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Abstract—An effective numerical solution is presented for the plane
wave scattering by multilayered periodic arrays of dielectric spheres.
The treated structure is a fundamental model of photonic crystals
having three-dimensional periodicity. The problem is analyzed by the
mode matching method, where the electromagnetic fields in the air and
dielectric regions are approximated by using the Floquet harmonics
and vector spherical wave functions, respectively. They are matched
on the junction surfaces in the least squares sense. Introduction
of sequential accumulation in the process of QR decomposition
reduces the computation time from O(Q3) to O(Q1) and the memory
requirement from O(Q2) to O(Q1), with Q being a number of sphere
layers. Numerical results are given for CPU time, speed of convergence,
and some band gap characteristics.

1. INTRODUCTION

Much attention has been attracted for electromagnetic scattering from
arrays composed of periodic dielectric bodies [1–4], since they are
important materials as fundamental photonic crystals [5–7]. Such
structures have properties of electromagnetic or optical band gaps,
and are frequently used to design interesting devices [8, 9] accompanied
with the development of manufacturing technology. Nevertheless, we
have small number of reports concerning accurate numerical treatment
on three-dimensional structures. This is because the boundary value
problems for vector fields are rather complicated. The patch-dipole
current model was applied to two dimensionally periodic spherical
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array and its numerical error was discussed [10], but we cannot say
that the investigation on physical properties is sufficient.

In view of this, the present paper proposes an efficient numerical
technique and applies it to plane wave scattering from a three-
dimensional periodic array of dielectric spheres. The method is based
on the modal expansion of electromagnetic field, which is known as a
mode matching method [11] a least squares boundary residual method
[12], or an improved point matching method [13]. The electromagnetic
fields in the air and dielectric regions are approximated by using the
Floquet harmonics and vector spherical wave functions, respectively.
They are matched on the junction surfaces in the least squares sense.
Recently the present authors extended the range of applicability of
this method by combining up- and down-going modal functions to
describe the field, which is effective especially for gratings with deep
grooves [14]. Special emphasis in the present paper is placed on the
introduction of the sequential accumulation [15] in the process of QR
decomposition [16] of matrices. This can reduce the computation
time from O(Q3) to O(Q1) and the memory requirement from O(Q2)
to O(Q1), where Q is a number of sphere layers in the propagation
direction. Numerical results will be given for discussion from the
mathematical and physical points of view, i.e., CPU time, speed of
convergence, and some band gap characteristics.

2. STATEMENT OF THE PROBLEM

As shown in Fig. 1(a), the dielectric spheres, having the radius a and
the relative permittivity εr, are arranged with the period d in the
directions of each axis. The number of spheres is infinity along the x
and y axes, and the number of layers is Q. The plane which includes
the center of spheres in the q-th layer is z = zq = (q − 1)d.

The incident angles θi and φi are defined in Fig. 1(b). Without loss
of generality, we can restrict them to 0 ≤ θi < π/2 and 0 ≤ φi ≤ π/4.
The periodicity allows us to consider only over the unit cell |x|, |y| <
d/2. The time factor e jωt will be omitted throughout.

3. APPROXIMATE WAVE FUNCTIONS

3.1. Semi-Infinite Spaces

The wave vector of the incident field is k
(+)
00 = k0(sin θi cosφi ix +

sin θi sinφi iy +cos θi iz), where k0 = ω
√
ε0µ0 = 2π/λ is a wavenumber

in the air, and the symbol iu (u = x, y, z) is a unit vector in the u
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Figure 1. Geometry of the problem. (a) Array of dielectric spheres.
(b)Incident plane wave.

direction. This yields the wave vector of the mn-th mode

k(±)
mn = αmix + βniy ± γmniz (1)

where{
αm = k0 sin θi cosφi + 2mπ/d, βn = k0 sin θi sinφi + 2nπ/d
γmn = (k2

0 − α2
m − β2

n)1/2 (Im γmn ≤ 0)
(2)

