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Abstract—Approximate, non-singular kernels are often used in
moment-method formulations coping with thin-wire structures. Their
use has important consequences, one of which is the appearance of
oscillations in the computed currents when the number of sub-domain
basis functions is sufficiently large. These oscillations are not due
to round-off errors. In this paper, a smoothing procedure is used
in conjunction with Galerkin’s formulation with piecewise sinusoidal
functions, which yields non-oscillating current distributions. Special
attention is paid to the solutions over a wide range of discretization
levels (number of basis/testing functions), in order to examine and
illustrate the similarities and differences between results obtained with
and without the proposed remedy. Finally, a comparison with results
derived with the exact kernel is provided.

1. INTRODUCTION

Thin-wire antennas have been at the forefront of electromagnetic
(EM) research for many decades, mainly because of their significant
theoretical and practical interest, but also due to the difficulties
often arising when attempting to validate and crosscheck numerical
solutions, some of which will be discussed hereinafter.

The most frequently applied method to wire structures is the so-
called method of moments (MoM). In fact, MoM is rather a collective
abbreviation for the ensemble of the well-known moment methods,
which have been developed in a multitude of variants for EM modeling
in the frequency domain [1]. These methods seek for numerical
solutions to the integral or integro-differential equations arising from
the enforcement of the relevant boundary condition along the wire.
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Although there seem to be several ways to formulate the problem,
most fall into two categories, depending on whether the exact (full)
kernel (EK) or the approximate (reduced) one (AK) is used.

Although the utilization of the AK may often yield acceptable
results from a practical point of view, it is associated with important
difficulties, the understanding of which explains many interesting
phenomena regarding the behavior of the solutions in general. In
particular, for Hallén’s and Pocklington’s equations, adoption of the
AK renders the problem non-solvable from a mathematical point of
view [2–4] (a relevant study, along with numerical results, can be found
in [5]), at least for wires of finite length and for an excitation field being
a delta-gap source, a plane wave, or a frill generator. The consequences
of this non-solvability are predominantly reflected in a non-converging
behavior of the numerical solutions as the number of basis functions
is increased (this is a natural consequence of non-solvability), as well
as in an oscillating behavior of the calculated currents near wire ends
and on both sides of excitation gaps (for gap-driven radiators) when
the number of basis functions is large. It is worth stressing that these
phenomena are not related to finite wordlength of computers, which
imposes further serious complications, some of which may be quite
difficult to distinguish and isolate from those discussed above.

The literature on the feeds and/or kernels of wire antennas is
very extensive and dates as far back as 1938 [6]; other early references
are [7] and certain papers listed in [8]. In particular, there are very
many works dealing with the application of moment methods to thin-
wire integral equations; an extensive list of pre-1980 such references
can be found in [9]. Besides [2–5], upon which the present paper is
primarily based, works that mention oscillations are [10–14]. Many
other works focus on various aspects of the difficulties associated
with the application of moment methods to thin-wire structures,
including convergence issues; for example, see [15–21], the references
cited therein, as well as the ones cited in [2–5, 10–14]. However, the
studies of [2–5] clearly attribute the aforementioned oscillations to non-
solvability, which is a deficiency of the integral equation itself, and
not to round-off errors or to a deficiency of the numerical method
employed. Perhaps the first work to discuss non-solvability is [22]; a
more detailed study of non-solvability (with no discussion of moment
methods or oscillations) can be found in [23]. A recent study of the
integral equations for the currents on cylindrical dipoles of infinite
length can be found in [24].

With a single exception, the aforementioned works that mention
oscillations [10–14] do not propose a way to obtain useful results from
the oscillating solutions, as done in the present paper. The exception
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is [11], in which it is proposed to smoothly extrapolate the oscillating
current values back to the feed region. When the number of basis
functions is large, however, the values obtained in this manner seem
to be independent of the length of the antenna. The reason for this is
that the oscillating values are themselves independent of the length of
the antenna, as they are closely approximated by the oscillating values
for the case of the antenna of infinite length; this was shown (at least
in the delta-gap generator case, for several specific numerical methods,
and for a sufficiently large number of basis functions) in [2]. We finally
note that the present paper, which deals with computing meaningful
results from oscillating values obtained with the AK, differs from [15],
which addresses deficiencies of the AK via circumferential integration
of the self-term.

