer for a wide class
of problems involving large scattering scenes limiting for classical time
domain methods. Numerical examples are given to illustrate it.
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1. INTRODUCTION

This paper is devoted to the research of a pertinent numerical
approach to handle large electromagnetic scattering scenes in time
domain. Unfortunately, straightforward answers are no longer
suitable in this case. As an example, it is well-known that for
the introduction of the Finite Difference in Time Domain (FDTD)
method [21], numerical calculus to solve electromagnetic problems has
been improved. However, this method, like the others, induces errors
on the solution. They are dispersive ones. If this scheme can give
fast and low storage accurate results in most of the cases, treatment
of wide scattering scenes is still a delicate problem. Indeed, as the
global volume of the mesh grows, dispersive errors are cumulated and
increase. Hence, when being interested in the simulation of coupling
between some disjointed elements and sources, these cumulative errors
lead to an obviously divergent solution.

An answer to this problem can be found in a refinement of the
global mesh. Another one could rest onto hybridization between
several different schemes like FDTD, Finite Volume (FVTD) and
Time Integrated Methods (TIM) [15]. Nevertheless, none of them are
suitable in regard of the overall cost (in terms of memory and CPU
time) to perform the computation of a large scene [10, 16, 19].

A restrictive point to these approaches lies into the necessity to
mesh the free space between the obstacles/sources. Indeed, a local
refinement does not ensure a gain of accuracy on the whole solution, so
free space parts have to been refined too. A contrario, when computing
by TIM, no useless volumes are introduced. Hence a natural idea is
to isolate all obstacles and sources into disjointed sub-domains (when
they are not too close one each other) and “forget” the free space part.
Coupling between all the sub-domains will therefore be evaluated by
use of an integral formula.

Main difficulties of this approach can be summed up into two steps:
the anterpolation and the interpolation phases. This terminology
comes from the Fast Multipole Method (FMM) used to solve integral
equations in the frequency domain (see [4] and references). The first
phase consists in evaluating contributions from one domain to the
others. The second step is to interpolate computed fields during the
anterpolation and update contributions onto a given domain from the
other ones.

One way to treat this multi-domain approach, introduced by
Olivier [14] and later extended by Johnson and Rahmat-Samii [5],
lays onto restriction of computational domains by Absorbing Boundary
Conditions (ABC) derived from integral representation of the
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electromagnetic fields. EM-fields are then evaluated using FDTD and
coupling between domains, by the time-domain equivalence principle,
can then be done by some Kirchhoff’s formula. However the authors
notice problems of stability, consistency and very significant over-costs
in their numerical experiments. To improve the method and make it
suitable, Bernardi et al. [2] tried to lower costs of the anterpolation
stage, basically by introducing small groupings onto the surfaces used
to apply the equivalence principle. From another point of view, Xu
and Hong recently derived a specific integral formula in the 2D case
to make the interpolation stage cheaper [20]. However, stability and
consistency problems are still noticed. At last, a significant gain on
the global cost of the method could rest on “compressive” algorithms
such as the one introduced to treat the ABC in [7].

In this paper we are going to present another way to solve the
multi-domain problem. The first crucial point lays onto its formulation
as a system of sub-problems of Maxwell’s equations where each one is
homogeneous out of a given volume. Coupling terms will be given as
currents on Huygens’ surfaces and evaluated by some specific integral
formula. Main differences between our method and previous ones can
be summed into three specific elements.

First, the decomposition we are going to detail in the sequel could
appear as being very similar as [14, 5]. Nevertheless, we propose a
different starting point by expressing the coupled system of Maxwell’s
equations as the search for n electromagnetic fields (Ei, H i), i = 1 · · ·n,
where previously only one (E,H) was looked for. In this second case,
the only ABC which can be used is given by Dirichlet-to-Neumann
or Neumann-to-Dirichlet operators, On-Surface Radiating Conditions
(OSRC) or Integral Radiating Boundary Conditions (IRBC) for
example. Main advantage of this new decomposition is then to solve
small Maxwell’s systems in homogeneous media whose can be bounded
using any ABC and replace OSRC or IRBC by Perfectly Matched
Layers (PML) for example.

