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Abstract—In this paper, we introduce a new method: support
vector regression (SVR) method to modeling low temperature co-fired
ceramic (LTCC) multilayer interconnect. SVR bases on structural
risk minimization (SRM) principle, which leads to good generalization
ability. A LTCC based stripline-to-stripline interconnect used as
example to verify the proposed method. Experiment results show
that the developed SVR model perform a good predictive ability in
analyzing the electrical performance.

1. INTRODUCTION

LTCC technology is growing rapidly as one of the suitable 3D packaging
technology for size and cost reduction. Accurate modeling of 3D
complex structures (e.g, LTCC multilayer interconnect structure) and
fast and effective design tools are needed for the design of microwave
circuits. Full-wave electromagnetic (EM) simulations are, typically
computational accuracy but time-consuming, especially for the design
adjustment and optimization. The methods of modeling based on
sample data such as artificial neural network (ANN) are popular
applied in recent years for its non-linear functional approximation
property [1–3]. However, ANN modeling method depends on the
network’s structure and the complexity of the samples, which may
cause over-fitting and low generalization ability [4].

Vapnik’s support vector machine (SVM) theory [5] has been
successfully applied for classification and regression problems [6, 7].
Many research results show that SVM has crucial advantages. Firstly,
SVM solves a convex constrained quadratic optimization problem,
whose error surface is free of local minima and has a unique
global optimum. Secondly, SVM approach based on structural risk
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minimization (SRM) principle instead of empirical risk minimization
(ERM) which used in ANN approach. SRM principle implements
well trade-off between the model’s complexity and its generalization
ability [8]. Furthermore, support vector machine is based on small-
sample statistical learning theory, whose optimum solution is based on
limited samples instead of infinite sample. Commonly, support vector
machine regression tasks called as support vector regression (SVR). In
this paper, the usefulness of the introduced method is verified using an
example.

2. SUPPORT VECTOR REGRESSION

Given a training dataset (yi, xi), i = 1, 2, . . . , n. n is the size of training
data. SVR tries to find the mapping function f(x) between the input
variable and the desired output variable. In formula this read as:

f(x) =
n∑

i=1

(α∗
i − αi)K(xi, x) + b

=
n∑

i=1

(α∗
i − αi)φ(xi)φ(x) + b

= wφ(x) + b (1)

α∗
i ≥ 0, αi ≥ 0, (i = 1, 2, . . . , l) are the Lagrange multipliers.

φ(x) is a vector representing the actual no-linear mapping function.

K(xi, x) ≡ φ(xi)φ(x) is the kernel function. w =
n∑

i=1
(α∗

i −αi)φ(x), b is

the offset of the regression function. Traditional regression method find
the regression function f(x) by the rule of empirical risk minimization
principle, i.e.,
minimize:

Remp[f ] =
1
n

n∑
i=1

L(f(xi) − yi) (2)

with L(f(xi) − yi) = |y − f (x)|ε = max |0, |y − f(x)| − ε|.
L(f(xi)−yi) represents the error function, ε is the insensitive loss

function. yi is real value, f(xi) is the prediction value. However,
the actual risk minimization can not be realized only with the
empirical risk minimization [5]. A typical example is the over-fitting
of NN. Support vector regression method based on structural risk
minimization principle (SRM), which minimize the following cost
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function:
1
2
‖w‖2 + C ·Remp[f ], (3)

where 1
2 ‖w‖

2 is the term characterizing the modeling complexity.
C is a regularization which determines the trade off between model
complexity and empirical loss function. After some reformulations and
introduction of the slack variables: ξi, ξ

∗
i . Equation (2) is transformed

into primal problem:
minimize:

1
2
‖w‖2 + C · 1

n

n∑
i=1

(ξi + ξ∗i ) (4)

subject to: 


(w · xi) + b− yi ≤ ε + ξi

yi − (w · xi) − b ≤ ξ + ξ∗i
ξi > 0, ξ∗i > 0, ε > 0.

According to [9], an improved SVR has been presented,
Equation (4) can be changes to minimize:

1
2
‖w‖2 + C

(
µε +

1
n

n∑
i=1

(ξi + ξ∗i )

)
(5)

µ is added as a constant along with ε to modulate the model complexity
and slack variables.

According to Wolfe dual theory, the Equation (5) can be
reformulated into the primal problem:

W (α, α∗) =
n∑

i=1

(αi − α∗
i )yi −

1
2

n∑
i,j=1

(α∗
i − αi)(α∗

j − αj)K(xi, xj)

(6)

subject to : 


n∑
i=1

(α∗
i − αi) = 0

αi ∈ [0,
C

n
]

α∗
i ∈ [0,

C

n
]

n∑
i=1

(α∗
i − αi) ≤ C · µ
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αi, α
∗
i can be obtained by maximization the Equation (6). According

to Equation (1), parameter b can be obtained by using training data.
Then the output can be predicted by Equation (1) for every new input
parameter value.