A possible way to overcome the aforementioned problem of
the oscillating currents can be inferred from the application of the
method of auxiliary sources (MAS) to wire antennas [25, 26], which, in
general, involves calculations of current distributions from the resulting
tangential magnetic field, instead of computations as superpositions of
the basis functions, as in moment methods. Hereinafter, it is shown
that it is possible to obtain smooth current distributions from divergent
basis functions amplitudes, a result that is consistent with the remarks
in [27]. For comparison purposes, results obtained with the EK are also
presented, which, as expected, are not characterized by any oscillations
at all.

2. PROBLEM STATEMENT AND FORMULATION

The geometry under consideration consists in a cylindrical dipole of
length L and radius a, lying along the z-axis and centered at the origin
of a cylindrical coordinates system. Only sufficiently thin wires are
considered, for which k0a, where k0 = 2π/λ, is small. Moreover, a
time dependence exp(jωt) is assumed and suppressed throughout the
analysis.

The MoM formulation of the problem at hand is well known,
so only a brief description is provided here, along with some critical
remarks and implementation details. The formulation is precisely what
one obtains from Pocklington’s equation in conjunction with Galerkin’s
method. Both the basis (expansion) and the testing (weighting)
functions are selected to be piecewise sinusoidal functions of length
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2δ = L/(N + 1), which are given by

fn(z)=
{

sin [k0 (δ − |z − zn|)] , |z − zn| ≤ δ

0, |z − zn| > δ
, n = 0,±1, . . . ,±N,

(1)

where zn = nδ are the centers of the basis/testing functions. For
the derivation of the interaction (impedance) matrix, a procedure
analogous to the one described in [25, 26] is exploited, without
incorporating the terminal basis/testing functions introduced therein,
which are not required by Pocklington’s equation. When the AK is
assumed, the EM field radiated by the dipole is virtually attributed
to a filamentary current flowing along the axis of the dipole, which is
approximated as a weighted superposition of the basis functions. This
assumption is responsible for the coincidence of the matrix equations
obtained from the MoM and the MAS in this specific case, under
the condition, of course, that the latter is combined with a reaction-
matching scheme, as in [25, 26]. On the other hand, in the EK
case, there is a tubular current distribution of radius a instead of a
filamentary current. In that case, the EM field generated by each basis
function can be expressed as continuous superposition (in the sense of
a circumferential integral) of the EM fields radiated by cylindrically
distributed filamentary currents that form the tubular basis functions.

Either when the EK or the AK is assumed, the algebraic system
of equations for the unknown expansion weights wn is expressed as

N∑
n=−N

Zn,mwn = −Vm, m = 0,±1, . . . ,±N. (2)

Details on the computation of the interaction matrix terms Zn,m

in the EK case are given in the Appendix. The voltages Vm

denote the reactions integrals of the excitation field. Expressions
for these are available in [25] for the delta-gap generator and the
receiving/scattering case of plane-wave incidence. Albeit the former
is perhaps the most frequently used source model, it is associated
with an infinite gap capacitance and an excitation field that tends to
infinity, which is responsible for the diverging nature of the imaginary
part of the input current (susceptance) accompanying EK solutions.
Since it is of interest to examine the behavior of the resulting current
distributions over a wide range of variation for N , it is rather preferable
to consider other source models, such as a frill generator or a gap
generator of finite width ∆, in order to focus on the oscillations
under study, without considering any possible influence of the diverging



Progress In Electromagnetics Research, PIER 69, 2007 81

susceptance (arising for ∆ → 0) on the solution behavior. According
to [4], for frill-driven dipoles, oscillations are expected to originate
only from near the wire ends, but not near the frill generator. Thus,
although not necessarily more realistic or adequate compared to other
source models, a gap generator of finite width is preferred hereinafter,
which is located at an arbitrary point zg on the wire, with the
associated electric field given by

Eg
z (z) = −Vg

∆
, |z − zg| <

∆
2
. (3)

The voltages Vm of (2) are given by

Vm =
∫ zm+δ

zm−δ
Eg

z (z)fm(z)dz. (4)

From (1), (3) and (4), and after relatively simple algebraic
manipulations, the voltages Vm are explicitly expressed as

Vm = − Vg

k0∆
[
I−m

(
z−−
m , z−+

m

)
+ I+

m

(
z+−
m , z++

m

)]
, (5)

where z−−
m = max (zm − δ, zg − ∆/2), z−+

m = min (zm, zg + ∆/2),
z+−
m = max (zm, zg − ∆/2), z++

m = min (zm + δ, zg + ∆/2) and I±m are
given by

I±m
(
z−, z+

)
=

{
cos [k0 (δ∓ z±± zm)]−cos [k0 (δ∓ z∓± zm)] , z+≥z−

0, z+ < z−
.

