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Abstract—A new method based on supported vector regression
(SVR) approach is proposed for permeability measurement. The
microstrip transmission-line is used as measurement cell, and
supported vector machine (SVM) is introduced to extract permeability
of ferromagnetic materials. Experiment results show that thanks to
SVM’s good ability of generalization, permeability of ferromagnetic
materials can be extracted accurately and easily.

1. INTRODUCTION

Ferromagnetic materials exhibit much higher level of saturation
magnetization. They are now found numerous applications in
high-speed electronics and microwave devices, such as M-RAMs,
planar inductors, filters, electromagnetic interference supressors and
giant magneto impedance sensors. Different applications require
ferromagnetic material with different properties, and the permeability
spectrum of ferromagnetic materials are among the most important
factors determining the suitability of the materials for the applications
and the performances of the devices made from the materials [1–3]. A
number of techniques have been developed which have the potential
to be applied for the permeability measurement of ferromagnetic
materials [4–6]. Microstrip transmission method which doesn’t need
complex sample facture technology is a broadband measuring method
for permeability measurement, but because the microstrip is an open
structure, it hard to measure the actual permeability of the material
directly [7].
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Recently, Vapnic’s SVM theory has been applied successfully for
classification and regression problems [8–10]. SVM solves a constrained
quadratic optimization problem, and it is based on statistical learning
theory that gives the possibility to control the model’s complexity and
hence, to control its generalization ability. The advantage over other
approaches like artificial neural-network (ANN), SVM is approach
based on structural risk minimization (SRM) principle, which consists
of minimizing a trade-off between the model’s complexity and the
generalization ability [11]. The modeling is usually called the SVM
regression tasks which support vector regression (SVR). Through using
SVR, one can determine the actual permeability of the ferromagnetic
material.

In this paper, S-parameters of the microstrip transmission-lines
with material samples are obtained by using a commercially available
full-wave electromagnetic simulator (Ansoft HFSS); transmission
constant (γ) and character impedance (Zc) were deduced from the
S-parameter. Then effective permeability was derived from the
transmission constants and character impedances. At last, SVR was
used to construct the model between actual permeability and effective
permeability, and the actual permeability of the material was extracted
from the effective permeability. The result suggest that SVR can
extract the permeability of material accurately and easily.

2. MEASUREMENT CELL

A significant advantage of our method consists of using a microstrip
cell, the production of which does not require a complex technology.
The material under test is used as microstrip substrate, and upper
strip and ground plane were respectively added in the two sides of it
(see Figure 1). The scattering parameters of the cell are measured and
constitutive magnetic parameters of the material are extracted.

Figure 1. The microstrip cell of material sample.
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3. BASIC THEORIES OF PERMEABILITY
MEASUREMENT

S-parameter of the under test network is shown as (1):

S =
(
S11 S12

S21 S22

)
(1)

The network is symmetrical and reciprocal, so S11 = S22 and S12 =
S21, and the S-matrix can be exchanged into A-matrix as:

A =
(
a b
c d

)
(2)

The values of a, b, c, d can be obtained from the S-parameter as:

a = d =
1
2

[
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11
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]
(3)
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1
2

[
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1
2

[
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]
(5)

The normalized A-matrix of the transmission-line is:


chγl
Zc

Z0
shγl

Z0

Zc
shγ chγl


 (6)

where l is the length of microstrip transmission-line, γ is the
transmission constant, Zc is the characteristic impedance of the
microstrip transmission-line, and Z0 is the characteristic impedance
of the test system.

By comparing (5) with (6), we can obtain the value of γ and Zc

[12].
On the other hands, γ and Zc can be expressed as:

γ = α+ jβ = γ0
√
µreffεreff (7)

Zc = Z0
0

√
µreff

εreff
(8)

where
γ0 = j

2π
λ0

(9)
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and

γ̃ =
γ

γ0
=

√
µreffεreff (11)

Z̃c =
Zc

Z0
0

=
µreff√
µreffεreff

(12)

whereW is the width of upper strip, h is the height of the substrate, as
shown in Figure 1, µreff is the effective permeability of the material,
εreff is the effective permittivity of the material, γ0 is the transmission
constant of microstrip with air substrate, and Z0

0 is the characteristic
impedance of microstrip with air substrate. So εreff and µreff can be
obtained from:

εreff = γ̃/Z̃c (13)

µreff = γ̃ ∗ Z̃c (14)

For ferromagnetic materials, sometimes their permeability is impor-
tant; in this paper, the permeability of it was measured to prove that
this measurement method is correct. The µreff can be obtained from
(14), but because part of electromagnetic field is outside the actual mi-
crostrip substrate, the effective permeability is not equal to the actual
permeability of the material, so one must extract the actual perme-
ability from the effective permeability.

