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Faculté des Sciences de Tunis
El-Manar 2092 Tunisie

Abstract—The paper presents a new algorithm for a 2-dimensionnal
direction of arrival estimation. Based on the extended Kalman filter
(EKF), we analyse a recursive procedure for 2-dimensional directions of
arrival (DOA) estimation and we will employ the two-L-shape arrays.
A new space-variable model which we call a spatial state equation
is presented using array element locations and incident angles. In
this paper we briefly recapitulate the most important features of
the extended Kalman filter (EKF). The performance of the proposed
approach is examined by a simulation study with three signals model.
The simulation results show a good estimate performance.

1. INTRODUCTION

The technique for estimating the parameters of multiple waves
provides a convenient tool for the analysis of multiple-waves fields
and eventually for actual applications to mobile communications.
Therefore, we should estimate the Direction of Arrival (DOA) of highly
coherent waves like desired wave and the delay waves. The high
resolution DOA estimation algorithm using array antenna is attracted
attention to achieve these demands.

The problem of estimating the two-dimensional directions of
arrival (DOAs), namely, the azimuth and elevation angles, of multiple
sources was the topic of several researches [2, 3, 7, 9], and we will employ
the two-L-shape arrays that showed [12] better performances than the
one L-shape [3], linear array [4–5], planar array [6–7], and the parallel
shape arrays [8].

In this paper the detection and estimation of the parameters of
multiple waves are discussed. Especially in the mobile communication
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domain in the range of [70◦, 90◦]. We will present a method for
estimating the elevation and azimuth arriving waves based on the
extended Kalman filter [13–15].

The general characteristics of a Kalman filter such as most-
likelihood and convergence have been discussed in several papers [13–
16]. On the contrary, we derive a suitable space-variable model in
the present paper which we call a spatial state equation using array
element locations and incident angles. Simulation results show the
performance of our method even at low SNRs. With this new method
we can avoid the case where both of elevation and azimuth angles are
complex at the same time.

The rest of the paper is organized as follows: The data model,
geometrical considerations and the new spatial state equation for
incident waves are presented in Section 2, in Section 3, the extended
Kalman filter is recapitulated, Section 4 presents the 2-D direction of
arrival estimation algorithm, Section 5 shows simulation results and
Section 6 makes conclusions.

2. DATA MODEL

Consider the two-L-shape uniform linear array (ULAs) in the x-z and
the y-z planes shown in Fig. 1 with inter-element equals d, using
three array elements placed on the x, y and z axes. Each linear array
consists of N elements. The element placed at the origin is common
for referencing purposes.

Suppose that there are K narrow band sources, s(t), with the
same wavelength λ impinging on the array, such that kth source has
an elevation angle θk and an azimuth angle φk, k = 1, . . . ,K.

We put the complex base-band representation of the signal
received by the nth element of one subarray as y(n) (n = 1, 2 . . . N),
the signal sources are far apart from the subarray. The received vector
at the nth element position is then given by:

y(n) =
K∑

k=1

an (θk, φk) sk(t), n = 1, 2, . . . , N (1)

Where an (θk, φk) is the steering vector defined by:

an (θk, φk) = exp (−jϕk,n) (2)

with ϕk,n depends on the position and the geometry of the subarray
showed in Fig. 1. Let us introduce the following notation:
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Figure 1. The 2-L-shape array configuration used for the joint
azimuth and elevation (θ, φ) DOA estimation.

x1,n = s1(t)an (θ1, φ1)
x2,n = s2(t)an (θ2, φ2)
. . .

xK,n = sK(t)an (θK , φK)

Using these notations, we can express the incident wave vector X(n)
at the nth element position as follows:

X(n) = [x1,nx2,n . . . xK,n]T (3)

where “T” denotes the transpose. Then the received signal is given by:

y(n) = HX(n) + η(n) (4)

where η is a complex white noise value with mean zero and covariance
σ2. H = [11 . . . 1] with K-components.

At the (n + 1)th element position, the incident wave vector is
derived from that at the nth element position by:

X(n+ 1) = A(θ, φ)X(n) (5)

where

θ = [θ1, θ2, . . . , θK ] , φ = [φ1, φ2, . . . , φK ]
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A(θ, φ) =


 a(θ1, φ1) 0

· · ·
0 a(θK , φK)


 (6)

Equation (5) could be called a spatial state equation and Equation (4)
the measurement equation.

