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Abstract—Based on the concept of charge moment tensor T̃ which is
different from the existent electric multiple-moment, and the concept of
principal axes and principal-axis scalar charge moment, the condition
of zero magnetic moment for an arbitrary rotational body with given
charge distribution has been given explicitly in this paper. We find the
loss of positive definiteness of T̃ is its most important characteristic
which forms a sharp contrast with that of its mechanic counterpart
— the positive definite inertia tensor of rigid bodies. Meanwhile the
relationship between the quadric distributive law of magnetic moment
and the parameters of tensor T̃ is discussed in detail. According to the
theory of analytic geometry, we give a series of test formulae, classify
and enumerate every kind of possible quadric in a table. Finally,
conclusion is given that any rotation axis which passes through originO
and along with any of the asymptotic line of the quadric (hyperboloids
or hyperbolic cylinders) can lead to a vanishing magnetic moment.

1. INTRODUCTION

It is a well known fact that a charged body rotating around a given
axis has definite magnetic moment [1–6]. Based on a strict and
delicate analogue relation given in references [1–4], references [2–4] has
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deduced a series of rules and given some examples about calculating
the magnetic moment of a rotational charged body. Especially the
interesting and useful concepts such as charge moment tensor, scalar
charge moment and the principal scalar charge moment given in
references [2] make it very easy for us to compute the magnetic moment
of an arbitrary rotational charged body with respect to an arbitrary
given axis.

On the other hand, computing T̃ and magnetic moment �Pm

of a rotational charged body is only the first step to study its
dynamic and kinetic behaviors in electromagnetic fields. Researching
of the magnetic effect of rotational charged bodies is necessary and
significant especially in fields of astrophysics and cosmology [7], and
often overlooked in the studying of optimization techniques for antenna
design and radar application [8, 9]. In view of space technology, it is
of special meaning and extraordinary importance to make a rotating
charged body have a zero magnetic moment and maintain its rotation
equilibrium. In this paper, conditions of zero magnetic moment
for an arbitrary rotational charged body have been given explicitly.
Meanwhile, the relationship between the quadric distributive law of
scalar charge moment and the parameters of tensor is discussed in
detail. According to the theory of analytic geometry, we give a series of
test formulae, classify and enumerate every kind of possible magnetic-
moment quadric in Table 1.

2. THE FUNDAMENTAL CONCEPTS OF CHARGE
MOMENT TENSOR

In an arbitrary body-coordinate system O-xyz which is rigidly linked
with a charged body of definite volume (area, line or discrete) charge
distribution, the So-called charge moment tensor with respect to
the given origin O is defined as:

T̃ (O) =

(
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

)
=

(
I11 I12 I13
I21 I22 I23
I31 I32 I33

)
(1)

Under the case of disperse charge distribution, the tensor element

Iαβ(O) =
∑

i

Qi[r2i δαβ − xiαxiβ](α and β = 1, 2, 3) (2)

here �ri is the position vector of point charge Qi, �ri = (xi1, xi2, xi3) =
(xi, yi, zi), and for the case of continual charge distribution such as a
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Table 1. Quadric classification contingent upon magnetic moment
parameters.

types Test expression quadric types Quadric equations 

sign(Il)K>0 Ellipsoid (Fig.1) J>0
IK>0 sign(Il)K 0 Non-existent 

sign(Il)K<0
Hyperboloids of one sheet 

(Fig.2)

K 0
centric 
quadric 

J 0
or

IK<0 sign(Il)K>0
Hyperboloids of two 

sheets (Fig.3) 

e.g.
I1x

2+I2y
2+I2z

2=sign(Il)
K=I1I2I3 0

sign(Il)=1 Elliptic cylinder (Fig.4) 

J>0 sign(Il)=- 1 Elliptic cylinder (Fig.4) 

I1x
2+I2y

2=sign(Il)
etc. 

sign(I1)=sign(I2)=sign(Il),
I3=0

sign(Il)=1
Hyperbolic cylinder 

(Fig.5)
J<0

sign(Il)=- 1
Hyperbolic cylinder 

(Fig.5)

e.g.
I1x

2+I2y
2=sign(Il)

(I1I2<0, I3=0) ,etc. 

sign(Il)I>0 Parallel planes 

sign(Il)I<0 Non-existent 

K=0
Centreless 

quadric 

J=0
I=0 Single plane 

I1x
2=sign(Il)

I2=I3=0, sign(Il)=sign(I)
etc.