(6)

From the theoretical considerations and numerical results provided
in [2–5], it seems that the oscillations typically accompanying AK
solutions begin to occur near the wire ends and progressively cover
the whole length, as N increases beyond L/(2a). Moreover, for gap-
driven antennas (but not for frill-driven ones), additional oscillations
in the imaginary part of the current distribution also occur near the
driving point.

In any case, after solving (2), the current distribution along
the dipole can be obtained either as a superposition of the basis
functions themselves or from the tangential magnetic field at ρ = a,
in agreement with the boundary condition of the magnetic field for
perfect conductors. In the former case, the total current is derived by

I(z) ≈
N∑

n=−N

wnfn(z). (7)
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When the AK is used, (7) corresponds to a line current, which is
precisely what one obtains from Galerkin’s method (with piecewise
sinusoids) applied to Pocklington’s equation with the AK. According
to the preceding, the total current can be alternatively obtained by
calculating the magnetic field at ρ = a. The aforementioned magnetic
field is associated with the surface current density K(z) and the current
is I(z) = 2παK(z) or

I(z) ≈ 2πa
N∑

n=−N

wn

[
φ̂ · �Hn(a, z)

]
, (8)

where �Hn denotes the magnetic field generated by the sinusoidal
current of the basis function fn(z). When the AK is used, the magnetic
field can be readily obtained analytically [25]. On the other hand, when
the EK is used, the magnetic field can be expressed as a circumferential
integral analogous to (A2), which is non-singular and, thereupon, easily
computable.

The proposed remedy consists exactly in the use of (8) instead of
(7); this seems to overcome the oscillations discussed above and results
in smooth current distributions from oscillating expansion weights wn,
in a manner analogous to the ones exhibited in [25–27].

3. NUMERICAL RESULTS

In what follows, when the AK is used, the current distributions
resulting from (8) are referred to as “smoothed”, whereas the
conventional ones resulting from (7) are referred to as “non-smoothed”.

The oscillations accompanying AK solutions typically begin to
appear when N increases and reaches L/(2a) [2–5, 25, 26]. Specifically,
oscillating quantities are the expansion weights wn, and these, as a
direct outcome, yield oscillating current distributions through (7).
For N near L/(2a), oscillations occur only near the wire ends and
on both sides of the excitation gap (for gap-driven radiators). The
former occur in both the real and imaginary parts of the current
distribution, whereas the latter appear only in the imaginary part. As
N is further increased, the oscillations increase in magnitude, having
a growing spatial frequency in proportion with N . For relatively large
N exceeding L/(2a), the oscillations are so great in magnitude and
so rapidly varying that the current distributions resulting from (7)
exhibit a glaring non-physical behavior, which is still not due to round-
off errors, provided that careful numerical calculation (with double-
precision arithmetic) is used. To assess the effect of round-off errors,
several numerical checks can be performed, including the estimation
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of the condition number for increasing values of N , the crosschecking
of the solutions resulting from independent matrix solvers and the use
of different quadrature schemes. Of course, as N continues to grow
much beyond L/(2a), the solutions are severely influenced by round-
off errors. In this event, it would be rather meaningless to further
examine the resulting solutions, as they strongly depend upon the
specific hardware and software used. By contrast with the resulting
currents in the AK case, the use of the EK always yields smooth and
physically acceptable current distributions, since no oscillations occur
in the expansion weights wn as N is increased beyond L/(2a).

