
Progress In Electromagnetics Research, PIER 70, 281–296, 2007

A COMPARISON OF MARCHING-ON IN TIME
METHOD WITH MARCHING-ON IN DEGREE
METHOD FOR THE TDIE SOLVER

B. H. Jung

Department of Information and Communication Engineering
Hoseo University
Asan, Chungnam 336-795, Korea

Z. Ji

Laird Technologies
3425 N. 44th St. Lincoln, NE 68504, USA

T. K. Sarkar

Department of Electrical Engineering and Computer Science
Syracuse University
Syracuse, NY 13244-1240, USA

M. Salazar-Palma

Dpto. SSR, E.T.S.I. Telecomunicacion
Universidad Politecnica de Madrid
Ciudad Universitaria s/n, 28040 Madrid, Spain

M. Yuan

Cadence Design Systems Inc.
1620 W. Fountainhead Pkwy, Suite 219, Tempe, AZ 85282, USA

Abstract—One of the most popular methods to solve a time-domain
integral equation (TDIE) is the marching-on in time (MOT) method.
Recently, a new method called marching-on in degree (MOD) that uses
Laguerre polynomials as temporal basis functions has been developed
to eliminate the late time instability of the MOT method. The use of
an entire domain basis for the time variable eliminates the requirement
of a Courant condition, as there is no time variable involved in the field
calculation. This is possible as in the procedure the time and the space
variables can be separated analytically. A comparison is presented
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between these two methods from the standpoint of formulation,
stability, cost, and accuracy. Numerical results are presented to
illustrate these features in the comparison.

1. INTRODUCTION

The electromagnetic community has been seriously engaged in the
numerical solution of TDIE for over twenty years [1–15]. An
integral equation method requires only a surface discretization that
is sometimes preferred over the differential one using a volumetric
discretization and does not need absorbing boundary conditions [16–
18]. Furthermore TDIE implicitly impose the radiation condition and
there exists no grid dispersion. As a time-domain technique, it analyzes
wide-band and potentially time-varying and nonlinear phenomena in
one single analysis.

The most popular method to solve a TDIE is the time-marching
scheme. However, as pointed out by many researchers, the time-
marching method may suffer from its late-time instability. Much work
has been done to eliminate the instability [5–15]. In some studies
[5, 13], it has been shown that the instabilities arising in MOT solvers
are due to low- and high-frequency modes that creep into the solution
and that can be eliminated by a combination of spatial and temporal
averaging. The disadvantage of these approaches is that they may
loose some accuracy during the solution, and it is difficult to apply
to complex objects. Other studies have indicated that the cause
of instability is that if the temporal basis function has a rich high-
frequency content, the spatial discretization may not be enough for
these high frequencies. The accumulated error will lead to late-time
instability. A proper choice of temporal basis functions can improve
the stability [6–8].

In [6–8], the temporal basis functions are still piecewise functions
and the temporal testing uses point matching method. Recently,
Sarkar’s group developed a new method called MOD method [19–23].
Instead of piecewise temporal basis function, a set of entire domain
basis function which is called the weighted Laguerre polynomials
have been used. There are four characteristic properties of the
weighted Laguerre polynomials [24, 25] that have been used in this
new formulation:

1) Causality: The Laguerre polynomials are defined for 0 ≤ t < +∞.
Therefore, they are quite suitable to represent any natural time-
domain responses as they are always causal.
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2) Recursive computation: The Laguerre polynomials of higher
degrees can be generated recursively.

3) Orthogonality: With respect to a weighting function, the Laguerre
polynomials are orthogonal with respect to each other. One
can construct a set of orthogonal basis functions, which we call
the weighted Laguerre polynomials. Physical quantities that are
functions of time can be spanned in terms of these orthogonal
basis functions–weighted Laguerre polynomials.

4) Stability: The weighted Laguerre polynomials decay to zero as
time goes to infinity and therefore the solution do not blow up for
late times. Also, because the weighted Laguerre polynomials form
an orthonormal set, any arbitrary time function can be spanned
by these basis functions.

When using the Galerkin’s method the Laguerre polynomials are
used as temporal basis for testing procedures, which is similar to the
spatial testing procedure of the method of moments. By applying the
temporal testing procedure to the TDIE, the numerical instabilities
associated with the MOT procedure can be eliminated. Due to the
property of the weighted Laguerre functions, the spatial and the
temporal variables can be completely separated and the time variable
can be completely eliminated from all the computations except the
calculation of the excitation coefficient that is determined by the
excitation waveform only. This eliminates the need of interpolation
that is necessary to estimate values of the current or the charge at time
instances that do not correspond to a sampled time instance. Therefore
the values of the current can be obtained at any time exactly and no
time step is needed as in the MOT method.