The upper and lower signs in Eq. (1) go together, which denote the
direction of propagation or attenuation. Since the field of the mn-th
mode is normal to k(±)

mn , we can introduce the normalized orientation
vectors

e(±)
p,mn =

{
(k(±)

mn × iz)/|k(±)
mn × iz| (p = 1; TE-mode)

(e(±)
1,mn × k(±)

mn)/|e(±)
1,mn × k(±)

mn | (p = 2; TM-mode)
(3)

h(±)
p,mn = (k(±)

mn/k0) × e(±)
p,mn (4)

Equations (3) and (4) tell us that the vectors e
(±)
1,mn (TE) and h

(±)
2,mn

(TM) are both normal to iz.
The above preparation enables us to write the wave functions in

both half spaces. In the air region z < −d/2, the incident field is



308 Matsushima et al.

expressed as

[
Ei

ζ0H
i

]
(P ) =


 e

(+)
1,00 e

(+)
2,00

h
(+)
1,00 h

(+)
2,00


 [

cos δ
sin δ

]
f

(+)
00 (P + izd/2) (5)

where P = xix + yiy + ziz is a position vector of an observation point
P , ζ0 =

√
µ0/ε0 is the wave impedance in the air, and the modal

function
f (±)

mn (P ) = exp[−jk(±)
mn · P ] (6)

is a solution of the Helmholtz equation based on the method of
separation of variables. The polarization angles δ = 0 and π/2
correspond to the TE- and TM-modes, respectively.

We can write the approximate wave function in the transmission
region z > (Q− 1/2)d as

[
EN

ζ0HN

]
(P ) =

2∑
p=1

N∑
m=−N

N∑
n=−N

Apmn,N

[
e

(+)
pmn

h(+)
pmn

]
f (+)

mn (P−iz(Q−1/2)d)

(7)
where N is a number of truncation. A similar manner yields the
approximate wave function in the reflection region z < −d/2 as

[
EN

ζ0HN

]
(P ) =

2∑
p=1

N∑
m=−N

N∑
n=−N

Bpmn,N

[
e

(−)
pmn

h(−)
pmn

]
f (−)

mn (P + izd/2)

(8)
Equations (7) and (8) include 4(2N + 1)2 unknown expansion
coefficients Apmn,N and Bpmn,N , which depend on the number N .

3.2. Layered Regions

In order to write the approximate wave functions in the layered region
zq − d/2 < z < zq + d/2 (q = 1, 2, · · · , Q), we measure the position P
by means of the local spherical coordinate (rq, θq, φq) with its origin
located at x = y = 0 and z = zq. The desired function is

[
EN

ζ0HN

]
(P ) =

3N∑
n=1

n∑
m=−n

[
me

mn(P ) ne
mn(P )

jnh
mn(P ) jmh

mn(P )

] 
 C

(q)
mn,N

D
(q)
mn,N


 (9)

where the vector spherical wave functions are

me
mn(r, θ, φ) =

{
Φmn(Ĵn(kr), θ, φ) (r < a)
Φmn(Vn(k0r), θ, φ) (r > a)

(10)
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ne
mn(r, θ, φ) =

{
Ψmn(Ĵn(kr), θ, φ) (r < a)
Ψmn(Wn(k0r), θ, φ) (r > a)

(11)

mh
mn(r, θ, φ) =

{ √
εr Φmn(Ĵn(kr), θ, φ) (r < a)

Φmn(Wn(k0r), θ, φ) (r > a)
(12)

nh
mn(r, θ, φ) =

{ √
εr Ψmn(Ĵn(kr), θ, φ) (r < a)

Ψmn(Vn(k0r), θ, φ) (r > a)
(13)

with k = k0
√
εr. These are the solutions of the Helmholtz equation

obtained by the method of separation of variables [17]

Φmn(F (κ), θ, φ) =
F (κ)
κ

[
−m

P
|m|
n (cos θ)

sin θ
iθ + j sin θ P |m|′

n (cos θ) iφ

]

× e jmφ (14)

Ψmn(F (κ), θ, φ) =
{
jn(n + 1)

F (κ)
κ2

P |m|
n (cos θ) ir −

F ′(κ)
κ

×
[
j sin θ P |m|′

n (cos θ) iθ + m
P

|m|
n (cos θ)

sin θ
iφ

]}
e jmφ (15)

where P
|m|
n is the associated Legendre function, and Ĵn, Vn, and Wn are

the spherical Bessel function [18] and its combinations. See Appendix
A for the definition. The prime denotes differentiation with respect to
the variable.