All the above considerations are illustrated in Figs. 1–3, for a
dipole with L/λ = 0.005 and a/λ = 0.005, which is symmetrically
driven by a gap generator having ∆ = a. The presented results
correspond to N + 1 = 50, N + 1 = 100 and N + 1 = 150. Due to
symmetry, the presented current distributions are depicted for z ≥ 0
only. Moreover, for clarity, current distributions are only shown close
to the gap (z = 0) and the end (z = L/2). Apparently, the results are
consistent with the above remarks. Even in Fig. 3 where N is large
compared to the important parameter L/(2a) = 50, the smoothed AK
current distributions are not distorted at all by the oscillations that
render the non-smoothed AK current distributions non-physical. In
Fig. 3(a), certain values of the non-smoothed AK curve near z = 0
are out of scale. From the presented results, it is also obvious that
the solutions obtained from the EK formulation do not oscillate at
all, as expected from [2, 5]. Extensive numerical tests have verified
that this behavior is representative of what should be anticipated in
general, provided, of course, that N is not exuberantly high, so that
the influence of round-off errors is unnoticeable. Similar results were
also obtained for ∆ → 0, which corresponds to a delta-gap source.
Therefore, any difficulties emerging from the use of the AK should not
be blamed exclusively on the delta-gap source.

As for the discrepancies of the results obtained from the different
formulations, it is worth noting that the smoothed AK distributions are
quite close to the corresponding EK distributions, since their relative
differences are smaller than 5% in Figs. 1–3, and typically smaller
than 10% for sufficiently thin dipoles with L/λ = 0.5 and a/λ < 0.01.
Therefore, the smoothing procedure consisting in the utilization of the
AK together with (8) is useful, even when N is large enough to yield
intensely fluctuating expansion weights wn, but, of course, before the
appearance of severe ill-conditioning effects, which can be detected
with the aid of various numerical checks as those discussed above.

One additional question worth addressing regards the stability of
the solutions resulting from the use of the AK in conjunction with (8).
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(a)

(b)

Figure 1. Computed current distribution on a dipole with L/λ = 0.5
and a/λ = 0.005, which is symmetrically excited by a finite-gap
generator with ∆ = a, for N + 1 = 50, (a) Current distribution near
the ends, (b) Current distribution near the gap.
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(a)

(b)

Figure 2. Computed current distribution on a dipole with L/λ = 0.5
and a/λ = 0.005, which is symmetrically excited by a finite-gap
generator with ∆ = a, for N + 1 = 100, (a) Current distribution
near the ends, (b) Current distribution near the gap.
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(a)

(b)

Figure 3. Computed current distribution on a dipole with L/λ = 0.5
and a/λ = 0.005, which is symmetrically excited by a finite-gap
generator with ∆ = a, for N + 1 = 150. In Fig. 3(a), certain values of
the non-smoothed AK curve are out of scale, (a) Current distribution
near the ends, (b) Current distribution near the gap.
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Figure 4. Computed input admittance towards N for a center-driven
dipole with L/λ = 0.5, a/λ = 0.005 and ∆ = a.

Although non-smoothed AK solutions are not expected to converge, it
is of interest to examine smoothed AK solutions and, particularly, the
closeness of such solutions to the ones derived from the EK formulation.
For this purpose, input admittance data are provided in Fig. 4 for the
cylindrical dipole of Figs. 1–3, as a function of N . From the presented
results, it is obvious that the AK data are quite accurate. Further
increase in N reveals that the AK results remain quite close to the EK
ones, even for N >L/(2a), as it can be also inferred from Figs. 2 and 3.

4. CONCLUSION

Although oscillations in the expansion coefficients and the associated
line currents are unavoidable in AK formulations of thin-wire antennas,
meaningful and useful current distributions can be derived by
calculating a smoothed current through the magnetic field at a
distance a away from the line current. This is true, at least, for
the numerical method considered here (Galerkin’s formulation with
piecewise sinusoidal basis/testing functions). Extensive checks, a small
part of which was presented above, revealed that the remedy at
hand is effective over a wide range of discretization levels (number of
basis/testing functions). In practice, the remedy is restricted only by
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round-off errors, which render the solutions useless. Moreover, albeit
not exhibited here, a similar behavior was ascertained for different
excitation types, a fact that further reinforces the use of the proposed
remedy for overcoming the complications caused by the oscillations
accompanying AK formulations.

APPENDIX A.

