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Abstract—This paper investigates the characteristics of electromag-
netic wave propagation in biaxially anisotropic left-handed materials
(BA-LHMs) theoretically and numerically. We discuss under what con-
ditions the anomalous refraction or reflection will occur at the interface
when a plane wave passes from one isotropic right-handed material into
another BA-LHM. Meanwhile the refraction angle of the wave vector
and that of the Poynting power are presented when the anomalous
refraction takes place. According to the theoretical analysis, several
sets of constitutive parameters of BA-LHMs are considered. Then the
anomalous refraction or reflection of the continuous-wave (CW) Gaus-
sian Beam passing from free space into BA-LHMs are simulated by
the finite difference time domain (FDTD) method based on the Drude
dispersive models. The simulated results are in agreement with theo-
retical results, which validates the theoretical analysis.

1. INTRODUCTION

In 1968, Veselago [1] investigated theoretically the propagation
of electromagnetic wave in materials with simultaneously negative
permittivity ε and negative permeability µ or left-handed materials
(LHMs). He predicted that the wave vector k would form a left-
handed triad with the electric field E and the magnetic field H
inside a LHM and that some interesting electromagnetic properties
such as negative refraction index, reversed Doppler effect and reversed
Cerenkov radiation would be obtained. But his idea was forgotten
because LHMs were not available at that time. It was not until
1998 when Pendry et al. experimentally demonstrated negative ε in
low frequency plasma using thin wires [2] and negative µ using split
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ring resonators (SRRs) that LHMs could be finally realized [3]. Soon
afterwards, following Pendry’s discovery, Smith et al. demonstrated for
the first time the existence of LHMs by combining a two-dimensional
(2D) array of SRRs interspersed with a 2D array of wires [4] and
also later experimentally demonstrated the negative refraction index
of LHMs [5]. From then on, the researches on LHMs have gained
significant interest and become more and more comprehensive and
extensive.

However, Veselago’s original paper and most of the recent theo-
retical works discussed mainly the characteristics of electromagnetic
wave propagation in isotropic LHMs, in which ε and µ are both neg-
ative scalars. But up to now, the LHMs that have been prepared
successfully in experiments are actually anisotropic in nature, and it
may be very difficult to prepare an isotropic LHM [1, 4, 5]. It is cur-
rently well accepted that a better model is to consider anisotropic
constitutive parameters, which can be diagonalized in the coordinate
system collinear with the principal axes of the metamaterial. So the
researches on characteristics of electromagnetic wave propagation in
anisotropic LHMs become more and more important and practical. As
far as the authors know, most researches focus mainly on uniaxially
anisotropic LHMs (UA-LHMs) [6–10], in which ε and µ tensors are
simultaneously diagonalizable and each tensor includes two principal
constants in the directions parallel and perpendicular to the principal
axis. In this paper, we present an investigation on the characteristics of
electromagnetic wave propagation in biaxially anisotropic LHMs (BA-
LHMs) theoretically and numerically. Each of diagonalizable ε and µ
tensors in BA-LHMs includes three different principal constants. So
BA-LHMs can be reduced to UA-LHMs if the two components in the
directions perpendicular to the principal axis are equal and they can
be also reduced to isotropic LHMs if the three components are equal,
which makes BA-LHMs more general and practical than UA-LHMs.

This paper mainly includes three sections: In Section 2, taking a
TE polarized plane wave (electric field along +z and kz = 0) as an
example, we deduce the dispersion relation for the plane wave in BA-
LHMs. In Section 3, we discuss under what conditions the anomalous
refraction or reflection will occur at the interface when the TE polarized
plane wave passes from one isotropic right-handed material (RHM) into
another BA-LHM and present the refraction angle of the wave vector
and that of the Poynting power when the anomalous refraction takes
place. In Section 4, the finite difference time domain (FDTD) method
based on the Drude dispersive models [11, 12] is employed to simulate
the anomalous refraction or reflection of the continuous-wave (CW)
Gaussian Beam passing from free space into BA-LHMs with several
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sets of constitutive parameters. The results validate the theoretical
analysis.