≠

≤ ≠

≤

charged body with a volume charge density of ρ(x1, x2, x3),

Iαβ(O) =
∫
v

ρe(x1, x2, x3)[r2δαβ − xαxβ]dv (3)

here dv = dx1dx2dx3, r2 = x2
1 + x2

2 + x2
3.

Taking the disperse distribution case as an instance, we give a
concrete expression of T̃ (O) as:

T̃ (O) =



∑
i

Qi(y2
i + z2

i ) −
∑

i

Qixiyi −
∑

i

Qixizi

−
∑

i

Qixiyi

∑
i

Qi(z2
i + x2

i ) −
∑

i

Qiyizi

−
∑

i

Qixizi −
∑

i

Qiyizi
∑

i

Qi(x2
i + y2

i )

 (4)

It is similar in form to the inertia tensor of a rigid body but
actually different from it because the former has lost its positive
definiteness. On the other hand, charge moment tensor T̃ (O)
introduced here doesn’t belong to any of the second rank tensors
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listed in references [10, 11], and is also different from the existent
concept such as the electric quadruple moment [5], i.e., Dij =∫
V ′(3x′ix

′
j − r′

2)ρ(�r ′)dv′, (x, j = 1, 2, 3).
Then the So-called scalar charge moment Il with respect to the

same point O and arbitrary direction (provided its direction cosine is
�l = (cos θ1, cos θ2, cos θ3)) is

Il(O,�l) = �l · T̃ ·�l = (cos θ1 cos θ2 cos θ3)

(
I11 I12 I13
I21 I22 I23
I31 I32 I33

) ( cos θ1
cos θ2
cos θ3

)
= I11 cos2 θ1 + I22 cos2 θ2 + I33 cos2 θ3 + 2I12 cos θ1 cos θ2

+ 2I23 cos θ2 cos θ3 + 2I31 cos θ3 cos θ1 (5)

Then it can be immediately deduced that a rotational charged
body with an angular velocity of �ω with respect the same axis (O,�l),
must has a magnetic moment (given �ω = ω�l):

�Pm(O,�l) =
1
2
Il�ω =

1
2

(
�ω

ω
· T̃ · �ω

ω

)
�ω =

1
2
liT̃ijlj�ω (6)

According to Einstein’s convention, here the repeated indices
represent summation from 1 to 3.

By solving the eigenvalue equation of the charge moment tensor
T̃ (O)

3∑
β=1

(Iαβ − λδαβ)eβ = 0, (α = 1, 2, 3) (7)

we get the three eigenvectors eβi
= (ei1, e

i
2, e

i
3), (i = 1, 2, 3) called the

principal axes. The corresponding eigenvalues λi = Ii, (i=1,2,3), are
called the principal scalar charge moments.

Collect and arrange eβ’s in order, we thus construct an orthogonal
transformation matrix R [12, 13] which can make the charge moment
tensor T̃ (O) diagonal.

R =

 e11 e21 e31
e12 e22 e32
e13 e23 e33

 (8)

In the new Cartesian coordinate body system O-xyz spanned with
above three eigenvectors e(i)3 (i = 1, 2, 3), the charge moment tensor can
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be expressed as a diagonal form

T̃ (O) =

(
I1 0 0
0 I2 0
0 0 I3

)
(9)

Based on the concepts of principal axes and the three principal-
axis scalar charge moments, The scalar charge moment Il with respect
to an arbitrary direction �l = (cos θ1, cos θ2, cos θ3) and the given point
O is

Il = �l · T̃ ·�l = I1 cos2 θ1 + I2 cos2 θ2 + I3 cos2 θ3 (10)

Then according to Equation (6),

�Pm(O,�l) =
1
2
(I1 cos2 θ1 + I2 cos2 θ2 + I3 cos2 θ3)�ω (11)

3. CLASSIFICATION OF MAGNETIC MOMENT
QUADRIC FOR A ROTATIONAL CHARGED BODY

When �Pm(O,�l) �= 0, provided �Rl = (x, y, z), and �R‖�l,
∣∣OP ∣∣ = |�R| =

1√
|Il|

then

Il = sign(Il)
1

|�Rl|2
= sign(Il)

1∣∣OP ∣∣2 (12)

and

�Pm(O,�l) =
1
2
Il�ω =

1
2
sign(Il)

1

OP
2 �ω (12’)

where sign(Il) =
{

1, for Il > 0
−1, for Il < 0

.

Then �l = (cos θ1, cos θ2, cos θ3) =
�Rl

|�Rl|
= (x

√
|Il|, y

√
|Il|, z

√
|Il|).