Then, efficiency for the anterpolation stage arises from a fast
and accurate approximation of any given integral representation of
electromagnetic fields propagating into the vacuum. This is a crucial
point to simplify expression of these non-local expressions. A classical
one is the well known Far Field formula [22]. It provides fast
computations and good results. However, as its accuracy is quantified
in O(1/d) (d being the distance from the surface were electromagnetic
currents are taken to the observatory), in the context of a given
scattering scene we can not ensure 1/d to be neglectible in regard of
all errors introduced by used scheme. It can be enforced by developing
to various higher orders of 1/d as done for the Near-to-Near formulas
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(see [3, 6, 17, 18]). Again, computations of these methods either have
a too restrictive range of applications, or present a significant over-
cost according to the performances we are looking for. Our previous
work [11, 13] was dedicated to establish and study another radiation
formula, called Near-to-Relative-Far. Its error is given in terms of δ/d,
where δ stands for an adaptive and local parameter. In the present
paper, we will chose to consider this formula to compute the coupling
terms. Consequently we will be able to present a balanced system
between accuracy and performances.

At last, for the interpolation phase, the steady point is to diminish
the number of values necessary to reconstruct the contributions
into any given sub-domain from all the others. A straightforward
summation of these contributions onto the full discretization of a
Huygens surface is not realistic due to the amount of data involved.
Our approach is to introduce again an approximation in δ/d which
considerably reduce the numerical effort. Once again, we will be able
to take the tradeoff between efficiency and numerical errors.

Hence, in this paper we will successively derive the method
(Section 2). Then we will present some numerical experiments to
highlight its efficiency (Section 3), before concluding (Section 4).

2. MULTI-DOMAIN DECOMPOSITION

Consider the coupling problem composed of sources and scatterers
spread over an homogeneous medium. Principle of the method is
to separate each element (source or scatterer) from the others into
disjointed domains Di, i = 1..n. Then we pick up electric and magnetic
currents, J i = nPi ×H and M i = −nPi ×E, onto polyhedral surfaces
(even not convex ones) P i, so-called pick up surfaces. From these
J i and M i we evaluate contributions from a given domain Di to the
others, and introduce them as source terms onto Huygens surfaces
noted Hi, i = 1..n. See Figure 1 for an illustration of this principle.
Non local sources (like plane waves) will be taken into account by
introducing them onto the Huygens surfaces.

We want to determine electromagnetic field versus time at given
points in the outer space of each domain, and (possibly) other ones
into the domain close to the obstacle/source.

2.1. Formulation of the Problem

For the sake of simplicity in reading whole equations, let us introduce
the following notations:
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Figure 1. Principle of the multi-domain decomposition.

• let u = (E,H)T be the electromagnetic field, and uinc =
(Einc, H inc)T be the exterior source terms,

• for any given index i , i∗ will stand for any index j such that j 	= i,
consequently

∑
i∗Ai∗ will stand for

∑
j �=i Aj ,

• to any given surface F we associate as V (F) the embedded volume
by F , and nF its outward unitary normal vector,

• to any given Huygens surface Hi, we introduce the tangential
operator

BH
i =

(
0 nHi × δHi

−nHi × δHi 0

)
,

• and, at last, to any given pick-up surface P i, the fol-
lowing tangential operator BP

i will be defined BP
i =(

0 nPi × δPi

−nPi × δPi 0

)
.

Using these notations, the whole scattering problem we have to
solve is given by instationnary Maxwell equations:{

A(x)∂tu+ Ru+ B(x)u = uinc,
u(t = 0) = 0, (1)

where

A(x) =
∑

i

(
εi
r(x)ε0I3 0

0 µi
r(x)µ0I3

)
=

∑
i

Ai(x),
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R =
(

0 −∇×
∇× 0

)
, and B(x) =

∑
i

Bi(x).