We can easily verify that Eq. (9) has already satisfied the boundary
conditions on the spherical surfaces{

irq × EN |rq=a+0 = irq × EN |rq=a−0

irq × HN |rq=a+0 = irq × HN |rq=a−0
(16)

together with Eqs. (10)–(15) and Appendix A. Equation (9) includes
6QN(3N + 2) unknown coefficients which depend on the number N .
The first finite sum in Eq. (9) is truncated at n = 3N so that the
number of unknowns per one layer, 6N(3N + 2), amounts to about
two times as the number of unknowns in each half space, 2(2N + 1)2.
This is because both up- and down-going waves exist in the layered
regions.

Figure 2 is a diagram of classifying the expansion coefficients.
This provides us intuitive insight into the scattering process as
[incidence, B] ↔ [C(1), D(1)] ↔ [C(2), D(2)] ↔ · · · ↔ [C(Q), D(Q)] ↔
[A]. This mechanism makes the matrix block diagonal, which is
suitable for effective treatment as will be seen in Section 5.
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Figure 2. Classification of expansion coefficients.

4. BOUNDARY MATCHING

The continuity of the tangential field components on the planes z = zq

and x, y = ±d/2 is given by

iz × (Ei + EN )|z=−d/2−0 = iz × EN |z=−d/2+0

iz × (H i + HN )|z=−d/2−0 = iz × HN |z=−d/2+0

}

(|x| < d/2, |y| < d/2) (17)

iz × EN |z=zq+d/2+0 = iz × EN |z=zq+d/2−0

iz × HN |z=zq+d/2+0 = iz × HN |z=zq+d/2−0

}
(|x| < d/2, |y| < d/2; q = 1, 2, · · · , Q) (18)

ix × EN |x=d/2−0 = α ix × EN |x=−d/2+0

ix × HN |x=d/2−0 = α ix × HN |x=−d/2+0

}
(|y| < d/2, |z − zq| < d/2; q = 1, 2, · · · , Q) (19)

iy × EN |y=d/2−0 = β iy × EN |y=−d/2+0

iy × HN |y=d/2−0 = β iy × HN |y=−d/2+0

}
(|x| < d/2, |z − zq| < d/2; q = 1, 2, · · · , Q) (20)



Progress In Electromagnetics Research, PIER 69, 2007 311

The periodicity is incorporated in Eqs. (19) and (20) by means of
α = e−jα0d and β = e−jβ0d.

Let us distribute the matching points on the square boundary
surfaces uniformly as

(x, y, z) =




(ξi, ξl, −d/2) → Eq. (17)
(ξi, ξl, zq + d/2) → Eq. (18)
(±d/2, ξi, zq + ξl) → Eq. (19)
(ξi, ±d/2, zq + ξl) → Eq. (20)

(i, l = 1, 2, · · · , I; q = 1, 2, · · · , Q) (21)

with ξi = (2i− 1− I)d/(2I). Imposing Eqs. (17)–(20) at these points,
we are led to the set of 4(3Q + 1)I2 algebraic linear equations for the
expansion coefficients. This number of equations stems from the fact
that Eq. (21) presents (3Q + 1)I2 points or pairs of points, each of
which concerns four tangential field components.

The set of linear equations is solved in the sense of least squares
[13], where the number I is chosen such that the number of equations is
more than that of unknowns. Here, it is effective to use the technique
of orthogonal decomposition such as the QR method [16].