2. DISPERSION RELATION IN BIAXIALLY
ANISOTROPIC LEFT-HANDED MATERIALS

For anisotropic materials, one or both of the permittivity and
permeability are second-rank tensors. In the following we assume that
both the permittivity and permeability are biaxially anisotropic with
ε and µ tensors that are simultaneously diagonalizable,

ε = ε0εr = ε0diag [εrx, εry, εrz] = diag [εx, εy, εz] (1a)
µ = µ0µr = µ0diag [µrx, µry, µrz] = diag [µx, µy, µz] (1b)

where not all of the principal components have the same sign for
BA-LHMs. So metamaterials composed of an arrangement of rings
(either split rings, Ω-rings [13], S-rings [14, 15], symmetrical ring [16],
or others) and rods can be readily constructed that closely approximate
these ε and µ tensors, with elements of either algebraic sign [17].

From Maxwell’s equations, all plane waves in the medium can
be split into TE and TM waves, and they can be considered
separately. Without losing any generality, this paper only discusses
the characteristics of TE plane waves propagation in BA-LHMs. As
to TM plane waves, the characteristics can be obtained through
duality, by interchanging corresponding permittivity and permeability
components in Eq. (1). Now taking a TE plane wave (electric field
polarized in the +z direction and kz = 0) as an example, the principal
axis of BA-LHMs is taken as the y axis and the wave vector k is
assumed in the xoy plane, namely k = exkx +eyky, so the electric field
can be written by

E = E0ez exp (ikxx + ikyy − iωt) (2a)

From k × E = ωB = ωµ · H, the magnetic field can be expressed as

H =

(
kyE0

ωµx
ex − kxE0

ωµy
ey

)
exp (ikxx + ikyy − iωt) (2b)

Substitute Eqs. (1) and (2) into k × H = −ωD = −ωε · E, then the
dispersion relation of the TE wave in BA-LHMs is

k2
x/µy + k2

y/µx = ω2εz (3)
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And the time-averaged Poynting vector S and its inner product with
the wave vector k can be given by

S =
1
2
Re [E × H∗] =

1
2
Re

[
kxE2

0

ωµy
ex +

kyE
2
0

ωµx
ey

]
(4)

k · S =
1
2
Re

[
εzωE2

0

]
(5)

These expressions show that, in general, the electric field E, the
magnetic field H and the wave vector k cannot form a strictly left-
handed triad of vectors and the direction of the power flow in each
wave differs from the direction of the wave vector. One can note that
the Poynting vector S and the wave vector k are not only antiparallel
in the true anisotropic LHMs. The angle between them is larger than
π/2 if εz is less than zero.

3. ANOMALOUS REFRACTION OF PLANE WAVE
PROPAGATION FROM ONE ISOTROPIC RHM INTO
ANOTHER BA-LHM

In this section we discuss the characteristics of the anomalous
refraction of electromagnetic wave propagation from one isotropic
RHM into the second BA-LHM. A schematic illustration of the system
is shown in Fig. 1.
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Figure 1. Illustration of anomalous refraction when a plane wave
passes from one isotropic RHM into another BA-LHM.

The total space is divided into two regions. One is the isotropic
RHM region with ε1 = ε0εr1 > 0, µ1 = µ0µr1 > 0 in Region 1 (y < 0),
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the other is the BA-LHM region with permittivity and permeability
tensors denoted in Eq. (1) in Region 2 (y > 0). The TE polarized
plane wave discussed in Section 2 passes from the left lower quadrant
of Region 1 into Region 2, so the principal axis (the y axis) of the
BA-LHM is normal to the interface of the two Regions. If the power
flow of the refracted wave in Region 2 locates on the left side of the +y
axis, namely the incident and refracted waves are simultaneously on
the same side of the normal, we define that the refraction is anomalous.

