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Abstract—In this paper, the effects of the internal resonances of an
open conducting spherical enclosure with circular aperture on its radar
cross section (RCS) and shield effectiveness (SE) are studied over a
wide frequency band. The sizes of the spherical enclosures investigated
in the present work range from electrically small (perimeter is less than
the wavelength) to electrically large (perimeter is up to ten times the
wavelength). It is shown that for such an enclosure, both the RCS and
SE, as functions of frequency, have sharp spikes, minima, or maxima
at the resonant frequencies corresponding to the internal modes of
the closed conducting sphere. Principal and higher order modes are
considered. The effects of the aperture width on the perturbation of
the field inside and outside of the spherical enclosure, the near field
outside the cavity, the RCS and the SE are presented over a wide
range of frequency. It is shown that the sharpness and amplitude of
the spikes, minima, or maxima of the RCS and SE are decreased with
increasing the aperture width. Also, the resonant frequencies of the
enclosed spherical cavity are shifted with increasing the aperture width.
For the purpose of verifying the accuracy of the obtained results for
the SE of an open spherical enclosure at resonance, the obtained field
configurations and distributions inside a spherical enclosure of a small
aperture are compared to those of the spherical cavity modes which
have already been obtained analytically. Also, some of the results
concerning the RCS of a spherical enclosure are compared to other
published results.
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1. INTRODUCTION

A prominent problem encountered in a variety of RCS and SE in
electromagnetic compatibility (EMC) studies is the prediction of the
amount of energy from an electromagnetic wave that will be scattered
back or penetrate through an aperture into a cavity and the level of
the subsequent interaction that the coupled wave energy will have with
elements within the cavity. These problems of scattering and aperture
penetration have been encountered in many studies of the interactions
of high power microwaves with targets such as aircraft and missiles.

On the other hand, the RCS and EMC communities must deal
with the reciprocal of these shielding problems. The RCS problem
concentrates on the issue of how much energy is scattered back into
the far field by these cavity-backed apertures. The EMC problem
associated with emission standards must deal with how much energy
can escape into the far field from a device contained within a shielded
enclosure or, vice-versa, how much energy, from an incident plane wave,
can penetrate into a shielded enclosure through an aperture.

As a measure of the detectability of a target by radar systems,
the RCS has always been an important subject of study in
electromagnetics. Mathematical and computational methods to
accurately predict the RCS of complex objects such as aircraft are of
great interest to designers. Of particular importance is the prediction
of the RCS of cavities due to its dominance to the target’s overall RCS
[1].

Cavity-backed apertures may be encountered in most of the air-
borne or space-borne targets as air inlets and engine tubes. Such
cavity-backed apertures are known to contribute a great deal to the
radar cross section of jet aircrafts. Cavity-backed apertures are
famous for their internal resonance which results in spikes in the
scattering cross section as a function of frequency. Such spikes can
easily result in recognizing the shape of a target. Consequently,
such resonant spikes in the scattering cross section as a function
of frequency constitute important descriptions in target classification
and identification schemes. Thus, studying the radar cross section
of targets including cavity-backed apertures over a wide range of
frequency is a necessary requirement for accurate target identification.

A numerical technique is proposed in [2] for the electromagnetic
characterization of scattering by a three-dimensional cavity-backed
apertures. The technique combines the finite element and boundary
integral method to formulate a system of equations for the solution
of the aperture fields and those inside the cavity. Specifically, the
finite element method is employed to formulate the fields in the cavity
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region, and the boundary integral approach is used in conjunction with
the equivalence principle to represent the fields in the external region.

The problem of scattering from three-dimensional cavities was
treated in [3] using the Robin boundary condition iteration (RBCI)
method. This hybrid method combines a differential equation for the
interior and the neighborhood of the cavity and integral equation for
the rest of the unbounded domain.

Another method that falls into the class of analytic-numeric
or semi-analytic techniques is the method of regularization (MoR),
which is described in [4]. This method solves the difficulty of error
estimation encountered with the electromagnetic integral equations by
analytically transforming them to well-conditioned second-kind matrix
systems that have a firm basis for error estimation in Fredholm theory.

In this work, the conducting surface of the open cavity is
represented by triangular-patch model and the electric field integral
equation (EFIE) is applied. In spite of being not considered as a well-
suited method to obtain the fields in the interior of a closed cavity,
the EFIE technique is shown to be well-suited in the case of an open
cavity even when the aperture is narrow.