Multiplying the two sides of Equation (5) with factor |�Rl|2 = 1
|Il| , we

have

I11x
2+I22y2+I33z2+2I12xy+2I23yz+2I31zx =

Il
|Il|

= sign(Il) (13)

This is just the physical meaning of the so-called magnetic-
moment quadric and the importance to introduce the concept of charge



216 Zhou and Zhou

moment tensor. And Equation (13) depicts the spatial distribution
law of the scalar charge moment Il(O,�l) as well as the corresponding
magnetic-moment �Pm(O,�l) with respect to given point O and direction
�l. Quadric expressed by Equation (13) might not be definitely a
ellipsoid which is the characteristic of the inertia tensor for a rigid
body, in addition to ellipsoid, those quadric such as the hyperboloid
(with one or two sheets), the cylinders (such as the elliptic cylinder,
the hyperbolic cylinder), and even the cones, and son on, are also the
possible candidate, due to the loss of positive definiteness of tensor
T̃ (O).

Especially in the new body coordinate system O-xyz constructed
with three orthogonal principal axes e(i), (i = 1, 2, 3), Equation (13) is
then reduced to be a quadric camber as follow

I1x
2 + I2y2 + I3z2 = sign(Il) (13’)

In contrast to the general form of quadric equation [14]:

Ax2+By2+Cz2+2Dxy+2Exz+2Fyz+2G0x+2H0y+2I0z+J = 0
(14)

Equation (13) is just the quadric depicted by (14) with following special
parameters

G0 = H0 = I0 = 0, J = −sign(Il); A = I11, B = I22,

C = I33; D = I12, E = I13, F = I23.

On the other hand, we know from theory of analytic geometry
[14] that the candidate kinds of quadric depicted by (13) and the
quadric parameters have following one to one correspondence relation
enumerated in Table 1. We also list the corresponding quadric figures.
In addition to the important conclusions enumerated in the following
classification Table 1, there are some interesting and useful orthogonal
invariants under an arbitrary orthogonal coordinate transformation R
[12, 13].

I, I1 + I2 + I3 = I11 + I22 + I33 ≡ I (invariant)
II, I1I2+I2I3+I3I1 = I11I22+I22I33+I33I11−I2

12−I2
23−I2

31 ≡ J

(invariant)

III, I1I2I3 =

∣∣∣∣∣I11 I12 I13
I21 I22 I23
I31 I32 I33

∣∣∣∣∣ ≡ K (invariant) (15)
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4. THE CONDITION OF ZERO MAGNETIC MOMENT
FOR A ROTATIONAL CHARGED BODY

Under some circumstances it is needed to have a zero magnetic moment
for a rotational charged body in order to maintain its steady state of
movement or its rotation equilibrium, because a external magnetic field
will impose an magnetic torque upon a Rotational charged body with
nonzero magnetic moment.

�M = �Pm × �B (16)

Due to the existence of orthogonal invariants I, J , K, and
the invariant of the scalar charge moment Il, under a rotation
transformation R between two body coordinate systems which are
rigidly connected to the charged body (e.g., the principal-axis body
coordinate system and an arbitrary body coordinate system), the
following equation holds:

I ′l =
�ω′

ω′ · T̃
′ · �ω

′

ω′ =
�ω

ω
· T̃ · �ω

ω
· = Il

Or

I ′11 cos2 θ′1 + I ′22 cos2 θ′2 + I ′33 cos2 θ′3 + 2I ′12 cos θ′1 cos θ′2
+2I ′23 cos θ′2 cos θ′3 + 2I31 cos θ′1 cos θ′3
= I1 cos2 θ1 + I2 cos2 θ2 + I3 cos2 θ3 (17)

The best approach is to treat the problem in the principal- axis
body coordinate system.

Thus according to Equation (11), under the case of given
charge distribution, in order to make �Pm vanish, we need to
impose some constraints upon the directions of rotation axes �l =
(cos θ1, cos θ2, cos θ3). The condition of zero magnetic moment for a
rotational charged body is

�Pm(O,�l) =
1
2

(
I1 cos2 θ1 + I2 cos2 θ2 + I3 cos2 θ3

)
�ω = 0 (18)

in addition to a constraint on the direction cosines:

cos2 θ1 + cos2 θ2 + cos2 θ3 = 1 (19)

Equation (18) and (19) give the zero magnetic moment condition
as follows. Given I1, I2, I3=constant, (i.e., given charge distribution
of rotational body) and suppose cos2 θ1 = X, cos2 θ2 = Y , cos2 θ3 = Z,
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Figure 1. Ellipsoid.

then worked in coordinate system of O-XY Z, the wanted directions
range of the rotation axes is given by the intersection line segment of
two planes expressed by following equations:

Line segmentMN


plane π1 : I1X + I2Y + I3Z = 0
plane π2 (i.e., ABC) : X + Y + Z = 1
0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ Z ≤ 1

(20)
(21)
(22)

Then following conclusions can immediately be drawn from Equa-
tions (20)–(22).