From Fig. 1, the wave vectors of the incident and reflected waves
can be written by ki

1 = kxex + kyey and kr
1 = kxex − kyey, where

(ki
1)

2 = (kr
1)

2 = k2 = ω2ε1µ1 = (k0)2εr1µr1 and kx > 0, ky > 0. So the
electric fields of the incident and reflected waves can be obtained

Ei
1 = E0ez exp (ikxx + ikyy − iωt) (6a)

Er
1 = rE0ez exp (ikxx − ikyy − iωt) (6b)

where r is the reflection coefficient. From the boundary conditions
of Maxwell’s equations, it can be easily shown that the tangential
component of the wave vector of the refracted wave kt

2x is equal to
that of the incident wave, namely kt

2x = kx > 0. We can obtain the
wave vector of the refracted wave kt

2 = kxex + kt
2yey, so the electric

field of the refracted wave can be expressed as

Et
2 = tE0ez exp

(
ikxx + ikt

2yy − iωt
)

(6c)

where t is the transmission coefficient and kt
2y can be obtained from

Eq. (3) (
kt

2y

)2
= ω2εzµx − (µx/µy) k2

x (7)

Then the magnetic fields of the incident, reflected and refracted waves
can be obtained from equation k × E = ωB = ωµ · H as follows

H i
1 = (kyex − kxey)

E0

ωµ1
exp (ikxx + ikyy − iωt) (8a)

Hr
1 = − (kyex + kxey)

rE0

ωµ1
exp (ikxx − ikyy − iωt) (8b)

Ht
2 =

(
tE0k

t
2y

ωµx
ex − tE0kx

ωµy
ey

)
exp

(
ikxx + ikt

2yy − iωt
)

(8c)

Because the tangential components of electromagnetic fields at the
interface (y = 0) are equal, the reflection and transmission coefficients
can be obtained

r =
kyµx − kt

2yµ1

kyµx + kt
2yµ1

; t =
2kyµx

kyµx + kt
2yµ1

(9)
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Then the time-averaged Poynting vector St
2 in Region 2 can be

obtained from Eq. (4)

St
2 = Re

[
t2E2

0kx

2ωµy
ex +

t2E2
0kt

2y

2ωµx
ey

]
(10)

So the basic characteristics of the reflection and refraction of
electromagnetic waves can be seen from Eqs. (9) and (10).

In the following section, let us discuss under what conditions the
anomalous refraction will occur at the interface.

Firstly, there must be refraction taking place in Region 2, which
requires the y component of the wave vector of the refracted wave
kt

2y must be real. If kt
2y is a imaginary value, Et

2 will attenuate
exponentially in the y direction from Eq. (6c) and the y component
of the Poynting vector of the refracted wave will be zero, namely
ey · St

2 = Re
[(

t2E2
0kt

2y

)
/ (2ωµx)

]
= 0, hence no power will be

transmitted into the Region 2 and the incident wave will be totally
reflected. So from Eq. (7), the refraction will occur only if the incident
angle θi satisfies

(µx/µy) k2 sin2 θi < ω2εzµx (11)

Secondly, according to the practical physical conception, when
the refraction takes place in Region 2, the power of the refracted wave
must be flowing away from the interface of the two materials but never
toward the interface. This requires ey · St

2 > 0, so we can obtain the
second condition as follow

kt
2y/µx > 0 (12)

Lastly, the anomalous refraction will occur when the power flows
of the incident and refracted waves are on the same side of the normal,
which requires kx · St

2 = Re
[
t2E2

0k2
x/2ωµy

]
< 0. So the last condition

is
µy < 0 (13)

From Eqs. (11)–(13), we can obtain several sets of constitutive
parameters of BA-LHMs which satisfy the conditions above at the
same time.

CASE1. µy < 0, µx < 0, εz < 0
From Eq. (7), the components of the wave vector kt

2 in
the wave-vector surface satisfy a spheroid expression k2

x/(µyεz) +(
kt

2y

)2
/(εzµx) = ω2. From Eq. (11), there exists a critical
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angle for the incident wave, θc = arcsin
√

(εzµy)/(ε1µ1) =

arcsin
√

(εrzµry)/(εr1µr1). When the incident angle θi < θc, there
will be anomalous refraction. When θi > θc, kt

2y will be imaginary
and the incident wave will be totally reflected. If εrzµry ≥ εr1µr1, the
critical angle θc = π/2. In this case, for any incident angles, there will
be anomalous refraction.

CASE2. µy < 0, µx > 0, εz > 0
From Eq. (7), the components of the wave vector kt

2 in the
wave-vector surface satisfy a two-sheeted hyperboloid expression

−k2
x/|µyεz| +

(
kt

2y

)2
/(εzµx) = ω2. In this case, the inequality (11)

is always right and there will be anomalous refraction for any incident
angles.