5. SEQUENTIAL ACCUMULATIONS (SA)

5.1. Form of Linear Equations

The set of equations under consideration is arranged in the form

V x = y (22)

which includes the block diagonal matrix of the type

V =




V11 V12 0 · · · 0 0
0 V22 V23 · · · 0 0
...

. . . . . . . . . . . .
...

0 0 0 · · · VKK VK,K+1


 (23)

with K = Q + 1, as well as the column vectors

x = [x1 x2 · · · xK+1]
t , y = [y1 y2 · · · yK ]t (24)

The submatrices Vij are constructed from boundary values of
the functions e

(±)
pmnf

(±)
mn , h(±)

pmnf
(±)
mn , me

mn, and ne
mn. The unknown
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subvectors xk are defined by

xk =




[Bpmn,N ] (k = 1)
 C

(k−1)
mn,N

D
(k−1)
mn,N


 (k = 2, 3, · · · , Q + 1)

[Apmn,N ] (k = Q + 2)

(25)

The subvector y1 originates from the incident field in the left hand
side of Eq. (17), whereas the other subvectors yk (k = 2, 3, · · · ,K) are
zero vectors since Eqs. (18)–(20) do not include the incident field.

Let us suppose that Vij is composed of Mi rows and Nj columns.
By counting the number of points and elements in Eqs. (21) and (25),
respectively, we obtain

Mk =

{
4I2 (k = 1)
12I2 (k = 2, 3, · · · , Q + 1)

(26)

Nk =

{
2(2N + 1)2 (k = 1, Q + 2)
6N(3N + 2) (k = 2, 3, · · · , Q + 1)

(27)

5.2. Procedure of SA

Equation (22) is solved by using the technique of sequential accumu-
lation [15] as follows.

SA1 Consider the initial set of Eq. (22), i.e., [V11 V12][x1 x1]t = y1.
The QR decomposition [V11 V12] = Q1R1 gives that R1[x1 x1]t =
Q∗

1y1, where the matrices Q1, Q∗
1, and R1 are unitary, its inverse

(conjugate transpose), and upper triangular, respectively. The
result is written in the form[

R11 R12

0 R̃22

] [
x1

x2

]
=

[
z1

z̃2

]
(28)

where R11 and R̃22 are upper triangular.
SA2 We append the latter set of Eq. (28), R̃22x2 = z̃2, to the

succeeding set of Eq. (22), [V22 V23][x2 x3]t = y2. This yields
the accumulated form[

R̃22 0
V22 V23

] [
x2

x3

]
=

[
z̃2

y2

]
(29)
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Decomposing the leftmost matrix into Q2R2, we have
R2[x2 x3]t = Q∗

2[z̃2 y2]t. This is written as[
R22 R23

0 R̃33

] [
x2

x3

]
=

[
z2

z̃3

]
(30)

SA3 Sequentially for k = 3, 4, · · · ,K, we apply similar manipulations
to [

R̃kk 0
Vkk Vk,k+1

] [
xk

xk+1

]
=

[
z̃k

yk

]
(31)

This leads to[
Rkk Rk,k+1

0 R̃k+1,k+1

] [
xk

xk+1

]
=

[
zk

z̃k+1

]
(32)

Only at the final step k = K, we will remove the tilde in Eq. (32)
like RK+1,K+1 and zK+1.

SA4 The matrices and vectors without tilde in Eqs. (28), (30), and
(32) are extracted and arranged as



R11 R12 0 · · · 0 0
0 R22 R23 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · RKK RK,K+1

0 0 0 · · · 0 RK+1,K+1







x1

x2
...

xK

xK+1




= [z1 z2 · · · zK zK+1]
t (33)

This is solved by applying the backward substitution to
RK+1,K+1xK+1 = zK+1 and Rkkxk = zk − Rk,k+1xk+1 (k =
K,K − 1, · · · , 2, 1).