Unlike traditional approaches, the EFIE technique used in the
present work does not require the knowledge of the cavity’s Green’s
function. For this reason, the proposed technique is applicable to
arbitrary-shape cavities. However, this technique is applied, here, to
treat the problem of scattering from an open spherical enclosure.

It may be worth noting that the validation of general purpose
computer codes for electromagnetic problems of objects incorporating
edges and cavity-backed apertures depends entirely upon comparison
with the results of other proven approaches, analytical, computational
or experimental. For this reason the results obtained in this work
for the distributions of the internal field of the open cavity at its
resonances are compared to those of the corresponding modes of the
closed enclosure, which have already been given analytically [8]. It is
logic that, for small aperture, the results of both cases are close to each
other.

2. FORMULATION OF THE SCATTERING PROBLEM

To calculate the RCS and SE of the open spherical enclosure it is
subjected to a plane wave that induces currents on the conducting
surface, which, in turn, produces a scattered field. The total field
(incident and scattered) satisfies the boundary condition that yields the
cancellation of the tangential electric field on the spherical enclosure
surface. From the knowledge of the scattered field in the far zone we
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can calculate the RCS, and from the knowledge of the total field in
the interior of the enclosure we can calculate the SE. The coordinate
system and the angular parameters used in the present work are shown
in Fig. 1.
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Figure 1. Conducting spherical enclosure with circular aperture
subjected to a plane wave. (a) Direction of the incident wave and
angular parameters. (b) Coordinate system.

2.1. Modeling the Open Spherical Enclosure

A geometrical model is required to accurately describe the spherical
surface and to be suitable for the EFIE technique to be applied
for treating the scattering of electromagnetic waves on the spherical
enclosure.

The open spherical enclosure is a perfectly conducting surface
enclosing an air region. In the present analysis, the conducting surface
is composed of triangular patches as shown in Fig. 2. The more
the number of triangular patches the closer the model to the actual
spherical surface.

2.2. Application of the EFIE

In the present analysis, the EFIE approach described in [5–7] is used,
where the induced surface current is expressed as a series summation
of vector triangular basis functions with unknown amplitudes. The
electric field tangential to the conducting surface is equated to zero
resulting in the formation of an integral equation for the unknown
current distribution on the surface of the spherical shell. The method
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Figure 2. Triangular-patch model of the open spherical enclosure.

of moments is then applied to solve the resulting integral equation
for the current on the scatterer surface. This method can briefly be
outlined in the remaining of this section.

The equation solved by moment method techniques is the EFIE
that results from the application of Maxwell’s equations and, generally,
takes the form

Einc = fe(J) (1)

where the Einc is the incident electric field and J is the induced surface
current. This equation is expressed in the frequency domain; however
the method of moments can also be applied in the time domain.

The first step in the moment-method solution process is to expand
J as a finite sum of basis (or expansion) functions,

J =
N∑

i=1

Jibi (2)

where bi is the ith basis function and Ji is an unknown coefficient.
The Rao-Wilton-Glisson (RWG) basis functions defined in [5] are the
most appropriate vector basis functions for the triangular-patch model
described in Section 2.1.

Next, a set of N linearly independent weighting (or testing)
functions, wi, are defined. An inner product of each weighting function
is formed with both sides of the equation being solved. In the case of
the EFIE (1), the inner product results in a set of N independent
equations of the form,

〈
wi,E

inc
〉

= 〈wi, fe(J)〉 , i = 1, 2, . . . , N (3)
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By expanding J using (2), we obtain a set of N equations in N
unknowns,

〈
wi,E

inc
〉

=
N∑

j=1

〈wi, fe(Jj , bj)〉 , i = 1, 2, . . . , N (4)

This can be written in matrix form as,

[Einc] = [Z][J ] (5)

where:
Zij = 〈wi, fe(Jj , bj)〉 (6)

The linear system of equations (5) can, now, be solved to get the
unknown current distribution.

Due to the efficiency of such a technique, a small number of
triangular patches may be enough to get accurate geometrical model
for describing the curved surface and to get accurate results for the
current and field distributions.

