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Abstract—The high power generation and transmission for TM
modes in a parallel-plate waveguide filled with three-layered medium
called sandwich structure are investigated. The transmission power
could never exceed the input power of the source in a conventional
parallel-plate waveguide filled with homogeneous or inhomogeneous
right-handed material (RHM) or homogenous left-handed material
(LHM). Based on the stratified medium theory, extremely high power
can be generated and transmitted if the waveguide is composed
of RHM-LHM-RHM or LHM-RHM-LHM sandwich structure with
the medium parameters and layer thickness being properly chosen.
Different from the TE case, the dominant mode exists in such a
structure is TM0 mode which can be always supported despite the
size of the waveguide. From our numerical results, we find that the
high power generation and transmission can be easily realized even in
the more realistic case where the LHM is described by the Lorentz
medium model.

1. INTRODUCTION

In the past a few years many scientists and engineers have been working
on a novel material called left-handed material (LHM) or metamaterial
due to its unusual electromagnetic features [2–12, 14, 15, 18, 19]. This
kind of material was first theoretically studied by Veselego in 1968 [1].
He pointed out that the permittivity ε and permeability µ are
simultaneously negative in such a medium. Later in the year of 2000,
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Pendry proposed an interesting theory [8] of subwavelength imaging,
which has been a hot research topic since then [9, 10, 12, 20].

Recently, in the realization of microwave and optical devices using
LHM, new structures including waveguides containing LHM have been
in deep concern, which may have prominent applications in the future
[11, 12, 14, 15]. It is interesting to note that a super waveguide has
been realized by pairing a conventional RHM slab with an equal-
thickness LHM slab in a planar waveguide [15]. As reported in [14],
if the RHM is air and the LHM is anti-air with permittivity −ε0 and
permeability −µ0, continuously infinite TE modes could be supported
in the waveguide and infinite power density could be generated and
transmitted under the excitation of a line source. This is obviously
unphysical because the ideal −ε0 and −µ0 can not be realized. When
a small retardation δ exists in the LHM, the continuous guided modes
reduce to a few discrete TE modes and extremely high power densities
could be generated and transmitted along the waveguide [15].

In this work, the concept and physical features of the super
waveguide have been inherited and extended to a new sandwich
structure waveguide, which is filled with three-layered medium. Since
the lowest mode that can be transmitted in a parallel-plate waveguide
is TM0 mode, a new excitation model to generate TM modes is
considered. Furthermore, the LHM slab can not exactly reside on the
wall of the two-layered waveguide [15], hence it is worth considering
whether the high power transmission can still be realized in the
sandwich structures. In the next section, exact analysis for this
problem are performed based on the stratified medium theory and
analytic formulations for the guidance condition of the considered
structures are derived in Section 3. Finally, simulation results are
given in Section 4, from which we find that the high power generation
and transmission can still be realized by the sandwich structure even in
a more realistic case where the LHM is treated as a dispersive medium.

2. GENERAL THEORY AND MODEL

In order to explicate the theory universally, a general problem is
studied as illustrated in Fig. 1, where a parallel-plate waveguide
filled with multi-layered medium is considered. The permittivity and
permeability in each layer Ri(i = 1, 2, . . . , n) are denoted by εi and
permeability µi respectively. In order only to excite TM modes, an
infinite long line source parallel to the y-axis and polarized in the z-
direction is placed in region n. The stratified medium and perfect
electric conducting (PEC) plates are all assumed to be infinite along
the y-direction, which leads to a two dimensional problem. The source
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is in the form of I = ẑIlδ(x − x′)δ(z − z′) and the two conducting
plates (two side walls of the waveguide) are located in the x-y plane.
In Fig. 1, the subscript of each symbol indicates the located region of
the quantity. For instance, E1 and H1 denote the total electric and
magnetic fields in Region 1.

( )1 1,E H( ),n nE H

. . . . . .
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( ),n nε µ ( )1 1,ε µ

+

Figure 1. General case for parallel-plate waveguide filled with multi-
layered media.