2.1. Geometrical Consideration of the Steering Vector

2.1.1. The Steering Vector of the z Axes Subarray

We will use the z axes subarray of the 2-L shape arrays antenna only
to estimate the elevation angles of sources, Let yz(n) be the signal
received at the linear subarray in the z axes at the nth element.

yz(n) =
K∑

k=1

anz (θk) sk(t) + ηz(n) (7)

where the steering vector of the z axes subarray is given by:

anz(θk) = exp (−jϕzk,n) (8)

and
ϕzk,n =

2π(n− 1)d cos θk

λ
(9)

θk is the elevation angle of the kth source signal. ηz(t) is the additive
White Gaussian noise of the kth source signal in the z axes at the nth
element.

2.1.2. The Steering Vector of the x Axes Subarray

In the same way, we use the x axes to estimate the x-component of
the azimuth angle. Then let yx(n) be the signal received at the linear
subarray in the x axes at the nth element.

yx(n) =
K∑

k=1

anx (θk, φkx) sk(t) + ηx(n) (10)

where the steering vector of the x axes subarray is given by:

anx(θk, φkx) = exp (−jϕxk,n) (11)

and
ϕxk,n =

2π(n− 1)d sin θk cosφk

λ
(12)
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2.1.3. The Steering Vector of the y Axes Subarray

To estimate the y-component of the azimuth angle we use the y axes
subarray. Then let yx(n) be the signal received at the linear subarray
in the y axes at the nth element.

yy(n) =
K∑

k=1

any (θk, φky) sk(t) + ηy(n) (13)

where the steering vector of the y axes subarray is given by:

any(θk, φky) = exp (−jϕyk,n) (14)

and
ϕyk,n =

2π(n− 1)d sin θk sinφk

λ
(15)

2.2. A New Spatial State Equation for Incident Waves

The elements of X,A and y are all complex in general. We reformulate
the problem involving complex quantities in terms of real quantities,
in order to carry out the parameter estimation of incident waves. Let
the real and the imaginary parts of x1,n be denoted by z1 and z2
respectively, and the real and imaginary parts of e−jϕ1 be denoted by
α1 and α2, respectively. Continuing in this manner we have

xk,n = z2k−1,n + jz2k,n (16)
exp (−jϕk) = α2k−1 + jα2k (17)

It follows that the L-component complex vector X(n) can be
completely represented by the following real vector Xr(n) with 2L-
components

Xr(n) = [z1,n z2,n . . . z2k−1,n z2k,n]
In this way, we can rewrite (5) in terms of real vector as:

Xr(n+ 1) = Ar(α)Xr(n) (18)

Ar(α) is a 2L×2L square matrix, correspondingly, (4) can be rewritten
as:

Yr(n) = Hr(n)Xr(n) +Nr(n) (19)
where

Yr(n) = [Re (y(n)) Im (y(n))]T (20)

Hr =

[
1 0 1 0 . . . 1 0
0 1 0 1 . . . 0 1

]
(21)

Nr(n) = [Re (η(n)) Im (η(n))]T (22)
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3. THE EXTENDED KALMAN FILTER (PREVIOUS
WORK)

The Kalman filtering approach for a non linear system is based on the
first order linearization of a non linear state equation using a previous
estimate as the centre of the updated linear Taylor approximation. The
nonlinear system is given by

X(n+ 1) = f (n,X(n)) +W (n) (23)
y(n+ 1) = h (t,X(n)) + η(n) (24)

wheredenotes the state vector (5), Y (n): the measurement vector (3),
W (n): the process noise, η(n): the measurement noise and f(.) and
h(.) are nonlinear differentiable matrix functions. W (n) and η(n) are
vectors with white Gaussian random elements of zero mean, and their
covariance matrices are Q and R, respectively:

Cov
(
W (n)W (n)T

)
= Q

Cov
(
η(n)η(n)T

)
= R

(25)

The extended Kalman filter is described by the following equations:

X̂(n+ 1/n) = f
(
n, X̂(n)

)
(26)

X̂(n/n) = X̂ (n/n− 1) +K(n)
[
y(n) − h

(
n, X̂(n)

)]
(27)