3. CALCULATION OF THE SCATTERED FIELD

To calculate the RCS of a scatterer, it is required to obtain the
scattered field in the far zone. To calculate the SE of the open spherical
enclosure, it is required to obtain the total field (incident and scattered)
in the interior of the enclosure. In this section we describe a method
to evaluate the scattered field in the far zone as well as in the near
zone including the interior and the exterior of the spherical enclosure.
By the application of the EFIE and calculating the current flowing on
the scatterer surface as described above, the magnetic vector potential
A and the scalar potential ( can be, respectively, obtained through the
following equations.

A(r) =
µo

4π

∫
S

J
e−jk|r−r′|

|r − r′| dS
′ (7)

Φ(r) =
1

4πεo

∫
S

σ
e−jk|r−r′|

|r − r′| dS
′ (8)

where r′ is a point on the scatterer surface, r is a point in the near or
far zone of free space, µo and εo are the permeability and permittivity
of free space, respectively. The surface charge density σ is related to
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the surface divergence of the current J flowing on the scatterer surface
through the equation of continuity,

∇s · J = −jωσ, (9)

where ω = 2πf ; f is the frequency.
Upon the calculation of A and Φ, the scattered electric field in

the near zone can be calculated using the following relation.

Escat(r) = −jωA(r) −∇Φ(r) (10)

The second term in the right hand side of (10) is evaluated by, first,
discretizing the three-dimensional space and then carrying out the
differentiation numerically.

Once the scattered electric field in the near zone is obtained,
the scattered magnetic field can be obtained using the Maxwell curl
equation,

H(r) = − 1
jωµ

∇× E(r) (11)

The same process of discretizing the three-dimensional space and
carrying out the differentiation numerically is required to evaluate the
magnetic field according to (11).

4. CALCULATION OF THE RADAR CROSS SECTION
OF THE SPHERICAL ENCLOSURE

RCS is the measure of the target ability to reflect radar signals in
the direction of the radar receiver. RCS is defined as the ratio of the
backscattered power in the direction of the radar to the power density
of the wave incident at the target.

Normally, the target exists in the far zone of the radar antenna
and, hence, in the calculation of the RCS a uniform plane wave
is assumed incident on the target. The RCS is a function of the
polarization mismatch between the wave incident on the target and
that received by the radar antenna and, hence, it should be taken
into consideration. In the present analysis, we assume that a linearly
polarized plane wave is incident on the target. The scattered field
component whose polarization is the same as that of the incident field
is that used to calculate the RCS of the scatterer. Thus, the incident
field at the target can be expressed as

Einc = aξEoe
−jkr (12)

where ξ is an arbitrary direction whose unit vector is aξ and r is the
distance between the radar and the target.
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The backscattered field at the radar antenna is a plane wave whose
ξ-component can be expressed as

Einc
ξ = aξ · Escat (13)

The scattered electric field, Escat, in the far zone can be evaluated
using (10), however, the second term in the right hand side of (10) can
be neglected and, hence, the following formula is enough for calculating
the scattered field in the far zone,

Escat = −jωA (14)

Thus, the RCS can be calculated as

RCS=
backscatter power in the direction of the radar

power density of the incident plane wave
=4πr2

∣∣∣Escat
ξ

∣∣∣2
|Eo|2

(15)
An analytic method known as “shape perturbation” method to
calculate the RCS of a conducting spheroid is described in [8]. Another
analytic method known as “parabolic equation” to calculate the RCS
of large targets is described in [9].

In the present work, the method described in Section 3 is applied
to obtain the scattered field in the far zone from which the RCS is
obtained according to equation (15).

5. CALCULATION OF THE SHIELD EFFECTIVENESS
OF THE SPHERICAL ENCLOSURE

The SE of the spherical enclosure can be defined as the ratio between
the magnitudes of the electric field at a point in the interior of the
enclosure when the enclosure is not present to the magnitude of the
electric field at the same point when the enclosure is present [10]. This
ratio can be calculated, in dB, as follows,

SE(dB) = 20 log
|Eo|∣∣∣Etot

ξ

∣∣∣ (16)

where Etot
ξ is the ξ-component of the total electric field, i.e., the

summation of the incident and scattered fields.