Once the intersection segment MN between plane π1 and π2 lies
in the inner part of positive triangle ABC, every point P ′(X, Y ,
Z) = P ′ (cos2 θ1, cos2 θ2, cos2 θ3) on MN will correspond to several
wanted directions �l0 = (± cos θ1,± cos θ2,± cos θ3) (c.f. Equation (20)–
(22)). Along these directions (i.e., �ω = ω�l0), the rotational charged
body will generate a zero magnetic moment, just as shown in Fig. 6.

Without loss of generality, we suppose I3 �= 0. In fact, eliminating
Z from Equations (20)–(22), we can express the equation of line
segment MN more explicitly as(

1 − I1
I3

)
X +

(
1 − I2

I3

)
Y = 1 (23)

Z = 1 −X − Y, 0 ≤ X ≤ 1, 0 ≤ Y ≤ 1, 0 ≤ Z ≤ 1 (24)

As a matter of fact, in terms of quadric parameters and by means
of pure analytic geometry in the principal-axes body-coordinate
systemO-xyz, there is another approach to determine the wanted
directions of rotation axes with zero magnetic moment.
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Generally speaking, from Equation (12) and (12’), we know that,
when point P on any of above listed quadric tends to infinite, then
|OP | → ∞, and Il → 0. Thus every case as shown in Figs. 2, 3, 4,
5 (except for case as shown in Fig. 1) can generate a zero magnetic
moment.–that is to say, any rotation axis passing through origin O
and along with any of the asymptotic line of the quadric shown in
Figs. 2, 3, 5 can satisfy Equation (18) and lead to a vanishing magnetic
moment.

Figure 2. Hyperboloids of one sheet.

(0, 0, 1/
√

|I3|)

(0, 0, 1/−
√
|I3| )

Figure 3. Hyperboloids of two sheets.

Let us concretely give the mathematical expressions for the axes
of zero magnetic moment.

For case of hyperboloid of one sheet as shown in Fig. 2, the
equation of inner asymptotic cone surface is

|I1|x2 + |I2|y2 − |I3|z2 = 0 (25)
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Figure 4. Elliptic cylinder.

Figure 5. Hyperbolic cylinder.

then any of generatrix lines on the cone surface represents a rotation
axis which leads to a vanishing magnetic moment.

For case of hyperboloid of two sheets as shown in Fig. 3, the
equation of outer asymptotic cone surface is also (25). The
generatrix lines on the cone surface also represent rotation axes
which lead to a vanishing magnetic moment, too.

For case of hyperbolic cylinder as shown in Fig. 5, the equations
of its asymptotic planes are√

|I1|x±
√

|I1|y = 0 (coordinate z is arbitrary) (26)

Then any asymptotic line which is in above asymptotic planes
and passes through origin O will represent a wanted rotational axis
around which the rotational charged body will generate a zero magnetic
moment.

For case of elliptic cylinder as shown in Fig. 4, the z-axis is just
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Figure 6. The zero magnetic moment condition in terms of square
direction cosine (X,Y, Z).

the wanted rotation direction for the charged body which leads to a
vanishing magnetic moment.

5. CONCLUSIONS AND SUMMARY

In view of space technology, it is of special meaning and extraordinary
importance to make a rotational charged body have zero magnetic
moment and maintain its rotation equilibrium. The concepts of charge
moment tensor T̃ , principal axes and the corresponding principal-axis
scalar charge moment Il supply us perfect tools and a systematic
method (5) and (6) to calculate the magnetic moment of rotational
charged bodies around an arbitrary axes. We emphasize that the
loss of positive definiteness of T̃ is its most important characteristic
which forms a sharp contrast with that of its mechanic counterpart
— the positive definite inertia tensor of rigid bodies. On the other
hand, the quadric distribution law of magnetic moment makes these
abstract concepts more concrete, figurative and understandable. Based
on these useful concepts, the conditions of zero magnetic moment for
an arbitrary rotational charged body have been given explicitly in two
forms. Finally, conclusion is given that any rotation axis which passes
through origin O and along with any of the asymptotic line of the
quadric (hyperboloids or hyperbolic cylinders) can lead to a vanishing
magnetic moment. In a subsequent paper the classical dynamic and
kinetic equation for a rotational charged body in a uniform magnetic
field will be given and discussed in detail.
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