In this work, we present a comparison of these two numerical
methods. The comparison is made through some numerical examples
including stability, cost, and accuracy. It is hoped that this comparison
might help in choosing one method over the other for a given situation.

This paper is organized as follows. In the next section, for the sake
of completeness, we present a brief description of general TDIE, MOT
and MOD algorithms. In Section 3, numerical results are presented to
show the comparison between these two methods. Finally, in Section 4,
we present the conclusions drawn from this study.

2. FORMULATION

2.1. TD-EFIE, TD-MFIE, and TD-CFIE

Let S represent the surface of a closed conducting body in free space
illuminated by a transient electromagnetic wave with the electric field
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Ei(r, t) and magnetic field Hi(r, t). The incident fields will induce a
surface current J(r, t) on S that radiates the scattered electric field
Es(r, t) and magnetic field Hs(r, t). From the boundary conditions,
we obtain the time-domain electric field integral equation (TD-EFIE)
and the time-domain magnetic field integral equation (TD-MFIE),
respectively, [

Ėi(r, t) + Ės(r, t)
]
tan

= 0 (1)

n × [Ḣi(r, t) + Ḣs(r, t)]tan = J̇(r, t). (2)

The subscript ‘tan’ denotes the tangential component. Here, the
derivative is taken to avoid the computation of charge accumulation
in TD-EFIE. The dot on the top of the variable represents a temporal
derivative.

The scattered electric field Es(r, t) and magnetic field Hs(r, t) can
be expressed in terms of the vector potentials A and scalar potentials
Φ,

Es (r, t) = −Ȧ (r, t) −∇Φ (r, t) (3)

Hs (r, t) =
1
µ0

∇× A (r, t) (4)

where A and Φ are given by the retarded integral equations involving
the electric surface current density J and the surface charge density q,
respectively,

A(r, t) =
µ0

4π

∫
S

J(r′, τ)
R

dS (5)

Φ(r, t) =
1

4πε0

∫
S

q(r′, τ)
R

dS (6)

where R represents the distance between the observation point r and
the source point r′, τ = t − R/c is the retarded time, µ0 and ε0 are
permeability and permittivity of free space, and c is the velocity of
propagation of the electromagnetic wave in free space. The charge
density q is related to J by the equation of continuity

∇ · J(r, t) = − ∂

∂t
q(r, t). (7)

Extracting the Cauchy principal value from the curl term in (4),
the scattered magnetic fields Ḣs(r, t) can be written as

n × Ḣs(r, t) =
J̇(r, t)

2
+ n × 1

4π

∫
S0

∇× J̇(r′, τ)
R

dS′ (8)
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where S0 denotes the surface with the contribution due to the
singularity at r = r′ or R = 0, removed from the surface S. Now,
by substituting (8) into (2), we obtain

J̇(r, t)
2

− n × 1
4π

∫
S0

∇× J̇(r′, τ)
R

dS′ = n × Ḣi(r, t). (9)

By combining (1) and (9), the time-domain combined field
equation (TD-CFIE) can be obtained.

κ
[
−Ės (r, t)

]
tan

+ (1 − κ) η0

[
J̇ (r, t)

2
− n × 1

4π

∫
S0

∇× J̇ (r′, τ)
R

dS′
]

= κ
[
Ėi (r, t)

]
tan

+ (1 − κ) η0n × Ḣi (r, t) (10)

where κ is the parameter of the linear combination, which is between
0 and 1, and η0 is the wave impedance of free space. Using (3), (5),
and (6), (10) can be written as

κ

[
1
c

∫
S

J̈ (r′, τ)
R

dS − c∇
∫

S

∇′ · J (r, τ)
R

dS

]
tan

+ (1 − κ)

[
2πJ̇ (r, t) − n ×∇×

∫
S

J̇ (r′, τ)
R

dS

]

= 4π

[
κĖi

tan (r, t)
η0

+ (1 − κ)n × Ḣi (r, t)

]
.

(11)

To solve Equation (11) numerically, the surface current density
J can be discretized in space and time. It is assumed that the
total number of spatial and temporal basis functions are Ns and Nt,
respectively. Then the current can be approximated as

J (r, t) =
Nt∑
j=1

Ns∑
n=1

Jj,nTj(t)fn(r) (12)

where the Jj,n is are the unknown coefficients. fn is the vector spatial
basis function. Usually, the RWG basis function [26] is used for them.
Tj(t) is the scalar temporal basis function. Doing temporal and spatial
testing with function Γi(t) and fm(r), and considering

∇× J(r′, τ)
R

=
1
c
J̇(r′, τ) × R̂

R
+ J(r′, τ) × R̂

R2
(13)



286 Jung et al.

where R̂ is a unit vector along the direction r − r′, we have

Ns∑
n=1

[
κZE

mn + (1 − κ)ZH
mn

]
= Vi,m (14)