A Cartesian coordinate is set up, in which the two side walls of
the waveguide are located at z = −d0 and z = −dn, as illustrated in
Fig. 1. Applying the 2D-Wyle identity and the multi-layered media
theory [17], the total magnetic field in Region m can be expressed
explicitly as

Hm
y =

I

4π

[
δ(m− n)iπkmH

(1)
1 (km|ρ− ρ′|) x− x′

|ρ− ρ′|

+ 2i
∫ +∞

0

kx

knz
sin[kx(x− x′)]Fm(z, z′)dkx

]
, (1)

where only the y component of the magnetic field exists. The
electric fields can be obtained by Em

x = (1/iωεm)∂Hm
y /∂z and Em

z =

(i/ωεm)∂Hm
y /∂x. In Eq. (1), H

(1)
1 (ξ) is the first-ordered Hankel

function and δ(m − n) is the Kronecker delta function which equals
1 when m = n and equals 0 when m �= n. And Fm(z, z′) is a function
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which has different forms for different relations of m and n. When
m = n, the function Fm(z, z′) can be written as

Fm(z, z′) = [e−ikmz(z+z′+2dm−1)R̃m(m−1)

+e−ikmz(z−z′+2dm−1−2dm)R̃m(m+1)R̃m(m−1)

+eikmz(z+z′+2dm)R̃m(m+1)

+eikmz(z−z′+2dm−2dm−1)R̃m(m+1)R̃m(m−1)]M̃m (2)

When m �= n, Eq. (2) should be replaced by the correct form which
can be easily derived according to the multi-layered media theory [17].
In Eq. (2), R̃i(i−1) is the generalized reflection coefficient

R̃i(i−1) =
Ri(i−1) + R̃(i−1)(i−2)e

2iki−1z(di−1−di−2)

1 +Ri(i−1)R̃(i−1)(i−2)e2iki−1z(di−1−di−2)
(3)

in which
Ri(i−1) =

εi−1kiz − εiki−1z

εi−1kiz + εiki−1z
(4)

is the Fresnel reflection coefficient for TM waves at the two-layered
interface. The generalized reflection coefficients R̃10 and R̃n(n+1) equal
to 1 for TM modes at the two PEC planes which are located at z = −d0

and z = −dn.
M̃n is a coefficient used to calculate the fields when the source is

placed between −d1 and −dn−1, which is defined as:

M̃n =
1

1 − R̃n(n+1)R̃n(n−1)e2iknz(dn−dn−1)
(5)

In all above equations, knz = ±
√
k2

n − k2
x is a double value function of

kx and the sign should be chosen carefully to obey the physical laws.
In other words, the real part of knz must be positive in RHM and
negative in LHM for numerical computations. Once all the generalized
reflection coefficients R̃i(i−1) (i = 1, 2, . . . , n) and M̃n are determined
through the boundary condition, the magnetic fields in all layers shown
in Eq. (1) can be computed through an integration over the function
Fm(z, z′). Furthermore, the electric fields and the time-averaged power
densities can also be easily obtained. In order to simplify the problem,
we only concentrate on the sandwich-structure waveguides thoroughly
in the next section.
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3. FORMULATIONS AND ANALYSIS OF SANDWICH
STRUCTURES

3.1. Guidance Condition for RHM-LHM-RHM Structure

We first consider a structure shown in Fig. 2, in which there are
three regions in the waveguide. Regions 1 and 3 are filled with RHM
and Region 2 is filled with LHM. In order to explicate the theory
specifically, the two regions outside the waveguide are denoted as
Regions 0 and 4, respectively. Such a composition is called a RHM-
LHM-RHM structure.

( )1 1,E H( )2 2,E H( )3 3,E H

Il

( )3 3,ε µ ( )2 2,ε µ ( )1 1,ε µ

Figure 2. A RHM-LHM-RHM sandwith structure.

In order to deduce the guidance condition in the waveguide, we
first give the detailed expressions for R̃21, R̃32 and M̃3 as

R̃21 =
R21 + R̃10e

2ik1z(d1−d0)

1 +R21R̃10e2ik1z(d1−d0)
(6)

R̃32 =
R32 + R̃21e

2ik2z(d2−d1)

1 +R32R̃21e2ik2z(d2−d1)
(7)

M̃3 =
1

1 − R̃34R̃32e2ik3z(d3−d2)
(8)

If we denote T1 = e2ik1z(d1−d0), T2 = e2ik2z(d2−d1) and T3 = e2ik3z(d3−d2),
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then M̃3 will be simplified as