Each operator of multiplication Bi(x) is supposed to be non-negative
and localized into its corresponding domain Di. Each of them
represents the dissipative comportment of sources/obstacles enclosed
into Di (e.g., conductivity terms). By the same way, Ai(x) represents
the electric and magnetic characteristic of sources/obstacle in Di. At
last, uinc are electric and magnetic sources. This includes in the same
time sources embedded in the domains (e.g., antennas, source points),
and exterior ones (e.g., plane waves) which can be introduced onto the
Huygens surfaces surrounding obstacles/sources into Di.

Thus, let us introduce G the Green kernel of homogeneous
unstationary Maxwell’s equations, and denote by f ∗(t,X) g the space-
time convolution of functions f and g, and YW is the characteristic
function on any given space domain W .

Then the multi-domain principle can be expressed as:

Find ui, i = 1..n solutions to
Ai(x)∂tui + Rui + B(x)ui = uincYDi

+BH
i

(∑
i∗

G ∗(t,X) B
P
i∗ui∗

)
,

ui(t = 0) = 0.

(2)

Then, instead of looking for the solution of the large problem
(1) involving multiple scatterers/sources spread over the whole
space, we are led to solve n local scattering problems of kind (2)
with coupling terms given as source terms on each problem by
BH

i

(∑
i∗G ∗(t,X) B

P
i∗ui∗

)
.

2.2. Link between Problems (1) and (2)

As we will search all the functions ui, i = 1..n instead of u because
they can be defined (in a domain smaller than the whole problem one),
they appear as a kind of partial solutions. Obviously, according to the
decomposition we suggest in the beginning of this section, it appears
that solutions u to system (1), and (ui)i=1..n to (2), verify the following
relations:

• for the interior part of the problem: ∀i, ∀(t,X) ∈ R+ × V (Hi)

u(t,X) = ui(t,X), (3)
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• and for the exterior part: ∀(t,X) ∈ R+ × (∪iDi)
c

u(t,X) =
∑

i

G ∗(t,X) B
P
i ui. (4)

This can be easily seen by considering the following function ũ

ũ =
∑

i

[
YDiui +

∏
i∗
YV (Hi∗)cY

(Di)cG ∗(t,X) B
P
i ui

]
. (5)

Indeed, by reporting ũ in (1) and evaluating it first in each domain Di,
and then in the exterior space of ∪iDi, we verify that ũ is solution of
(1) onto the whole domain R+ × R3, and so ũ = u. Hence, restricting
(5) to any V (Hi) leads to (3). By the same way, its restriction to
(∪iDi)

c gives (4).
Then, using equation (3) we have the value of electromagnetic field

inside each volume V (Hi) simply by the solution (2) in this volume ;
and using equation (4) we will be able to compute the electromagnetic
field in the exterior domain

(
∪Di

)c.
We can notice that according to previous relations (3) and (4),

solving (2) involves only ui values in domain Di. So, significant profit
of the multi-domain method lies into the possibility of restricting
computational domains for all ui to their own domain Di by use
of Absorbing Boundary Conditions like Perfectly Matched Layers
(PML) [1]. This is a keypoint of the method which leads to a set
of small and realistic computational problems.

2.3. Anterpolation-interpolation Principle

Main problem solving (2) and using formula (4) is the non-
local character of the space-time convolution by Green’s kernel G.
Practically it involves huge data storage and strong computations to
have a fine result. In the frequency domain, these are well-known
difficulties in programming Integral Equations to solve Maxwell’s
equations. Hence, we will propose to follow a similar way as used
in the Fast Multipole Methods (see [4] and references) by introducing
two phases in the solving process:

(i) an anterpolation phase which consists in computing the
contribution from a given domain Di to the others,

(ii) an interpolation phase which is the reconstruction of the coupled
problem by adding all contributions coming from the other
domains Di∗.
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Moreover, in each of these two phases, approximations are introduced
in order to simplify calculations and to diminish storage and CPU time
costs.