6. SPHERICAL CAVITY MODES

The sharp spikes of the RCS and SE, of an open spherical enclosure,
as a function of the frequency can be related to the internal resonances
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of the enclosed cavity. For an open spherical enclosure of a small
aperture, it is logic that the internal resonances are quite close to
those of a closed spherical enclosure. Also, it is logic that the resonant
frequencies of an open spherical enclosure are shifted farther from the
resonant frequencies of the closed spherical enclosure with increasing
the aperture width due to the reduction of the electric length of the
perimeter of the enclosure. To investigate this relation, it may be worth
to, first, study the resonances of the closed spherical enclosure.

Furthermore, one may claim that the solution obtained using
the EFIE method may be inaccurate as the EFIE is not well-suited
for analyzing the interior of conductive enclosures. This is another
motivation for adding the present section. The results obtained
in this work for the distribution of the internal field of the open
enclosure at resonance can be realized by comparison to that of the
corresponding mode of the closed enclosure, which have already been
given analytically [8]. For small aperture, the results of both cases are
close to each other and a comparison can be made to verify the validity
of the solution.

The characteristic equation of the E-modes of the spherical cavity
are given as [11]

jm(u) = 0, (17)

where jm(u) is the spherical Bessel function of first kind, u = kro =
2πro/λ; k is the wave-number of free space, λ is the wavelength. The
integer m is the mode order that describes the angular dependence of
the fields.

The resonant frequencies corresponding to the E-modes of the
spherical cavity are given by the roots of (17), hence

fmn =
c

2πro
umn (18)

where umn is the nth root of (17). Thus, the integer n is the mode
order that describes the radial dependence of the fields.

The characteristic equation of the H-modes of the spherical cavity
are given as [11]

d

du
[ujm(u)] = 0 (19)

Thus, the resonant frequencies corresponding to the H-modes of
the spherical cavity are given by the roots of (19), hence

f ′mn =
c

2πro
u′mn (20)

where u′mn is the nth root of (19).



234 Hussein

To find the roots of (17) and (19), the following expressions of the
spherical Bessel functions can be used [12].

j0(u) =
sinu
u

(21)

j1(u) =
sinu
u2

− cosu
u

(22)

j2(u) =
(

3
u3

− 1
u

)
sinu− 2

u2
cosu (23)

The fundamental electric mode, E11, has the lowest resonant
frequency among all the possible modes of the spherical cavity. This
mode has the following field components

Er = −2roA
u′11r

cos θj1
(
u′11

r

ro

)
ejω

′
11t (24)

Eθ =
roA

u′11r
sin θ

[(
u′11

r

ro

)
j1

(
u′11

r

ro

)]′
ejω

′
11t (25)

Hφ = −j
√
εrεo
µrµo

A sin θj1
(
u′11

r

ro

)
ejω

′
11t (26)

with u′11 = 2.745, A is an arbitrary constant (amplitude parameter), εr
is the relative permittivity of the material filling the spherical cavity, µr

is the relative permeability of the material filling the spherical cavity,
and θ is the angle with the y-axis as defined in Fig. 1(b).

7. RESULTS AND DISCUSSION

This section is concerned with presenting the results showing the
internal field, RCS and SE of an open spherical enclosure in the
frequency ranges around the internal resonances. In all the following
discussions, unless otherwise indicated, the spherical enclosure is
subjected to an Ey-polarized plane wave normally incident on its
aperture, i.e., θi = 0. Also, the field distributions are plotted in the
y-z section of the spherical enclosure, where the coordinate system is
shown in Fig. 1(b).

7.1. Internal Field Enhancement at Internal Resonances of
an Open Spherical Enclosure and the Corresponding Modes
of a Closed Sphere

The wavelengths of the lowest-order resonant modes of the interior of a
closed sphere can be obtained by substitution from (22) and (23) into
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Table 1. Wavelengths of the spherical cavity modes in terms of the
sphere radius.

Mode order H-modes E-modes 

m n 
mnu  omn r/λ mnu’  omn r/λ’

1 1 4.493 1.398 2.745 2.290

2 1 5.763 1.090 3.870 1.624

(17) and (19) and then finding the roots of the resulting equations.
The wavelengths of spherical cavity modes E11, E21, H11 and H21 are
given in table (1) in terms of the sphere radius.

Fig. 3(a) shows the electric field distribution for the spherical
cavity mode E11 in the r-θ plane defined by: φ = 90◦. This distribution
is given by the expressions (24) and (25). It should be noted that the
origin is at the center of the sphere and the coordinate system is that
defined in Fig. 1(b). It is clear in Fig. 3(a) that Er is even and Eθ is
odd about y-axis (θ = 0).