3. EXPERIMENT AND RESULTS

In this section, a LTCC-based stripline to stripline interconnect used
as an example to verify the method proposed in this paper. As shown
in Fig. 1, LTCC substrate fabricated using twelve-layer Ferro A6 tape
systems, which has a relative dielectric constant of εr = 5.7, tan δ =
0.002. Each fired single layer has the thickness of 0.1 mm. The
stripline has the line-width of 0.2 mm and height of 0.6 mm to keep
50 Ω characteristic impedance. The variable design parameters are the
radius of the metal via hole (rvia), open hole in the middle ground
(rgnd) and the radius of the metal pad (rpad). All other physical
dimensions are fixed. The operation frequency is also used as the input
parameter. The port reference plane and physical layout parameters
of the vertical interconnect are shown in Fig. 1.

Fe rro A6M

rvia
Ground plane

Fe rro A6M
 

rpad
Open hole

Ground plane

Reference Plane

rgnd

           (a)                                          (b)

Figure 1. Structure of interconnect. (a) Cross section (b) Top view.

Similar to the ANN model, SVR estimates the non-liner function that
encodes the fundamental interrelation between a given input and its
corresponding output in the training data that acquired from EM
simulation. This developed model then can be used to predict outputs
for given inputs that were not included in the training data. We
introduce two parameters a and b, let

rgnd = a + rvia, (7)
rpad = b + rvia. (8)
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The input vector is

X = (a, b, rvia, f) (9)

The output vector is

Y = (|S11|, |S21|). (10)

The range of input parameters is given in Table 1, while the
training and testing data are obtained by simulating in HFSS with
these input variables separately. In this example, we only interested in
the amplitude of the S parameters. Therefore, the amplitude of return
loss (|S11|) and the insertion loss (|S21|) are computed as the model
output parameters.

Table 1. Range selection of SVR variables.

Variable

Data Training Data Testing Data

Min Max Step Min Max Step

rvia (mm) 0.05 0.15 0.05 0.075 0.125 0.05

a (mm) 0.05 0.25 0.1 0.1 0.2 0.1

b (mm) 0.05 0.25 0.1 0.1 0.2 0.1

f (GHz) 1 16 1 1 16 0.5

SVR calculation is performed using the SVM toolbox developed
by C. C. Chang and C. J. Lin [10]. All programs are implemented
in Matlab V6.5 (The Mathworks, Inc.) and carried out on an Intel
Pentium IV 2.8 GHz with 1 GB of memory and running Windows XP.

Before running LIBSVM code, some SVR parameters need to be
determined: the constant defining of kernel function (γ), tolerance of
termination criterion (ε), the penalty parameter (C) and the constant
ν. v ∈ [0, 1] is the parameter to control the number of support
vectors. After performing several experimentations with different
variable value, the variables are fixed as: ε = 0.00001, v = 0.1,
C = 500, and γ with the default value: γ = 1/k, k means the number
of EM-SVR model input parameters. Moreover, the quality of model
is evaluated as its prediction accuracy with mean squared error (MSE)
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and the liner correlation coefficient (R) [11]:

MSE =
1
N

N∑
i=1

(yi − xi)2 (11)

R =

N∑
i=1

(xi − x̄)(yi − ȳ)√
N∑

i=1
(xi − x̄)2

N∑
i=1

(yi − ȳ)2
(12)

where xi and yi denote the EM simulated s-parameters value and
the SVR predicted value and N is the number of validation data
respectively. x̄ is the EM simulated s-parameters samples mean and ȳ
is the v-SVR predicted samples mean value.
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Figure 2. Scatter plots of EM simulated and SVR predicted |S11|
(Training data).

The scatter plots of the EM-SVR model predicted S-parameter
compare to the training dataset and test dataset are shown in
Fig. 2∼Fig. 5. The y-axis is EM-SVR predicted value, while the
abscissa is real value (EM simulated value). When EM-SVR predicted
value equal to real value, the point lies in the diagonal line. That is to
say, the more the points are concentrated around the diagonal line, the
better the prediction precision are. Summary of MSE and correlation
coefficient R are shown in Table 2. As can be seen from these results,
excellent agreement between the EM-SVR model and electromagnetic
simulation can be arrived.
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Figure 3. Scatter plots of EM simulated and SVR predicted |S21|
(Training data).
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Figure 4. Scatter plots of EM simulated and SVR predicted |S11|
(Testing data).
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Figure 5. Scatter plots of EM simulated and SVR predicted |S21|
(Testing data).

Table 2. Correlation and error results for the EM-SVR model.

Data Training Data Testing Data

|S| |S11| |S21| |S11| |S21|
MSE 1.7695 · 10−4 4.1424 · 10−5 2.3153 · 10−4 6.3205 · 10−5

R 0.9975 0.9968 0.9952 0.9908

4. CONCLUSION

Support vector machine regression method using in microwave
transition modeling has been presented in this paper. To verify the
method, modeling of a LTCC based stripline-to-stripline interconnect
has been developed. The results verified the approach and the model
by comparing with electromagnetic simulation results. The developed
SVR model preserves the accuracy of the EM simulation, and it useful
for interactive CAD of millimeter wave circuit design.
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