2.3.1. Anterpolation

According to system (2), anterpolation lies onto the calculus of the
coupling term G ∗(t,X) B

P
i ui, from solution ui of (2) on domain Di,

to each point of the Huygens’ surface Hi∗ in any other domain Di∗.
As G ∗(t,X) B

P
i ui is computed from currents on the pick-up surface

P i to points in the outer domain of V (P i), according to the sub-
domain splitting made in the first section, we can ensure that the
distance from such a point X to this surface P i is strictly greater than
a minimal distance d > 0. As it is, we will use the Near-To-Relative-
Far (NTRF) radiation method introduced in [11] to compute (Ei, Hi)
values at point X:

Ei(t,X) ≈
∑

k

∫
Pi

k

[
1

c0dk
(Z0Tk∂tJi − tk × ∂tMi)

+
Z0

d2
k

(
3TkJi − 2NkJi −

1
Z0

tk ×Mk

)
+
c0Z0

d3
k

∫
t
(3TkJi − 2NkJi)

]
(t− Tk, y)

dy

4π
,

(6)

Hi(t,X) ≈
∑

k

∫
Pi

k

[
1

c0dk

(
1
Z0

Tk∂tMi + tk × ∂tJi

)
+

1
Z0d2

k

(3TkMi − 2NkMi + Z0tk × Ji)

+
c0

Z0d3
k

∫
t
(3TkMi − 2NkMi)

]
(t0 − Tk, y)

dy

4π
,

(7)

where Tkv = tk × (tk × v), Nkv = nk × (nk × v), Z0 =
√

µ0

ε0
and

c0 = 1√
µ0ε0

; Tk = dk/c0 stands for the time for the signal to travel
from Xk to point X. Formulas (6-7) are constructed with an arbitrary
cutting out of P i into a set of small “sub-faces” (P i

k)k, and choosing
points Xk ∈ P i

k. At last, nk is the outward unitary normal vector to
P i

k, and tk is the normalized vector tk = 1
dk

−−→
XXk.

These approximations are established under the following
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assumption (see [11, 13])

d−1δ � 1, (8)

where δ is a characteristic length describing a reference sub-face S
(S = Cδ2 with C > 0) such that each sub-face of P i is smaller than S
; and d stands for the smallest value of all dk, k.

Hence, we can sum up the anterpolation phase by the following
approximation

G ∗(t,X) B
P
i ui ≈ ˜[G∗(t,X)]B

P
i ui, (9)

where ˜[G∗(t,X)]BP
i ui stands for the value of (Ei, Hi) computed at X

using formulas (6) and (7).

Main interests in using the Near-to-Relative Far formula for the
anterpolation phase are lying into the following considerations:
(i) First terms of formula (6)–(7) (terms in d−1) can be interpreted

as a time-localized version of Yee’s far field expression [22]. As
other terms are decreasing faster when d grows (in d−2 and d−3),
this ensures us to have same fine results as using Yee’s far field.
This point validates straightforwardly the far field behavior of our
formulations. Moreover, numerical experiments are also validating
the accuracy of the NTRF formula when observation point X is
coming very close to the pick-up surface (at a few cells from P i).

(ii) As higher order terms (in d−2 and d−3) have basically the same
expression as lower ones (in d−1), numerical implementation of
(6-7) will not be more complicated than the well-known Yee’s far
field implementation [8].

(iii) Error introduced by derivations leading to formulas (6)–(7) is
given in O(supi

(
(di)−1δi

)
). To grant the error to be small with

this estimation leads to consider the following alternative:
• consider that X is far from every P i

k (d → ∞),
• or give a finer set of Pi if X is closer (δ → 0).

This explains the Relative-Far character of formulas (6)–(7).
Distance d to the observation point is no longer an absolute and
unique criterion like for Near-to-Far or Near-to-Near formulas.
This is now its comparison with a sizable characteristic edge δ
of the sub-faces splitting (P i

k)k which is considered.