(a) (b)

Figure 3. Distribution of the total electric field, f = 0.4367 GHz, (a)
E11 of a closed sphere. (b) Near field of an open spherical enclosure of
θo = 10◦ subjected an Ey-polarized plane wave normally incident on
the aperture.

Fig. 3(b) shows the electric field distribution inside and around
a conducting spherical enclosure with circular aperture of θo = 10◦
subjected to an Ey-polarized plane wave normally incident on the
aperture of the enclosure, i.e., θi = 0. The operating frequency is
0.4367 GHz, which is the resonant frequency corresponding to the E11

internal mode of the spherical enclosure whose distribution is shown
in Fig. 3(a). By comparing Figures 3(a) and 3(b), the field pattern
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of the E11 spherical cavity mode can easily be recognized inside the
open spherical enclosure. Thus, in the case of small aperture, the E11

mode is excited inside the spherical enclosure when the frequency of
the incident plane wave is close to the resonant frequency of this mode.

Fig. 4(a) shows the electric field distribution for the spherical
cavity mode E21 in the r-θ plane defined as: φ = 90◦. This distribution
can be obtained from [11]. Fig. 4(b) shows the electric field distribution
inside and around a conducting spherical enclosure with circular
aperture of θo = 10◦ subjected to an Ey-polarized plane wave normally
incident on the aperture of the enclosure, i.e., θi = 0. The operating
frequency is 0.6155 GHz, which is the resonant frequency corresponding
to the E21 internal mode of the spherical enclosure whose distribution
is shown in Fig. 4(a). By comparing Figures 4(a) and 4(b), it becomes
clear that, in the case of small aperture, the E21 mode is excited inside
the spherical enclosure when the frequency of the incident plane wave
is close to the resonant frequency of this mode.

(a) (b)

Figure 4. Distribution of the total electric field, f = 0.6155 GHz, (a)
E21 of a closed sphere. (b) Near field of an open spherical enclosure of
θo = 10◦ subjected an Ey-polarized plane wave normally incident on
the aperture.

In the two cases discussed above, the electric field intensity in the
interior of the enclosure is much higher than that in the exterior of
the enclosure. Accordingly, one can deduce that, at the frequencies
corresponding to the internal resonances of the spherical enclosure,
most of the power of the incident wave is sucked into the interior of
the open enclosure. This can considerably affect the RCS and the SE
of such an enclosure at the resonant frequencies.

7.2. Radar Cross Section of a Conducting Sphere

For the sake of investigating the capability of the applied technique
to accurately calculate the RCS of a conducting target that encloses a
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cavity, and to provide a reference to compare with when obtaining
the RCS of an open spherical enclosure, the method described in
Section 4 is applied to calculate the RCS of a closed sphere. The RCS
of such a closed enclosure is obtained over a wide range of frequency
as shown in Fig. 5. The results are compared with those of [8], which
are obtained analytically using the shape perturbation method. The
comparison shows good agreement, which ensures the validity of the
applied technique and the accuracy of the obtained results.
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Figure 5. Radar cross section of a conducting sphere compared with
the results of [8].

7.3. Radar Cross Section of Open Spherical Enclosure at
Internal Resonances

Fig. 6 shows a comparison between the RCS of a conducting sphere
and that of an open spherical enclosure with θo = 10◦. Both targets
have radii of 30 cm and are subjected to a plane wave incident with
θi = 0. Thus, the plane wave is normally incident on the aperture
of the spherical enclosure. The RCS is calculated over a very wide
band of frequency ranging from 0 to 1.6 GHz, i.e., from (2πro)/λ = 0
to (2πro)/λ = 10. The EFIE technique described in [13] is applied to
get the RCS of both targets, where the spherical surface is constructed
up using 2061 triangular patches. As shown in Fig. 6, the normalized
RCS of the closed sphere, oscillates around the unity with varying the
frequency where the first peak (over shoot) occurs at (2πro)/λ = 1.
The amplitude of oscillations diminishes and the normalized RCS
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asymptotically approaches the unity with increasing the frequency.
This is a well known behavior of the RCS of a conducting sphere,
which has already been obtained analytically. The agreement of the
results obtained in the present work with such well known behavior
ensures the validity and accuracy of the employed technique to get
the RCS of targets of different sizes ranging from electrically small to
electrically large.