4. SUPPORT VECTOR REGRESSION MODEL

Similar to the artificial neural network (ANN) model, SVR estimates
the non-linear function that encodes the fundamental interrelation
between a given input and its corresponding output data that is
acquired from EM simulation also define training data. This developed
model then can be used to predict outputs for given inputs that were
not included in the training data.

In this paper, the actual permeability is computed as the output.
The operation frequency (f) and the effective permeability are used as
the SVR model input parameters. The width of the upper strip (W )
is set at 0.2 mm, and the height of substrate (h) is set at 0.5 mm. The
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operation frequency is from 1 GHz to 10 GHz, and the permeability
range of the materials under test is set from 1 to 10.

LIBSVM-matlab code was used to implement SVR model. It
computes a very efficient sequential minimal optimization (SMO)
type decomposition method to solve the SVR problems. υ-SVM
regression based on radial basis function (RBF) kernel function has
been considered in our regression experiments. The RBF kernel is
shown as follows [11, 13]:

K(x, xi) = exp
(
−r · ‖x− xi‖2

)
. (15)

where r is a constant defining the kernel width.
Before running LIVSVM code, we need to determine some SVR

parameters including the constant defining of kernel function (r),
tolerance of termination criterion (ε), the penalty parameter (C) and
the constant ν. ν ∈ [0, 1] is the parameter to control the number of
support vectors. After performing many experiments with different
variable values, the variables were fixed as: ε = 0.0001, ν = 0.5, C =
1000, and r with the default value of 1/k, k means the number of SVR
model input parameters.

Furthermore, the quality of each model is evaluated as its
prediction accuracy, measured by mean squared error (MSE) and the
linear correlation coefficient (R).

MSE =
1
N

N∑
i=1

(yi − xi)2. (16)

R =

N∑
i=1

(xi − x)(yi − y)
√√√√ N∑

i=1

(xi − x)2
N∑

i=1

(yi − y)2
. (17)

xi is the value of material permeability, yi is the value of SVR predicted
and N is the number of validation data. x is the mean value of material
permeability and y is the mean value of ν-SVR predicted.

The extract step is that:

1) Set the permeability of material, run simulation and calculate
effective permeability from S-parameters to obtain training data.

2) Use SVR to structure the model between actual permeability and
effective permeability.
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3) Predict the permeability through the model. By comparing the
predicted value with set value, one can determine the precision of
the model.

In practice, one can easily obtain the S-parameters of the measurement
cell by using vector network analyzer, and through using the structured
SVR model, one can get the permeability of the material accurately.

5. RESULTS

The plot of the SVR model predicted permeability is compared to
the training dataset and is shown in Figure 2. The more the points
are concentrated around the diagonal line, the better the prediction
is. To illustrate the prediction ability, the predicted values by direct
prediction are plotted against the test dataset as depicted in Figure 3.
Summary of MSE and R are shown in Table 1. As can be seen from
the results, excellent agreement between the predicted value of SVR
model and the set value can be arrived.
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Figure 2. Plot of real part of permeability we set and SVR computed
training data.

Two groups of permeability are also extracted in the frequency
range from 1 GHz to 10 GHz. As shown in Figure 4 and Figure 5,
the predicted values agreed with the set values in the full interested
frequency range very well.
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Figure 3. Plot of real part of permeability we set and SVR computed
testing data.
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Figure 4. Plot of values of computed SVR.
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Table 1. MSE and correlation coefficient (R) of the training data and
testing data.

Data Training data Testing data 

MSE 0.0908531 0.0577988 

R 0.986836 0.989927 
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Figure 5. Plot of values of computed SVR.

6. CONCLUSIONS

In this paper, ferromagnetic material permeability measurement
problem has been reformulated as regression estimation. SVR
is introduced to extract the actual permeability of ferromagnetic
materials. Microstrip transmission-line is used as measurement cell,
and the formulations for calculating effective permeability are also
deduced. It has been shown that excellent agreement between the
predicted value of SVR model and the set value is achieved. By using
SVR, the actual permeability of magnetic material can be extracted
accurately.
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