ZE
mn = Amn −Bmn (15)

ZH
mn = 2πCmn −Dmn (16)

Amn =
1
c

∫
S
fm(r)·

∫
S

fn (r′)
∫ ∞

0
Γi(t)

Nt∑
j=1

Jj,nT̈j(τ)dt

R
dS′dS (17)

Bmn = c

∫
S
∇ · fm(r)

∫
S

∇′ · fn (r′)
∫ ∞

0
Γi(t)

Nt∑
j=1

Jj,nTj(τ)dt

R
dS′dS (18)

Cmn =
∫

S
fm(r) · fm(r)

∫ ∞

0
Γi(t)

Nt∑
j=1

Jj,nTj(t)dtdS (19)

Dmn =
∫

S
fm(r) · n ×

∫
S
fn

(
r′

)
× R̂




∫ ∞

0
Γi(t)

Nt∑
j=1

Jj,nT̈j(τ)dt

cR
+

∫ ∞

0
Γi(t)

Nt∑
j=1

Jj,nṪj(τ)dt

R2


dS

′dS (20)

Vi,m = 4π
∫

S
fm(r)·

∫ ∞

0
Γi(t)

[
κĖi(r, t)

η0
+(1−κ)n×Ḣi(r, t)

]
dtdS (21)

where m = 1, 2, . . . Ns, i = 1, 2, . . . Nt. Equation (14) is the general
combined field integral equation. In the original MOT method, we
choose a piecewise linear function as temporal basis function. In the
MOD method, the weighted Laguerre function is used as temporal basis
function. Brief descriptions are introduced in the next two sections.
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2.2. MOT Algorithm

The temporal basis function in the MOT algorithm can be represented
in terms of a set of triangle functions

Tj(t) =


 1 − |t− j∆t|

∆t
, for − ∆t ≤ t− j∆t ≤ ∆t

0, otherwise
(22)

where j = 1, 2, . . . , Nt and ∆t is time step. The point matching method
can be used for temporal testing and the temporal testing function is

Γi = δ(t− i∆t). (23)

Then the temporal integral term in (17) can be calculated

∫ ∞

0
Γi(t)

Nt∑
j=1

Jj,nT̈j(τ)dt =
i∑

j=1

Jj,nT̈j

(
i∆t− R

c

)
. (24)

Similar results can be obtained for (18)–(21). Because the
temporal basis function does not have continuous derivative, the
derivative of the current is approximated by a finite difference [1–4].
Some researchers have used other temporal basis function that has
successive continuous derivatives [6, 7].

In Equation (14) at time step i, the unknown coefficients Ji,n can
be solved by assuming that the currents up to the i−1 step are known.
Because it is a causal problem the currents at all time step of interest
can be computed recursively.

2.3. MOD Algorithm

In the MOD algorithm, instead of a piecewise function, an entire
domain function is used as temporal basis function and Nt can be
set to ∞. Therefore

Tj(t) = e−st/2Lj(st) (25)

where Lj(t) is the Laguerre function of degree j and s is the scaling
factor. The temporal testing function is also chosen weighted with
the Laguerre function. Because of the orthogonality of the weighted
Laguerre function, the first and second derivative of the basis functions
can be written analytically as [20]

∞∑
j=0

Jj,nṪj(st) = s
∞∑

j=0


1

2
Jj,n +

j−1∑
k=0

Jk,n


Tj(st) (26)
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∞∑
j=0

Jj,nT̈j(st) = s2
∞∑

j=0


1

4
Jj,n +

j−1∑
k=0

(j − k)Jk,n


Tj(st) (27)

with the assumption that Tj(0) = 0 and Ṫj(0) = 0. These assumptions
are valid since the transient waveforms are causal. Then Equation (14)
can be solved using a MOD procedure. Details of the algorithm can
be obtained in [20].

3. NUMERICAL RESULTS

3.1. Stability

The first example considered is the scattering from a simple plate with
size of 0.3 m×0.3 m. Because the structure is open, only TD-EFIE can
be applied. Here we use a pulse with a Gaussian shape as the incident
wave. The Gaussian pulse can be mathematically represented by

E(r, t) = E0
4

T
√
π
e−γ2

(28)

where γ = (4/T ) (ct− ct0 − r · k). T is the width of the pulse and
ct0 is the time delay at which the pulse reaches its peak. Both of
these quantities are defined in light meters (lm). In our test examples,
T = 4 lm and ct0 = 6 lm. k is the wave vector for the incident wave.
Fig. 1(a) shows the induced current at the center of the plate by the
MOT and MOD methods with the inverse discrete Fourier transform
(IDFT) of the frequency-domain result. In order to see the difference
clearly, Fig. 1(b) shows the enlarged part of it. We compare the
stability for different mesh size and different number of temporal basis
functions both for the MOT and MOD method in Table 1. In Table 1,
Rmin is the minimum distance between two nodes of the structure.
The results of the MOD method are always stable if Ns is larger than
a certain number which depends on the bandwidth of the incident
signal and duration of the calculation [19].