M̃3 = 1/
[
1 − T3 ·

R32 +R32R21T1 +R21T2 + T1T2

1 +R21T1 +R32R21T2 +R32T1T2

]
. (9)

When Regions 1 and 3 are filled with air and Region 2 is an ideal
left-handed anti-air with µ2 = −µ0 and ε2 = −ε0, we have k1z =
−k2z = k3z for propagating components of the source with |kx| ≤ k0.
Furthermore, R21 = 0 and R32 = 0. In such a case, the denominator
of M̃3 is simplified as

D = 1 − T1T2T3, (10)

or
D = 1 − e2ik1z [2(d1−d2)+d3−d0]. (11)

We let h1 = d1 − d0, h2 = d2 − d1, and h3 = d3 − d2 represent the
thicknesses of the three layers. If d3 − d0 = 2(d2 − d1) or h1 +h3 = h2,
i.e., the thickness of Region 2 equals the total thickness of Regions 1
and 3, the denominator becomes zero for all propagating components
emitted by the source. In the meantime, the numerator is not equal
to zero. Hence each point on the integration path kx ∈ (−k0, k0) is
mapped to a propagating mode.

For the evanescent components of the source (|kx| > k0), we have
k1z = k2z = k3z = i

√
k2

x − k2
0 and R21 → ∞, R32 → ∞. Then the

denominator M̃3 can also be simplified as

D = T2 − T1T3, (12)

or
D = e2ik2z [d2−d1] − e2ik1z [d1−d2+d3−d0]. (13)

Again, D = 0 in any cases if d3 − d0 = 2(d2 − d1) or h1 + h3 = h2.
Thus, all points on the integration path |kx| ∈ (k0,∞) are also poles of
M̃3. As a consequence, continuously evanescent modes can be guided
in the waveguide. The above phenomena are quite similar to those in
the two-layered waveguide with the TE excitation [15].

However, the ideal lossless left-handed anti-air has been shown
unphysical [9]. In the realistic artificial LHM, a retardation or loss
always exists. When a retardation δ exists in LHM in Region 2, the
relative permittivity and permeability can be written as ε2r = −(1+δ)
and µ2r = −1/(1 + δ) [14, 15].

For propagating components of the source with |kx| ≤ k0, we have
k1z = −k2z = k3z, R21 = −δ/(2 + δ) and R32 = δ/(2 + δ). Under
this condition, the infinite guided modes reduce to a few discrete TM
modes. If we denote h1 = x and h2 = h, then h3 will be h − x. That
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is, T1 = e2ik1zx, T2 = e−2ik1zh, and T3 = e2ik1z(h−x). Furthermore, M̃3

could be simplified as

M̃3 =
4 + 4δ + [δ(2 + δ)e2ik1zx − δ2][e−2ik1z − 1]

4iδ sin(k1zh){δ cos(k1zh) − (2 + δ) cos(k1z(2x− h))} (14)

Obviously, the expression for M̃3 is much more complicated than that
in Ref. [15]. But we can find that M̃3 is also inversely proportional
to δ. As a consequence, a small δ could give rise to tremendous value
of the field, making it possible for high-power transmission. From
Eq. (14), we could easily obtain the guidance condition for the RHM-
LHM-RHM structure waveguide, which corresponds to the poles in the
integrand: sin(k1zh) = 0. Hence the guided modes are determined by
k1zh = mπ (m = 0, 1, 2, . . .).

For evanescent components of the source with |kx| > k0, we have
k1z = k2z = k3z = iα, R21 = −(2 + δ)/δ and R32 = (2 + δ)/δ. Under
this condition, M̃3 could be simplified as

M̃3 =
δ2 − δ(2 + δ)[e−2αx − e2α(h−x)] − (2 + δ)2e2αh

4(2 + δ)sh(αh){δch[α(2x− h)] − (2 + δ)ch(αh)} . (15)

Since the denominator could never be zero in any case, the evanescent
components can never be guided.