K(n) = P (K/K − 1)
∏ (

n, X̂(n/n− 1)
)T

[∏ (
n, X̂(n/n− 1)

)
P (n/n− 1)

∏ (
t, X̂(n/n− 1)

)T
+R

]−1

(28)

P (n/K) = P (n/n− 1) −K(n)∏ (
n, X̂(n/n− 1)P (n/n− 1)

)
(29)

P (n/n+ 1) = F
(
n, X̂(n/n)

)
P (n/n)F

(
n, X̂(n/n)

)T
+Q (30)

where X̂(n/n) and
(
X̂(n/n− 1)

)
denote the conditional mean

estimates of X̂(n), based on the measurements Y (n) and Y (n − 1),
respectively. F

(
(n, X̂(n/n)

)
and

∏ (
(n, X̂(n/n− 1)

)
denote the

following Jacobian matrices evaluated at the values of X̂(n/n) and
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X̂(n/n − 1), respectively. K(n) denotes the Kalman gain matrix.
P (n/n) and P (n/n − 1) denote the estimation error covariance
matrices.

The above extended Kalman filter can also be used to estimate
unknown parameters in a linear system. In the following, we apply it
for Equations (26) and (27) to estimate both of elevation and azimuth
angles in different subarray.

4. THE 2-D DIRECTION OF ARRIVAL ESTIMATION
ALGORITHM

4.1. The Extended Kalman Filter Algorithm

The problem to estimate the elevation angle θk and the azimuth angle
φk in (1) or α2k−1 and α2k in (17), can be solved with the same
procedure as parameters estimation in linear systems. We should
apply an extended Kalman filter approach by means of spatial state
equations of the incident waves as mentioned above. The procedure is
summarized as follows:

1) Defining a space-variable vector expressing the incident waves, to
obtain a spatial state equation of the incident waves. The matrix
Ar(α) and Xr(n) in (18) and Hr and Yr(n) in (19), respectively,
are defined.

2) Extending the state vector by including the unknown incident
angles in the state vector.

3) Using the nonlinear state equation, the extended Kalman filter
(26)–(30) is carried out to obtain the estimation of the elevation
or the azimuth arrival waves.

Correspondingly, F (t, X̂(n/n)) with 4L×4L size and
∏

(n, X̂(n/n
− 1)) with 2 × 4L size, are given in more detailed from as (31) and
(32).

∏ (
n, X̂(n/n− 1)

)
=

[
1 0 1 . . . 1 0 0 0 . . . 0
0 1 0 . . . 0 1 0 0 . . . 0

]
(31)
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F
(
t, X̂(n/n)

)
=




α̂1 −α̂2 0 ẑ1 −ẑ2 0
α̂2 α̂1 ẑ2 ẑ1

. . . α̂2L−1 −α̂2L

. . . ẑ2L−1 ẑ2L−1

0 α̂2L α̂2L−1 0 ẑ2L−1 ẑ2L−1

0 0 0 0 1 0

0 0 0 0
. . .

0 0 0 0
. . .

0 0 0 0 0 1




(32)

4.2. The 2D Direction of Arrival Estimation

The azimuth angle estimation φ̂k can be written [8] as:

φ̂k =




1
2

(
φ̂kx + φ̂ky

)
if both φ̂kx and φ̂ky are real

φ̂kx if φ̂ky is complex

φ̂ky if φ̂kx is complex
Failure if both are complex

(33)

Note:
With the new spatial state equation in Section 2.2 we can avoid

the case where both of elevation and azimuth angles are complex at the
same time. So there are not failures, what is proved in the simulation
results. We give the procedure to estimate the elevation and the
azimuth angles in the flowchart of Fig. 2.
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Figure 2. Proposed two L-shape array flowchart for the joint elevation
and azimuth DOA estimation.
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5. SIMULATION RESULTS

Computer simulations have been conducted to evaluate the 2-D DOA
estimation performance of the proposed method. The parameters used
in the simulation are as follows:

The sensors displacement d is taken to be half the wave length
of the signal waves. The incident waves are three waves K = 3, with
directions of arrival DOA (θk, φk), k = 1 . . .K. The additive noise is
white Gaussian processes.