5.3. Estimation of Computation Time and Memory
Requirement

In least squares procedures, the computation time is mainly consumed
in QR decompositions. The number of multiplication and division
operations included in decomposing one matrix with M̂ rows and N̂
columns is M̂(N̂2+5N̂)/2. This suggests that we may use the function

fτ (M̂, N̂) = τM̂N̂2 (34)

in order to estimate the computation time, where τ is a constant
depending on the ability of computer.
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If SA is not used, the matrix V in Eq. (23) is decomposed once.
In this case the computation time is estimated by

T = fτ (4(3Q + 1)I2, 4(2N + 1)2 + 6QN(3N + 2))
≈ τ(3888Q3 + 8208Q2 + 5376Q)I2N4 (35)

if N � 1. A similar estimation as SA is employed gives

TSA = τfτ (M1, N1 + N2) + τ
K∑

k=2

fτ (Nk + Mk, Nk + Nk+1)

≈ τ(15552Q− 4376)I2N4 (36)

with the aid of Eqs. (26) and (27) and the condition I2 � N2. The
above two equations lead us to the reduction rate of CPU time as

TSA/T ≈ (4Q− 1)/[Q(Q + 1)2] (37)

Figure 3 is presented to validate the estimation above. The
parameters for grating structure do not affect the result and are not
filled in. Equations (35) and (36) show that the computational effort
for large Q is O(Q3) and O(Q1) in the cases without SA and with
SA, respectively. The plotted result explains this: the triangular and
circular marks are collocated asymptotically along the straight lines of
slope 3 and 1. The reduction rate given by Eq. (37) is 0.75, 0.11, and
0.03 for Q = 1, 5, and, 10, respectively. Figure 3 obeys these values
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Figure 3. Computation time per one point at N = 3 and I = 10. A
Pentium 4 processor with a clock frequency of 3.0 GHz is used.
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relatively well. Therefore we can conclude that the efficacy of SA
becomes prominent especially when the number of layer is increased.

In the same manner, the memory is consumed mainly by the
matrix V in Eq. (23). To estimate the required memory space S and
SSA in the cases without and with SA, respectively, we use the function

gσ(M̂, N̂) = σM̂N̂ (38)

where σ is a constant. Replacement of fr by gσ in Eqs. (35) and (36)
yields S ≈ σ · 216Q2I2N2 = O(Q2) and SSA ≈ σ · 432QI2N2 = Q(Q1),
which leads us to

SSA/S ≈ 2/Q (39)
Therefore we can conclude that SA works well from the viewpoint of
both CPU time and memory.

6. NUMERICAL RESULTS

6.1. Convergence

In order to determine the number I for a given N , we utilize the fact
that M̂ ≥ N̂ must hold in Eq. (34). This rule is applied to Eq. (36) to
yield {

M1 ≥ N1 + N2

Nk + Mk ≥ Nk + Nk+1 (k = 2, 3, · · · ,K) (40)

which is combined with Eq. (26) and (27). We select the minimum
even number I as shown in Table 1.

Table 1. Determination of the number of matching points.

N 1 2 3 4 5 6 7 8 9 10
I 4 8 10 12 14 18 20 22 24 28

In order to discuss the convergence of the numerical solution, we
define the normalized mean square error by

Ωms
N = ||V x − y||2/||y||2 (41)

where x is a solution of Eq. (33), and || ∗ || denotes a magnitude of
column vector. As another check of the accuracy, we define the energy
error by

Ωen
N = 1 −

2∑
p=1

∑
m,n

(Re γmn>0)

(P t
pmn + P r

pmn) (42)
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where the second sum in Eq. (42) covers only propagating modes, and
the normalized transmitted and reflected powers are computed by{

P t
pmn = Re (γmn/γ00) |Apmn,N |2

P r
pmn = Re (γmn/γ00) |Bpmn,N |2 (43)

As shown in Fig. 4, both of the errors decrease monotonically
when N increases. Since the wavelength in the dielectric is shorter
than that in the air, we need large N for big spheres. However, even
for a/d = 0.4, these errors become less than 1% if N ≥ 5. The
computations hereafter will be performed under the conditions that
the errors are usually below 0.1%, but we permit 1%-error only in
rapidly changing portions of curves.
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Figure 4. Mean squares error and energy error at Q = 2, εr = 10,
d/λ = 0.8, and θi = φi = δ = 0◦.
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6.2. Physical Properties