Generally, if a retardation δ exists in LHM and the condition
h1+h3 = h2 is satisfied, there will be a discrete number of guided modes
to be propagated in the waveguide, where the guidance condition can
be explicitly written as

kx = ±
√
k2 − (mπ/h)2, (m = 0, 1, 2, . . .) (16)

in which k is the wavenumber in free space and mπ/h ≤ k. Here, ‘+’
indicates the guided modes propagating upwards to the source, and
‘−’ indicates the guided modes propagating downwards to the source.
We remark that TM0 mode can always be supported in the parallel-
plate waveguide, which is quite different from the TE case [15], where
the lowest TE mode is TE1 that may not be supported if h < λ/2.
The reason that the TM0 mode has no cut-off unlike the TE mode is
due to the PEC boundary condition imposed. Hence, the high-power
transmission can always be supported for the TM mode.

Another important fact is that the sandwich structure is more
general than the two-layered structure reported in Ref. [15]. Actually,
when h1 = h2 and h3 = 0, the sandwich structure will reduce to the
two-layered one [15]. And in realistic applications, it is hard to reside
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the LHM slab exactly on the PEC wall of the waveguide in the two-
layered structure [15]. In the case when a small gap exists between
the LHM slab and the PEC wall, the general sandwich model can be
applied in the exact analysis and numerical simulations.

3.2. Guidance Condition for LHM-RHM-LHM Structure

Now we consider a LHM-RHM-LHM structure waveguide shown in
Fig. 3, where Regions 1 and 3 are filled with LHM and Region 2 is
filled with RHM. Through complicated deductions, one can prove that
if the LHM in Regions 1 and 3 are ideal left-handed anti-air and the
condition h1 + h3 = h2 is satisfied, the similar unphysical phenomena
arise to those in the RHM-LHM-RHM waveguide. Hence we only focus
our attention on the case when there is a retardation δ existing in LHM.

( )1 1,E H( )2 2,E H( )3 3,E H

Il

( )3 3,ε µ ( )2 2,ε µ ( )1 1,ε µ

Figure 3. A LHM-RHM-LHM sandwich structure.

For propagating components of the source with |kx| ≤ k0, we have
k1z = −k2z = k3z, R21 = δ/(2 + δ) and R32 = −δ/(2 + δ). Thus, M̃3

can be written as

M̃3 =
4 + 4δ + [δ(2 + δ)e2ik1zx + δ2][1 − e−2ik1z ]

4iδ sin(k1zh){δ cos(k1zh) + (2 + δ) cos(k1z(2x− h))} . (17)

For evanescent components of the source with (|kx| > k0), we have
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k1z = k2z = k3z = iα, R21 = (2 + δ)/δ and R32 = −(2 + δ)/δ. Under
this condition, M̃3 could be simplified as

M̃3 =
δ2 + δ(2 + δ)[e−2αx − e2α(h−x)] − (2 + δ)2e2αh

4(2 + δ)sh(αh){δch[α(2x− h)] + (2 + δ)ch(αh)} . (18)

Clearly, the expressions for M̃3 are very similar to those in the RHM-
LHM-RHM structure, where M̃3 are also inversely proportional to δ.
From Eqs. (17) and (14), the LHM-RHM-LHM waveguide has the same
guidance conditions as that of the RHM-LHM-RHM waveguide.

Comparing the two structures discussed above, we make a
conclusion that both of them can be used to fulfill the high-power
generation and transmission. The RHM-LHM-RHM configuration
and the LHM-RHM-LHM configuration are complementary to each
other, which has been proved through a recent theorem [13] by
Pendry and Ramakrishna. In this work, the two structures are
also complementary pairs that show complementary physical features
in power transmission. If a small retardation δ is added to the
permittivity and permeability of LHM factitiously, the high-power
generation and transmission could be implemented in both structures
and will be validated through numerical results in the next section.

3.3. Guidance Condition for a Realistic Structure

As indicated in [4], LHM must be treated as a dispersive media,
in which the permittivity and permeability are both functions of
frequency. In order to make our discussions more close to practice,
Lorentz medium model is used to express the dispersive relation as
follows:

εr(ω) = 1 −
ω2

ep − ω2
eo

ω2 − ω2
eo − iγω

, (19)

µr(ω) = 1 −
ω2

mp − ω2
mo

ω2 − ω2
mo − iγω

, (20)

where ωep and ωmp are electric and magnetic resonance frequencies,
ωeo and ωmo are electric and magnetic plasma frequencies, and γ is the
loss factor. Obviously, εr and µr are determined by several independent
variables, which makes derivations of the analytic expressions of the
guidance condition of the above two sandwich structures very difficult
or even impossible. However, from our numerical simulations, we
find that even this realistic model is used to describe the LHM, the
generated and transmitted power densities are still much lager than
that in the conventional waveguide.
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4. SIMULATION RESULTS AND DISCUSSIONS