CASE3. µy < 0, µx > 0, εz < 0
From Eq. (7), the components of the wave vector kt

2 in the wave-
vector surface satisfy a one-sheeted hyperboloid expression k2

x/(µyεz)−(
kt

2y

)2
/|εzµx| = ω2. From Eq. (11), there also exists a critical angle

θc = arcsin
√

(εzµy)/(ε1µ1) = arcsin
√

(εrzµry)/(εr1µr1). However,
the occurrence of anomalous refraction will require that the incident
angle must be larger than this critical angle, namely θi > θc . If the
incident angle is smaller than the critical angle, namely θi < θc, kt

2y
will be imaginary and the incident wave will be totally reflected. If
εrzµry ≥ εr1µr1, the critical angle θc = π/2. In this case, for any
incident angles, the incident wave will be totally reflected.

After the anomalous refraction takes place, let us determine the
refraction angle. From Eq. (5),we can find that some separation angle
exists between the wave vector kt

2 and the Poynting vector St
2. So there

will be two refraction angles in Region 2 for a given incident angle θi,
one is the refraction angle of the wave vector θk, the other is that of
the Poynting vector θs. θk can be simply obtained by the dispersion
relation (7) and the matching condition ki

1 sin θi = kt
2 sin θk, while θs

can obtained by computing the gradient of the dispersion relation [18].
After some simple algebra, the generalization of Snell’s law reads

sin θk =
sin θi√√√√εzµx

ε1µ1
+

(
1 − µx

µy

)
sin2 θi

=
sin θi√√√√εrzµrx

εr1µr1
+

(
1 − µrx

µry

)
sin2 θi

(14)
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sin θs =
sin θi√√√√εzµy

ε1µ1
−

(
1 − µx

µy

)
sin2 θi

√
µx

µy

=
sin θi√√√√εrzµry

εr1µr1
−

(
1 − µrx

µry

)
sin2 θi

√
µrx

µry
(15)

In this paper, we define all angles with respect to the +y axis in
a range of (−π, π). From Fig. 1, the range of the angle is (−π, 0) at
x < 0 and (0, π) at x > 0. So the incident angle θi belongs to (0, π/2).
Because the power of the refracted wave locates on the left side of the
+y axis and flows away from the interface upward, so the refraction
angle of the Poynting vector θs belongs to (−π/2, 0) and it can be
obtained by the transformation θs → −θs after the calculation from
Eq. (15) for a given incident angle θi. As to that of the wave vector
θk, if the y component of the wave vector kt

2y is larger than zero and
it can be obtained by directly calculated from Eq. (14), if kt

2y is less
than zero and it can be obtained by the transformation θk → π − θk

after the calculation from Eq. (14).

4. NUMERICAL RESULTS

In this section, the FDTD method based on the Drude dispersive
models is employed to study the anomalous refraction or reflection of
the CW TE-polarized Gaussian Beam (Ez, Hx, Hy) passing from free
space into BA-LHMs with several sets of constitutive parameters. The
principal components of the tensors in Eq. (1) can be expressed by the
Drude dispersive models as follows

ε(ω) = ε0

[
1 −

ω2
pe

ω (ω − iΓe)

]
, µ(ω) = µ0

[
1 −

ω2
pm

ω (ω − iΓm)

]
(16)

where ωpe, ωpm are the plasma frequencies and Γe, Γm are the collision
frequencies of the electric and magnetic properties, respectively and
negative permittivity and permeability components can be realized by
changing them.

In the following simulations, Region 1 stands for free space with
ε1 = ε0, µ1 = µ0, ki

1 = kr
1 = k0 and Region 2 stands for BA-

LHMs with εz, µx, µy. The x-y FDTD space is 800 × 400 cells with
a four-cell-layer PML absorbing boundary [19]. The cell sizes are
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∆x = ∆y = λ0/20 = 0.05 cm, corresponding to f0 = 30 GHz. The
time step is chosen as ∆t = 0.95∆x/

(√
2c0

)
= 1.1195 ps. And the

waist of the Gaussian Beam is W0 = 100∆x = 5 cm.