For the MOT method, the results are often unstable for the
explicit case. For the implicit case, it appears to be stable when a
careful choice of the time step is made. It seems in this case the proper
time step is around 0.2 ∼ 0.3 lm. When the solution is unstable, the
errors are amplified at each time step. The growth of the error is
governed by the number of time steps and not by the total time and
quickly becomes large enough to swamp the solution. The instability
can often be reduced or eliminated for a particular mesh by averaging
the current in time [5, 12] or space [10, 13]. These schemes typically
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(a)

(b)

Figure 1. Induced current at the center of the plate. (a) Whole
duration, (b) zoom out part of (a).
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Table 1. Comparison of the results for the scattering from a plate.

Ns MOD MOT

Nt

CPU

time

(s)

c∆t/Rmin
c∆t

(lm)
Nt

Instability

occurs

beyond

(steps)

CPU

time

(s)

79 73 41 0.5 0.013 3,072 80

120 113 4 0.10 384 270

150 201 8 0.21 192 Stable 4

180 282 12 0.31 128 Stable 2.6

183 73 143 0.5 0.001 4,214 70

120 403 4 0.076 526 210

150 667 8 0.15 263 220

180 982 12 0.23 175 Stable 18

251 73 373 0.5 0.0075 5,351 90

120 1,089 8 0.12 334 230

150 1,815 12 0.18 222 170

180 2,793 16 0.24 167 Stable 47

become unstable as more mesh points are used or more time steps are
calculated. This means even if a method appears to be stable for one
particular mesh and up to a specific time duration it cannot be assumed
that it will be stable for another finer mesh or if the computations are
made for a longer time duration. But for the MOD method, because
the basis function is of entire domain and it decays to zero, MOD will
never blow up in late time calculating duration.

3.2. Cost

Normally, the cost for the MOT and MOD methods are O(NtN
2
s )

and O(N2
t N

2
s ), respectively. However, Nt for the MOT and MOD are

not the same. Nt for the MOD method represents the time-bandwidth
product of the waveforms to be approximated whereas Nt for the MOT
method represents the number of time steps. In general, the cost of
MOD is thus much larger than MOT when the number of time steps
is not too large. Some technique such as interpolation can be used to
speed up the MOT method. The computation time also depends on the
method for the integral calculation. If we use a central approximation,
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(a)

(b)

Figure 2. Backward scattered field from the sphere. (a) Whole
duration, (b) zoom out part of (a).



292 Jung et al.

Figure 3. A conducting cone.

Figure 4. The induced current across edge 67 of the cone.
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Table 2. Comparison of the results of a sphere.

Ns MOD MOT FD-CFIE

Memory

(MB)

CPU

time

(s)

Memory

(MB)

CPU

time

(s)

Memory

(MB)

CPU

time

(s)

540 93 2,022 89 242 23 5,546

1836 4,041 29,722 594 2,778 86 49,920

the integrals only need to be calculated once. We use another example
to compare the cost for each of the methods. The scattering from
a sphere with a radius of 0.2 m and with different discretization is
computed. Because it is a closed structure, we can use TD-CFIE
(κ = 0.5). Table 2 shows the comparison of the results. For the
MOT method (c∆t = 0.2 lm), the time step is carefully chosen to get
a stable result. MOD (Nt = 73) method uses much more CPU time
and memory than that of MOT method. We also compare the result
with that of the frequency-domain CFIE (FD-CFIE) (128 frequency
points). Fig. 2 shows the backward far field and compares it with the
IDFT of the frequency-domain results.

3.3. Accuracy

To check the accuracy for these two methods another example is tested
with a conducting cone as shown in Fig. 3. To ensure the accuracy of
the integrals, an adaptive Gaussian integral algorithm is used. Fig. 4
shows the current across edge 67. We can see also the results for
the implicit MOT which provides a stable result for this case, but it
is not accurate as the MOD method when compared with the IDFT
results. From Fig. 1(b) and Fig. 2(b), the same conclusion can be
obtained. This is because the MOT method uses point matching
method for temporal testing, but the MOD method uses a Galerkin’s
method. Another point is the derivative of the current can be obtained
analytically in the MOD method instead of finite difference in the MOT
method.

4. CONCLUSION

In this paper, a comparison between the MOT with MOD methods for
a TDIE solver is presented through numerical examples. The MOD
method is always unconditionally stable and more accurate than the
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MOT method, but it may take more CPU time and memory. The
MOT method may be stable for a specific time step and for a limited
time duration. The conclusion of this comparison is that the MOD
method can be used in any case and guarantee unconditionally stable
solution.
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