In this section, we will give the numerical results of the transmission
power density in the partially filled parallel-plate waveguides excited
by a z-directed line current source. The coordinate of each point is
given in the form of (x, z) with the unit of meters. The momentum of
the line source is set as Il = 10−3 A·m, and the operating frequency
is 1 GHz. Considering that in realistic cases LHM is always lossy, we
specify the relative permittivity εr = −(1 + δ) + iγe and permeability
µr = −1/(1 + δ) + iγm for LHM. The lossy parameters γe and γm

are both set to 10−4 in the following computations except when the
Lorentz medium model is used.

We first consider a RHM-LHM waveguide, in which d0 = −0.12 m,
d1 = −0.06 m, and d2 = 0.0 m. The source is located at (0.0, 0.06). The
whole width of the waveguide is 0.12 m, which is smaller than half of the
wavelength. Hence higher TM modes are not supported and only the
dominant TM0 mode is excited and transmitted. The real part of the
Poynting vector Px = Re(EzH

∗
y ), which represents the time-averaged

power density propagating along the waveguide, will be computed in
the following simulations.

(a) (b)

Figure 4. The time-averaged power densities propagating in the
waveguide along a section from x1 = 3 m to x2 = 3.6 m. (a) In the
air-filled waveguide. (b) In the RHM-LHM waveguide with δ = 10−4.

For comparison, the time-averaged power density propagating in
an air-filled waveguide along a section from x1 = 3 m to x2 = 3.6 m is
given in Fig. 4(a). For the dominant TM0 mode, the field values are
constants along the z direction, and the value of time-averaged power
density is about 10−2 W/m2. Under the excitation of the same source,
the time-average power density propagating in a two-layered super
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waveguide [15] along the same section is demonstrated in Fig. 4(b), in
which the waveguide is partially filled by LHM with a slight retardation
δ = 10−4. In this case, the time-average power density in the air region
is as high as 3 × 103 W/m2, which is nearly 3 × 105 times larger than
that in the conventional air-filled waveguide.

We remark that this important phenomenon also obey the physical
laws because the total time-average power density flowing in the RHM
part towards +x direction is nearly the same as that flowing in the
LHM part towards −x direction in Fig. 4(b). Hence the net power
through the whole cross section is small. However, extremely high
power is generated and transmitted in both RHM and LHM regions.

Now we concentrate on the sandwich structures shown in Figs. 2
and 3. In the RHM-LHM-RHM structure, the boundaries are set as
d0 = −0.12 m, d1 = −0.09 m, d2 = −0.03 m, and d3 = 0.0 m. Hence the
LHM slab is located symmetrically in the waveguide, and the source
is placed at (0.0, 0.015). Apparently the condition h2 = h1 + h3 is
satisfied and only TM0 mode exists in the waveguide.

(a) (b)

Figure 5. The time-averaged power densities propagating in the
RHM-LHM-RHM waveguides with δ = 10−4 along a section from
x1 = 3 m to x2 = 3.6 m. (a) Symmetrically filled. (b) Unsymmetrically
filled.

When δ = 0.0001, the time-averaged power density is drawn in
Fig. 5(a), which is nearly 4×103 W/m2 and is much larger than that in
the RHM-LHM waveguide. If we keep the source unmoved and change
the interfaces of RHM and LHM slabs as d0 = −0.12 m, d1 = −0.11 m,
d2 = −0.05 m, and d3 = 0.0 m, which means that the LHM slab is
located unsymmetrically in the waveguide, the condition h2 = h1 + h3

is still satisfied. Under this condition, the time-averaged power density
is shown in Fig. 5(b). It is clear that the high-power transmission is
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again obtained. It is interesting to note that if we keep the width
of the LHM slab unchanged and move it freely in the waveguide, the
averaged power density in either RHM or LHM region does not vary at
all. Therefore, once the condition h2 = h1 +h3 is satisfied, the position
at which we place the LHM slab does not affect the field distribution,
thus does not affect the averaged power density in all three regions.