For the frequencies below 0.35 GHz or, equivalently, for
(2πro)/λ < 2.2, the normalized RCS of the open enclosure is almost the
same as that of the closed one. For the higher frequencies, the RCS
of the open spherical enclosure is significantly different from that of
the closed one and has sharp spikes at the frequencies corresponding
to the internal resonances as shown in Fig. 6. A spike is a sharp
minimum immediately followed by a sharp maximum or a sharp
maximum immediately followed by a sharp minimum. These spikes
play an important role in recognizing the shape of such a target in
target identification schemes. It is shown in the figure that, apart
from very narrow bands around the resonant frequencies, the aperture
has the effect of globally increasing the RCS of the spherical enclosure
in comparison with that of the closed one over the entire frequency
range.
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Figure 6. RCS of a conducting sphere and an open spherical enclosure
against the frequency, ro = 30 cm, θo = 10◦, θi = 0.

Figures 7 and 8 show comparisons among the RCS of a spherical
enclosure in three cases: (i) the plane wave is normally incident on the
aperture of an open enclosure, (ii) the plane wave is incident on the
back of the aperture of the same enclosure, and (iii) the plane wave
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Figure 7. A spike of the RCS of the open spherical enclosure at
the resonance corresponding to the E11 mode of the spherical cavity,
ro = 30 cm, θo = 10◦.

is incident on a closed enclosure of the same radius. Fig. 7 presents
the three cases in the frequency range around the internal resonance
corresponding to the E11 mode, whereas Fig. 8 presents the same cases
in the frequency range around the internal resonance corresponding to
the E21 mode. As shown in both figures, the RCS in the case of a
plane wave incident on the back of the aperture (θi = 180◦) is very
close to that of a closed sphere with a very weak spike at resonances,
whereas the RCS in the case of a plane wave incident normally on the
aperture is significantly higher than that of a closed sphere over the
entire frequency range with a strong spike at resonance.

7.4. Shield Effectiveness of Open Spherical Enclosure at
Internal Resonances

The SE effectiveness of the open spherical enclosure can be calculated
as described in Section 5, where the field inside the enclosure is
obtained by applying the method described in [14]. As shown in Fig. 9,
the SE of an open spherical enclosure of small aperture, has a sharp
minimum within a very narrow frequency interval around the resonant
frequency corresponding to the mode of the spherical cavity. The worst
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Figure 8. A spike of the RCS of the open spherical enclosure at
the resonance corresponding to the E21 mode of the spherical cavity,
ro = 30 cm, θo = 10◦.

case of the SE of an open spherical enclosure occurs when the plane
wave is normally incident on its aperture, i.e., θi = 0. When the plane
wave is incident on the back of the aperture, i.e., when θi = 180◦,
the SE is better by about 8–12 dB, however, a sharp minimum is still
occurring at resonance.

At the resonance corresponding to the E21 mode of the spherical
cavity, the situation is some how different than that at the E11

resonance. At the E21 resonance, and as shown in Fig. 10, the SE
has a sharp spike (a sharp minimum immediately followed by a sharp
maximum). In the case when θi = 0, the spike occurring in the SE
at resonance is much greater than that occurring when as shown in
Fig. 10.

The sharp decrease of the SE of such open enclosure at the
internal resonances can be attributed to the internal field enhancement
occurring at the resonant frequency due to the formation of the E21

resonant mode as discussed before in Section 7.1. Fig. 11 shows the
sudden enhancement of the internal field as the frequency changes
from 0.6142 GHz (anti-peak) to 0.6190GHz (peak) where the SE
dramatically changes from 2 dB to 46 dB.
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Figure 9. The shield effectiveness of an open spherical enclosure in
the frequency range around the resonant frequency corresponding to
the E11 spherical cavity mode, ro = 30 cm, θo = 10◦.
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Figure 10. The shield effectiveness of an open spherical enclosure in
the frequency range around the resonant frequency corresponding to
the E21 spherical cavity mode, ro = 30 cm, θo = 10◦.
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(a)                                   (b) 

Figure 11. Distribution of the near field of an open spherical enclosure
of ro = 30 cm, θo = 10◦ subjected an Ey-polarized plane wave
normally incident on the aperture at the spike corresponding to the
E21 resonant mode. (a) SE anti-peak: f = 0.6142 GHz. (b) SE peak:
f = 0.6190 GHz.