Adopting the notation used in [25], the entries of the interaction matrix
are expressed as

Zn,m = −
∫ zm+δ

zm−δ

[
ẑ · �En(a, z)

]
fm(z)dz, (A1)

where �En stands for the electric field generated by the sinusoidal
current of the basis function fn(z). Due to symmetry, the reaction
integrals depend on |m − n| only and the interaction matrix is of
symmetric Toeplitz type, which can be constructed from its first or
last row/column as Zn,m = Z±N∓|m−n|,±N . When the EK is used, the
basis functions are of tubular nature and, therefore, the field in (A1)
can be obtained from the following circumferential integral

ẑ · �En(a, z) = − jζ0

8π2

∫
2π

[
e−jk0R+

n

R+
n

+
e−jk0R−

n

R−
n

− 2 cos (k0δ)
e−jk0Rn

Rn

]
dφ′,

(A2)

where ζ0 = 120πΩ and

R±
n =

√
2a2 (1 − cosφ′) + (z − zn ∓ δ)2, (A3)

Rn =
√

2a2 (1 − cosφ′) + (z − zn)2. (A4)

The index 2π in any integral herein denotes that the integration can be
performed over any range of the form ξ < φ′ < ξ+2π with ξ arbitrarily
chosen.

The singularities occurring for φ′ → 0 when z−zn → 0 (notice that
zn ± δ = zn±1 and R±

n = Rn±1) are integrable and can be computed
by first isolating the singularity arising for φ′ → 0, as follows∫

2π

e−jk0Rn

Rn
dφ′ =

∫
2π

1
Rn

dφ′ +
∫
2π

e−jk0Rn − 1
Rn

dφ′. (A5)
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The second integral in (A5) has a smooth integrand and, therefore, can
be computed with the aid of conventional quadrature algorithms for
any z. With regard to the first integral in (A5), this can be expressed in
terms of the complete elliptic integral of the first kind. Although there
exist extended (open) integration rules for treating improper integrals
[28], these sometimes suffer from slow convergence rates. Instead of
implementing such techniques, one can further split the integral into
distinct parts, one of which is concentrated on a very small region
embracing the singularity, defined by −γ < φ′ < γ with γ small, so that

the approximation Rn ≈
√

(aφ′)2 + (z − zn)2 is quite adequate [29, 30].
Then, the singular reaction integrals of (A1) arising for |m − n| ≤ 2
can be computed with relative ease by splitting them into properly
selected ranges. By setting n = 0 and exploiting the symmetry about
z = 0, the integration interval 0 < z < δ is the only one associated
with the singularities discussed above. Specifically, the singularities
can be treated as follows∫ δ

0

∫
2π

1
R0

fl(z)dφ′dz =
∫ γa

0

∫ γ

−γ

1
R0

fl(z)dφ′dz

+
∫ γa

0

∫ 2π−γ

γ

1
R0

fl(z)dφ′dz +
∫ δ

γa

∫
2π

1
R0

fl(z)dφ′dz
, l = 0, 1. (A6)

Apparently, the first integral in the right-hand side of (A6) is singular,
whereas the other two are not. For sufficiently small values of γ, the
condition γa << δ holds, even when N is several times larger than
the important parameter L/(2a). Therefore, for l = 0, the current of
the corresponding testing function within the interval 0 < z < γa can
be approximated by f0(z) ≈ sin (k0δ)

(
1 − k2

0z
2/2

)
− cos (k0δ) (k0z).

Similarly, for l = 1, the associated current can be approximated by
f1(z) ≈ k0z. Hence, the first (singular) integral in the right-hand side
of (A6) can be analytically derived in terms of the integrals Tc and Ts

given below

Tc =
∫ γa

0

∫ γ

−γ

1
R0

(
1 − k2

0z
2

2

)
dφ′dz

= −γ

6

{[√
2 + ln(

√
2 + 1)

]
(k0aγ)2 − 24 ln(

√
2 + 1)

}
, (A7)

Ts =
∫ γa

0

∫ γ

−γ

1
R0

(k0z) dφ′dz = γ[
√

2 − 1 + ln(
√

2 + 1)]k0aγ. (A8)

Numerous tests were performed in order to assess the accuracy
of the approximations discussed above. Highly accurate results were
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obtained for sufficiently small γ and different values for a, due to
the properly formed integration ranges embracing the singularities.
The numerical results illustrated in this paper were computed with
γ = π/180. Finally, it is noted that all the non-singular integrals were
computed using two-dimensional Gauss-Legendre rules [28].
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