(a) (b)

Figure 6. The time-averaged power densities propagating in the
LHM-RHM-LHM waveguides with δ = 10−4 along a section from
x1 = 3 m to x2 = 3.6 m. (a) Symmetrically filled. (b) Unsymmetrically
filled.

Next we turn on to observe the transmitted power densities in
the LHM-RHM-LHM structure. All conditions remain unchanged
except that the RHM and LHM slabs exchange their positions. The
numerical results are shown in Figs. 6(a) and 6(b). We find that
the characteristics of the high-power generation and transmission
have been maintained. If we observe the differences between Figs. 5
and 6 closely, we could find that the two structures are physically
complementary and the numerical results also prove that they are a
complementary pair. The RHM-LHM-RHM structure is more practical
in construction and could find potential applications in microwave and
optical devices.

If we set d0 = −0.12 m, d1 = −0.09 m, d2 = −0.05 m, and
d3 = 0.0 m, which means that the condition h2 = h1 + h3 is not
satisfied, we have computed the time-averaged power density in the
same section of the RHM-LHM-RHM structure, as shown in Fig. 7.
Apparently the time-averaged power density is much smaller in this
case.

Now we move on to watch the cases when the retardation δ is
much larger in the LHM. For δ = 0.05, we have computed the time-
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Figure 7. The time-averaged power density propagating in the RHM-
LHM-RHM waveguide along a section from x1 = 3 m to x2 = 3.6 m
when the condition h2 = h1 + h3 is not satisfied.

averaged power density for both the RHM-LHM-RHM and LHM-
RHM-LHM structures in the same section as all the cases above and
show them in Fig. 8. We can find that when the retardation δ becomes
larger and larger, the time-averaged power density decreases, but is
still larger than that in the conventional waveguide filled with purely
homogeneous RHM or LHM.

(a) (b)

Figure 8. The time-averaged power densities propagating in the
sandwich structure waveguides with δ = 0.05 along a section from
x1 = 3 m to x2 = 3.6 m. (a) RHM-LHM-RHM structure case. (b)
LHM-RHM-LHM structure case.
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(a) (b)

Figure 9. The time-averaged power densities propagating in the
sandwich structure waveguides along a section from x1 = 3 m to
x2 = 3.6 m. The LHM is expressed by Lorentz medium model
using the following parameters: feo = 0.12 GHz, fmo = 0.14 GHz,
fep = 1.39 GHz, fmp = 1.43 GHz, and γ = 3.21 MHz (a) RHM-LHM-
RHM structure case. (b) LHM-RHM-LHM structure case.

Furthermore, we consider a more realistic situation when the LHM
is dispersive and highly dissipative, in which the Lorentz medium
model is used to describe the relative permittivity and permeability
as shown in Eqs. (19) and (20). The parameters are chosen as feo =
0.12 GHz, fmo = 0.14 GHz, fep = 1.39 GHz, fmp = 1.43 GHz, and the
loss factor is chosen as γ = 3.21 MHz, we obtain εr = −0.9457+ i0.001
and µr = −1.0658 + i0.0011 from the Lorentz medium model at
the frequency of 1 GHz. Obviously, a much larger loss exists in
this case. For such a realistic RHM-LHM-RHM and a LHM-RHM-
LHM structure, we have computed the time-averaged power density,
as shown in Fig. 9(a) and Fig. 9(b). From these two figures, we
observe that the transmission power in the realistic sandwich-structure
waveguide is about 240 times larger than that in the conventional air-
filled waveguide, which makes high-power generation and transmission
possible in realistic situation.

Finally, we compute the net power through the whole cross section
for all the above cases and observe that the net power sustains at
a certain level of about 0.01 Watt, which is nearly the same as the
input power of the source. So it does not violate the rule of energy
conservation.
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5. CONCLUSION

In this work, guidance conditions for the TM modes in parallel-plate
waveguide filled with different sandwich structures (RHM-LHM-RHM
or LHM-RHM-LHM) are developed. From our analysis and numerical
results, we find that extremely high power generation and transmission
can be obtained when the condition h2 = h1 + h3 is satisfied, and
performances of this structure are even better than that considered
in [15]. Finally, we show that even in the more realistic case where the
LHM is described by the Lorentz model, such important properties can
still be realized.
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