4.1. µy < 0, µx < 0, εz < 0

CASE1: µy = −
(√

2/2
)

µ0, µx = −µ0, εz = −
(√

2/2
)

ε0

Choose ωpmy = ωpez = 2π

√(
1 +

√
2/2

)
f0, ωpmx = 2π

√
2f0 and

Γe = Γm = 0 in Eq. (16), then the parameters above can be obtained
and the critical angle is θc = arcsin

(√
2/2

)
= π/4. In this case, the

components of the wave vector kt
2 in the wave-vector surface satisfy

2k2
x +

√
2

(
kt

2y

)2
= k2

0 and those of the wave vector in Region 1 satisfy
k2

x + k2
y = k2

0, as shown in Fig. 2(a).
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Figure 2. Simulation results when incident angle θi = π/6, (a)
diagram for wave-vector surface, (b) electric fields distributions.

Firstly, the incident angle θi = π/6 is employed. From Fig. 2(a),
kt

2y may have two values at the matching kt
2x = kx > 0. For µx < 0, so

kt
2y < 0 can be obtained from Eq. (12), and then kt

2 = kxex −
∣∣∣kt

2y

∣∣∣ ey.
From Eqs. (14) and (15), we can obtain two refraction angles: θk =
0.7774π and θs = −0.2774π, as the blue and red arrows respectively
shown in Fig. 2(a). Note that the red arrow in Fig. 2(a) only stands
for the direction of the Poynting vector of the refracted wave, not its
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value. Fig. 2(b) presents the electric fields distributions in the whole
simulation space. Time animations illustrate that the phase front of the
Gaussian Beam in Region 2 does progresses downward to the interface
in the direction of the blue arrow and the power flows away from the
interface in the direction of the red arrow. That the incident and
refracted waves are both on the same side of the normal shows the
anomalous refraction has taken place when θi < θc.

Secondly, the incident angle θi = (11π)/36 is employed. From
Fig. 3(a), kt

2y must be imaginary at the matching kt
2x = kx. From the

analysis above, the electric field of the refracted wave Et
2 will attenuate

exponentially in the y direction and the incident wave will be totally
reflected. Fig. 3(b) presents the electric fields distributions in the whole
simulation space. The penetrating electric field in Region 2 is too weak
and does attenuate exponentially in the ydirection. And the incident
wave in Region 1 is indeed totally reflected when θi > θc.
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0kky

i
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r
1k

xk

(a) (b)

Figure 3. Simulation results when incident angle θi = 11π/36, (a)
diagram for wave-vector surface, (b) electric fields distributions.

CASE2: µy = −µ0, µx = −µ0, εz = −ε0

Choose ωpmy = ωpmx = ωpez = 2π
√

2f0 and Γe = Γm = 0 in
Eq. (16), then the parameters above can be obtained and the critical
angle is θc = π/2. In this case, the materials in Region 2 are just
isotropic LHMs. The components of the wave vector in Region 1 and
2 both satisfy k2

x + k2
y = k2

0 in the wave-vector surface, as shown in
Fig. 4(a). From the analysis above, there will be anomalous refraction
for any incident angles.
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Figure 4. Simulation results when incident angle θi = π/4, (a)
diagram for wave-vector surface, (b) electric fields distributions.

Here the incident angle θi = π/4 is employed, From Eqs. (14) and
(15), we can obtain two refraction angles: θk = 3π/4 and θs = −π/4,
as the blue and red arrows respectively shown in Fig. 4(a). Fig. 4(b)
presents the electric fields distributions in the whole simulation space.
Time animations illustrate that the Poynting vector St

2 and the wave
vector kt

2 are antiparallel in Region 2 and the anomalous refraction has
taken place for any incident angles.

4.2. µy < 0, µx > 0, εz > 0

Choose ωpmy = 2π
√

2f0, ωpmx = ωpez = 0 and Γe = Γm = 0 in
Eq. (16), then the parameters µy = −µ0, µx = +µ0 and εz = +ε0, can
be obtained. In this case, the components of the wave vector kt

2 in the

wave-vector surface satisfy −k2
x +

(
kt

2y

)2
= k2

0, as shown in Fig. 5(a).
For any incident angles, the inequality (11) is always right and kt

2y
is always real, so there will be anomalous refraction no matter what
incident angles are.