Figure 5 shows the transmitted powers for single layered arrays in the
single mode region at normal incidence, where the result is independent
of polarization. We fix the parameters a/d and εr in Figs. 5(a) and 6(b),
respectively. The solid line in Fig. 5(b) is terminated at d/λ = 0.63,
since at higher frequencies the curve would change rapidly and disturb
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Figure 5. Frequency characteristics of transmitted powers of the
dominant mode for single layered arrays (Q = 1) at normal incidence
(θi = φi = 0◦), with δ being arbitrary.
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Figure 6. Frequency characteristics of transmitted powers of the
dominant mode for four different numbers of layers at normal incidence.
The parameters are a/d = 0.2, εr = 10, and θi = φi = 0◦, with δ being
arbitrary.

the sight of other curves. Generally speaking, when εr or a/d is
increased, the transmission band becomes narrow and the points of
total reflection shift toward the low frequency side. We also find it
difficult to widen the total reflection region by using single layers of
small spheres.

Figure 6 is drawn to observe the effect of increasing the layer
number on the band of total transmission/reflection. The behavior of
Fig. 6(a) for single layer is the middle between the solid and dotted
curves in Fig. 5(a): we have total reflection points at d/λ ≈ 0.77 and
0.91. When the layer is increased, these points are gradually changed
to reflection bands having some width, and a new reflection band is
under formation between these bands, i.e., 0.78 < d/λ < 0.84.
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Figure 7. Dependence of reflected powers on the incident angles. The
parameters are Q = 4, a/d = 0.25, εr = 12, and d/λ = 0.58.

Figure 7 presents the reflected power for each mode as a function
of incident angle θi. Another incident angle φi is fixed at two typical
values, 0◦ and 45◦ for Fig. 7(a)(b) and (c), respectively. We observe
the total reflection when θi is less than about 40◦. This property
disappears for larger θi due to the emergence of higher order modes.
In general, achievement of perfect band gap requires special technique
in designing grating structures [6, 7].
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7. CONCLUSIONS

We have presented the method of solution to the electromagnetic
scattering from multilayered periodic arrays of dielectric spheres.
Detailed descriptions were given for the approximate mode functions,
boundary matching, and sequential accumulation (SA) procedure.
We discussed the convergence of solutions and some band gap
characteristics, and verified the efficacy of introducing SA.

The present approach is also applicable to wide range of scattering
problems having cascaded boundary structures. To name a few, band
gap materials by stratified dielectric rods, metallic waveguide filters,
and dielectric bodies of revolution belong to this category. These
deserve further attention.
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APPENDIX A. SPHERICAL BESSEL FUNCTIONS

The spherical Bessel functions appearing in Eqs. (10)–(13) are defined
by [18]

Ẑn(x) =
√

πx

2
Zn+1/2(x) (A1)

where Zν stands for conventional Bessel functions of the first kind Jν

or the second kind Yν . The field outside the spheres is expressed in
terms of

Vn(x) =

(
y′n0 jn√

εr
− yn0 j

′
n

)
Ĵn(x) −

(
j′n0 jn√

εr
− jn0 j

′
n

)
Ŷn(x) (A2)

Wn(x) =

(
y′n0 jn − yn0 j

′
n√

εr

)
Ĵn(x) −

(
j′n0 jn − jn0 j

′
n√

εr

)
Ŷn(x) (A3)

where 


jn0 = Ĵn(k0a), j′n0 = Ĵ ′
n(k0a)

yn0 = Ŷn(k0a), y′n0 = Ŷ ′
n(k0a)

jn = Ĵn(ka), j′n = Ĵ ′
n(ka)

(A4)

The Lommel formula jn0 y
′
n0−j′n0 yn0 = 1 is used to verify the boundary

conditions (16) on the spherical surface.
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