All the waves are assumed to be direct waves and the power levels
are a constant 2, 3.2 and 5, respectively. The measurement noise η(t) in
(24) is assumed to be 0.1. The process noise W (t) is assumed to be zero
as the state (23) represents the elements state at the same time. The
convergence of estimated values of the elevation and azimuth angles are
plotted in Fig. 3 and Fig. 4, respectively. The abscissa is the number
of iterations, and means the numbers of necessary elements.

In Figs. 3(a) and (b) the waves are located at (60◦, 20◦), (70◦, 30◦)
and (80◦, 40◦), respectively and signal to noise ratio (SNR)=10 dB.
This is an example of the most common case because the incident
angles differences are medium and, accordingly, the convergence is not
bad. It is shown that the estimated values steadily converge to the
actual values. About 80 iterations are required to achieve a steady
state for the elevation angles. In other words, 80 out of 250 elements
for the z axes array are used for convergence. For the azimuth angles,
only 50 iterations are required to obtain the convergence to the real
azimuth angles.

In Figs. 4(a) and (b), three waves are located at (70◦, 20◦),
(74◦, 24◦) and (78◦, 28◦), respectively. Despite the proximity of the
elevation and azimuth angles, the convergence characteristics of angles
estimations show no degradation from Fig. 3. Although the variations
of the elevation angles are larger and the convergence speeds are slower
than in Fig. 3, the estimates errors are quite small after achieving the
convergence state after 116 iterations for both azimuth and elevation
angles.

Figs. 5(a) and (b) show the histogram plots for the joint elevation
and azimuth angles, respectively, for a single source with DOA located
at (90◦, 40◦) by using the extended kalman filter of the 2-L shape array.
We observe that the method gives close azimuth DOA estimation
and the clear peaks appear around (40◦), but, for the elevation angle
located at (90◦), we observe a considered estimation error. It is clear
that the proposed algorithm improves performance significantly for the
azimuth angle, but not for the elevation angle located at 90◦.
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Figure 3. Convergence results for the sources located at (60◦, 20◦),
(70◦, 30◦) and (80◦, 40◦), respectively (a) Elevation angles. (b)
Azimuth angles.
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Figure 4. Convergence results for the sources located at (70◦, 20◦),
(74◦, 24◦) and (78◦, 28◦), respectively. (a) Elevation angles. (b)
Azimuth angles.
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Figure 5. Histogram of elevation DOA estimations for a single source
of DOA at (90◦, 40◦), (a) Elevation angles. (b) Azimuth angles.
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Fig. 6 shows the speed of convergence of elevation angles in the
mobile communication range, which is [70◦, 90◦], with different wave
lengths from λ/8 to λ. it clear that a large number of iterations are
asked when the angle of elevation approaches to 90◦ for all lengths of
waves used. For the other cases, an acceptable convergence speed is
gotten for a wave length superior or equal to λ/2.
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Figure 6. Speed of convergence of elevation angles in the mobile
communication range with different wave lengths.

Fig. 7 denotes the worst convergence case where the first and
the second waves are located at 0◦ and 90◦ respectively. The wave
located at (0◦, 40◦), shows good convergence characteristics but with
degradation of the convergence speed, indeed we attain the real
direction after 100 iterations. But the second wave located at (90◦, 40◦)
have significant errors which are 8◦.
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Figure 7. Estimated elevation angles convergence results for sources
located at (90◦, 40◦) and (0◦, 40◦) respectively.

6. CONCLUSION

An antenna array configuration was proposed using the extended
kalman filter method, for the 2-D azimuth and elevation angle
estimation problem. The results obtained are summarized as follows.

A space variable model, called spatial state equation is derived,
using the elements array of the 2-L shape antenna. We show that
the extended kalman filter algorithm, which can be applied to all
array configurations, is simple and applicable to practical cases. The
proposed scheme reduces the estimation error of both the azimuth and
elevation angles and it shows a good performance at low SNRs and
at the proximity of the waves. It should be noted that the idea of
the proposed approach is different from the well-known MUSIC or the
PM algorithms. The angles of the arrival waves are directly estimated
from the signal received at each array element, though MUSIC and
PM algorithms obtain the estimation based on the spectral analysis
techniques. We can also note that the performance of the proposed
approach is not affected by the change of the incident waves during
the computing time of the algorithm, because the signals at each array
element are collected at the same sampling time.
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