2.3.2. Interpolation

The other restrictive point, on a computational point of view, lies onto
the necessity to have ui∗ values onto the whole Huygens surface Hi.
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This involves an a priori huge number of points onto Hi to give an
accurate result. But the more numerous sampling points are, the more
expensive computations will be. Aim of the interpolation phase is to
restrict this number of points to a lower one, and to give a method
of reconstruction to evaluate ui∗ values onto the whole Hi with only
these few points.

To do so, we consider two points X and X ′, and we evaluate
electromagnetic fields by (6)–(7). They will be respectively referred to
as (Ẽ, H̃) and (Ẽ′, H̃ ′). We also denote by dk and d′k the two distances
dk = |Xk−X| and d′k = |Xk−X ′|, and by tk and t′k the two normalized
vectors tk = 1

dk

−−→
XXk and t′k = 1

d′k

−−−→
X ′Xk.

As it was done for the Huygens surfaces by introducing a cutting
out of characteristic length lower than δ, we assume symmetrically that
|X −X ′| ≤ δ. Following inequalities take place

dk − δ ≤ d′k =
∣∣∣−−→X ′X + −−→

XXk

∣∣∣ ≤ δ + dk, (10)

and under the assumption δd−1
k � 1 we have

∣∣ti − t′i
∣∣ =

1
di

∣∣∣∣di

d′i

−−−→
X ′

0Xi −−−−→
X0Xi

∣∣∣∣
=

1
di

∣∣∣∣di − d′i
d′i

−−−→
X0Xi −

di

d′i

−−−→
X ′

0X0

∣∣∣∣
≤ 1

di

(
δ

d′i
di +

di

d′i
δ

)
= O

(
δ

di

)
.

(11)

Then we evaluate
∣∣∣(Ẽ, H̃)T − (Ẽ′, H̃ ′)T

∣∣∣ using (6-7) and we introduce
the inequalities (10)–(11). This leads to (see [12] for the complete
details of the proof)∣∣∣∣( Ẽ

H̃

)
−

(
Ẽ′

H̃ ′

)∣∣∣∣ ≤ O

(
δ

d

)
, (12)

where d is such that on each P i we have 0 < d ≤ dk, ∀k.
Hence, relation (12) ensures that for any given point X, and

any X ′ such that |X − X ′| ≤ δ, the difference between the values
of electromagnetic fields computed by (6-7) at X and X ′ has the same
order as the error made when computing them (i.e. in O(δ/d)).

So, interpolation phase consists simply in computing ui values at
some reference points of the Huygens surface Hi and to assume it to
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have the same value at neighboring points (situated at less than δ from
the reference ones). This can be summed up by the approximation

BH
i ≈ [̃BH

i ], (13)

where [̃BH
i ] stands for the piecewise function previously introduced.

2.3.3. Full Scheme of the Multi-domain Method

According to (9) and (13), the multi-domain method can be summed
up as the following approximation of (2):

Find ũi, i = 1..n solutions to
Ai(x)∂tũi + Rũi + B(x)ũi =

[̃BH
i ]

(
uinc +

∑
i∗

˜[G∗(t,X)]B
P
i∗ũi∗

)
,

ũi(t = 0) = 0,

(14)

where [̃BH
i ] and ˜[G∗(t,X)]BP

i∗ui∗ are respectively defined by (13) and
(9), and ũi stands for the approximation of ui.

Moreover, when functions ui are smooth enough, we can ensure
that error done in solving (14) instead of (2) is given by

‖ui − ũi‖ ≤ O

(
δ

d

)
. (15)

Stability in finite time of the full system (14) is proved in [12].