7.5. Dependence of Internal Field and SE of Open Spherical
Enclosure on the Aperture Width

So far, we have studied the case of a spherical enclosure with narrow
aperture. To investigate the effect of the aperture width on the internal
field of the enclosure, we plot the electric field intensity at the centre of
the spherical enclosure against the frequency with varying the aperture
width from θo = 10◦ to θo = 30◦ due to an Ey-polarized plane wave that
is normally incident on the aperture. This is presented in Fig. 12, where
the selected range of frequency is around the resonance corresponding
to the E11 mode. As shown in this figure, for very small aperture,
the internal field shows very sharp peak of high amplitude at the
resonance, but however, as the aperture width increases, the peak
becomes less sharp and of lower amplitude. Also, its shown that the
resonant frequency is decreased with increasing the aperture width.
The smaller the aperture is, the closer the resonant frequency to that
of the mode of the closed sphere.

Fig. 13 shows the electric field distribution inside and around the
open enclosure at the resonance corresponding to the E11 mode due to
an Ey-polarized plane wave that is normally incident on the aperture
with varying the aperture width from θo = 10◦ to θo = 30◦. For
narrow-aperture enclosure, the field is mainly concentrated inside the
enclosure and is almost identical to that of the E11 mode of the closed
sphere with negligible perturbation due to the aperture as discussed in
Section 7.2. As the aperture width increases, the intensity of the field is
decreased inside the enclosure and is relatively increased in the region
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Figure 12. Variation of the electric field at the center of the spherical
enclosure for different values of the aperture width in a range of
frequency around the E11 resonance, ro = 30 cm.

 

    (a)                    (b)                    (c)                   (d)                   (e)

Figure 13. Distribution of the electric inside and around the spherical
enclosure due an incident plane wave at the resonance corresponding
to the mode for different values of the aperture width ro = 30 cm.
(a) f = 0.4360 GHz, θo = 10◦. (b) f = 0.4325 GHz, θo = 15◦. (c)
f = 0.4275 GHz, θo = 20◦. (d) f = 0.4200 GHz, θo = 25◦. (e)
f = 0.4150 GHz, θo = 30◦.
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outside the enclosure. For a wide aperture, the field distribution of the
E11 mode is still recognized in the interior of the spherical enclosure
but, however, is significantly perturbed by the wide aperture.

To investigate the effect of the aperture width on the SE of the
enclosure, Fig. 14 shows a plot for the SE of the spherical enclosure
against the frequency with varying the aperture width from θo = 10◦
to θo = 30◦. An Ey-polarized plane wave is assumed to be normally
incident on the aperture. The selected range of frequency is around the
resonance corresponding to the mode. As shown in this figure, for very
small aperture, the SE shows very sharp minimum of high amplitude
at the resonance, but however, as the aperture width increases, the
minimum of the SE is less sharp, has lower amplitude and occurs at a
lower frequency.
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Figure 14. The shield effectiveness of an open spherical enclosure in a
range of frequency around the resonant frequency corresponding to the
E11 spherical cavity mode for different values of the aperture width,
ro = 30 cm.
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8. CONCLUSION

It is shown that both the RCS and SE of an open spherical enclosure,
as functions of frequency, have sharp spikes, maxima, or minima
at the resonant frequencies corresponding to the internal modes of
the closed conducting sphere. The sharpness and amplitude of the
spikes of the RCS and SE at internal resonances are decreased with
increasing the aperture width. Also, it is found that the resonant
frequency corresponding to the E11 mode is shifted with increasing
the aperture width. The sharp reduction or enhancement of the SE of
the open spherical enclosure at internal resonances is attributed to the
internal field enhancement or diminishing, respectively, at resonance
where the distribution of internal field intensity is investigated and
presented at the peaks and anti-peaks of the SE as a function of the
frequency. The accuracy of the obtained results for the SE of an open
spherical enclosure at resonance is verified by comparing the obtained
field configurations and distributions inside a spherical enclosure of
a small aperture to those of the spherical cavity modes which have
already been obtained analytically. Also, the obtained solutions for the
RCS of a spherical enclosure are compared to other published results
showing good agreement, which ensures the capability of the employed
technique to deal with conducting objects with cavities and cavity-
backed apertures.
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