In this case, the incident angle θi = π/4 is employed. From
Fig. 5(a), for µx > 0, so kt

2y > 0 can be obtained from Eq. (12),

and then kt
2 = kxex +

∣∣∣kt
2y

∣∣∣ ey. From Eqs. (14) and (15), we can obtain
two refraction angles: θk = π/6 and θs = −π/6, as the blue and red
arrows respectively shown in Fig. 5(a). Fig. 5(b) presents the electric
fields distributions in the whole simulation space. Time animations
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Figure 5. Simulation results when incident angle θi = π/4, (a)
diagram for wave-vector surface, (b) electric fields distributions.

illustrate that the phase front of the Gaussian beam in Region 2 does
progresses in the direction of the blue arrow and the power flows away
from the interface in the direction of the red arrow, which proves that
there is anomalous refraction for any incident angles.

4.3. µy < 0, µx > 0, εz < 0

CASE1: µy = −
(√

2/2
)

µ0, µx = +µ0, εz = −
(√

2/2
)

ε0

Choose ωpmy = ωpez = 2π

√(
1 +

√
2/2

)
f0, ωpmx = 0 and

Γe = Γm = 0 in Eq. (16), then the parameters above can be obtained
and the critical angle is θc = arcsin

(√
2/2

)
= π/4. In this case, the

components of the wave vector kt
2 in the wave-vector surface satisfy

2k2
x −

√
2

(
kt

2y

)2
= k2

0 and those of the wave vector in Region 1 satisfy
k2

x + k2
y = k2

0, as shown in Fig. 6(a).
Firstly, the incident θi = π/6 is employed. From Fig. 6(a), kt

2y

must be imaginary at the matching kt
2x = kx. From the analysis

above, the incident waves will be totally reflected. Fig. 6(b) presents
the electric fields distributions in the whole simulation space. The
incident wave in Region 1 is indeed totally reflected only when θi < θc.

Secondly, the incident angle θi = (13π)/36 is employed. From
Fig. 7(a), for µx > 0, so kt

2y > 0 can be obtained from Eq. (12), and
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Figure 6. Simulation results when incident angle θi = π/6, (a)
diagram for wave-vector surface, (b) electric fields distributions.

then kt
2 = kxex +

∣∣∣kt
2y

∣∣∣ ey. From Eqs. (14) and (15), we can obtain two
refraction angles: θk = 0.2964π and θs = −0.3459π, as the blue and red
arrows respectively shown in Fig. 7(a). Fig. 7(b) presents the electric
fields distributions in the whole simulation space. Time animations
illustrate that there is anomalous refraction when the incident angle
is larger than the critical angle, namely θi > θc. However no totally
reflection takes place in this case, which is significantly different from
that in isotropic LHMs.

CASE2: µy = −µ0, µx = +µ0, εz = −ε0

Choose ωpmy = ωpez = 2π
√

2f0, ωpmx = 0 and Γe = Γm = 0 in
Eq. (16), then the parameters above can be obtained and the critical
angle is θc = π/2. In this case, the components of the wave vector

kt
2 in the wave-vector surface satisfy k2

x −
(
kt

2y

)2
= k2

0, as shown in
Fig. 8(a). From the analysis above, the incident wave will be totally
reflected for any incident angles. Here the incident angle θi = π/4
is employed, Fig. 8(b) presents the electric fields distributions in the
whole simulation space. The incident wave is indeed totally reflected,
which validates the theoretical analysis.
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Figure 7. Simulation results when incident angle θi = 13π/36, (a)
diagram for wave-vector surface, (b) electric fields distributions.
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Figure 8. Simulation results when incident angle θi = π/4, (a)
diagram for wave-vector surface, (b) electric fields distributions.

5. CONCLUSION

This paper has presented the investigations on the anomalous
characteristics of electromagnetic wave propagation in BA-LHMs
theoretically and numerically in detail. The conditions that the
anomalous refraction or reflection will occur at the interface when
the TE polarized plane wave passes from one isotropic right-handed
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material into another BA-LHM have been studied and discussed
emphatically. Meanwhile the corresponding numerical results by
FDTD based on the Drude dispersive models are presented with
different sets of constitutive parameters of BA-LHMs. The simulated
results are in agreement with theoretical analysis, which will be helpful
for the studies on the electromagnetic characteristics of anisotropic
LHMs further.
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