3. NUMERICAL EXAMPLE: COUPLING BETWEEN AN
ANTENNA AND A VEHICLE

We look at the coupling problem between a car (only the metallic
parts are considered) and a given antenna. As the antenna is located
at two meters away from the car, we perform a decomposition in sub-
domain as represented on Figures 2–3. The antenna is assumed to
be the only source of this case, and coupling effects are naturally
taken into account by the two different approaches tested there: a
single domain decomposition using a FDTD method, and the multi-
domain decomposition by the multi-domain method. Its bandwidth is
from 20 MHz to 1 GHz. Smallest mesh size on each domain is above
h = 0.0125 m, and time step used is of 2.5 10−11 s. Moreover, costs in
term of CPU time and memory are detailed in the Table 1.
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Figure 2. Computational domains for one domain and multi-domain
methods: One domain configuration.

-3
-2

-1
0

1
2

3
4

5
6

X
-1

0
1 Z

1

2

X

Y

Z

Figure 3. Computational domains for one domain and multi-domain
methods: Multi-domain decomposition.
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To perform the computations on the multi-domain case, we have
chosen a δ/d maximal value of 0.15 in the car sub-domain and also
of 0.15 in the antenna one. This leads to the results presented in the
Figures 4–5. The observation point (P1) is placed at half distance
between the car and the antenna.

4.00e09 7.00e09 1.00e08 1.30e08 1.60e08
Time t  (s)

0.0002

0.0001

0

0.0001

0.0002

H
z 
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FDTD
FDTD /2
MD (prop. 0.15)
MD (prop. 0.1)

Figure 4. Comparison of results obtained respectively with one
domain and multi-domain methods: Results at point P1.
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Figure 5. Comparison of results obtained respectively with one
domain and multi-domain methods: Detail of the results at point P1.
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Table 1. Comparison of costs between domain and multi-domain
computations (values are compared to the one domain FDTD results).

Method CPU Time Memory cost
One domain FDTD (h) x1 x1
One domain FDTD (h/2) x13.61 x6.36
MD (prop. 0.15) [antenna] (h) x5.01 x0.29
MD (prop. 0.15) [car] (h) x8.1 x0.62
MD (prop. 0.1) [antenna] (h) x9.01 x0.32
MD (prop. 0.1) [car] (h) x21.18 x0.66

We have performed the one domain computations onto two
meshes: a h mesh and a h/2 one. The multi-domain mesh is obtained
as two parts (one around the antenna, and the other close to the car)
of the mono-domain one in h. On Figure 4, one can see that results
are roughly the same for all the methods. Moreover, we see that the
multi-domain method is stable for long time computations.

The most important point is lying into the Figure 5 where one
can see that a refinement of the meshing for one domain computations
brings curves very close to the multi-domain ones. Indeed, the h
computations for one domain calculus are suffering from the dispersive
errors of the method cumulated from the antenna to the car. This is
very easy to see when refining to a h/2 mesh and comparing the curves.
However, when using the multi-domain decomposition we have a very
accurate result even if we use the coarse mesh. This is in agreement
with the aim of the method which was to enforce the precision of the
coupling by diminishing the cumulative errors due to dispersion onto
wide meshes.

At last, if we compare the costs relative to each calculus (see
table 1) we can see that for a equal or better accuracy on the solution,
the multi-domain method involves less memory and requires almost
the same time as for the fine one-domain computations. This makes
our method a very interesting and efficient one to study this kind of
configurations.

4. CONCLUSION

In this article, we have presented a new decomposition into disjointed
sub-domains for accurate and efficient computing of wide scattering
scene in an homogeneous lossless media. It can give with the
same accuracy values for the electromagnetic fields close to the
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obstacles/sources (in the computational domains) and at almost any
points in the media (out off the computational domains).

Accuracy of this method is linked to a free and homogeneous
parameter δ/d which can be set arbitrarily. It follows a consistent
scheme where the free parameter δ induces natural groupings onto
Huygens and pickup surfaces which permits to relax significantly the
computational effort. This provides a suitable numerical response for
a large class of scattering problems, and an hybrid method easy to
parallelize. Moreover, it has been successfully applied onto a realistic
example.

At last, all these development are led in the time domain so wide-
band and transient problems are naturally taken into account.
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