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Abstract—This paper proposes a computationally efficient method
for a two-dimensional direction of arrival estimation of multiple
narrowband sources. We apply the MUSIC method which requires
eigenvalues decomposition to the cross spectral matrix. This paper
will employ two L-shape arrays that showed better performances
than the one L-shape and the parallel shape arrays. In spite of its
computational complexity, simulation results verify that the proposed
subspace technique gives much better performance than the propagator
method.

1. INTRODUCTION

The direction of arrival (DOA) estimation is very important in the
fields of radar, sonar, and high-resolution spectral analysis. The
problem of estimating the two-dimensional (2-D) directions of arrival
(DOAs), namely, the azimuth and elevation angles, of multiple sources
has received considerable attention in the field of array processing [1–
3, 6, 7]. Different geometry of the problem schemes have been proposed,
in these algorithms, to significantly simplify, and thereby to reduce
the costs of, uncertainty estimation. They employ inhomogeneous
cylinders [12] or non-uniform linear antenna array configuration [13–
15], to solve the problem of estimating the two-dimensional (2-D)
directions of arrival (DOAs), of multiple sources.

Sjöberg [16] has proposed a non-uniform array antenna, consisting
of 7 identical elements; his paper treats essentially two applications:
single scattering against randomly distributed particles and random
errors in antenna technology, in great generality. The estimates are
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given in terms of the deterministic design values and the errors in
phase, amplitude and position of the antenna elements. Although
the maximum likelihood estimator [2] provides optimum parameter
estimation, its computational complexity is extremely demanding.

MUSIC is the most well-known for its super-resolution capability
and simplicity and it has less computational complexity than the
maximum likelihood methods.

Tayem and Kwon [8] have proposed amelioration in the estimation
of angle elevation between 70◦ and 90◦ than the algorithm proposed
in [5], which is very important in mobile communication. However,
the 2-D angle estimation error in [8] is large and it has performance
degradation at low SNR. Furthermore, many of the above methods
[2, 6, 7] require reasonably accurate initial DOA estimates, 2-D search
and/or complex pair matching of the azimuth and elevation angles.
Besides, Li et al. [4] have proposed a PM-based DOA estimation
method but unfortunately, a 2-D peak search is needed.

The objectives of our paper are as follow

(1) Reduce the estimation error of both the azimuth and elevation
angles.

(2) Improve the performance of our method at low SNR.
(3) Reduce the estimation failure problems when elevation angles are

between 70◦ and 90◦.

To achieve these objectives, this paper proposes the two L-shape
antenna array configuration shown in Fig. 1 and employs the MUSIC
method.

The rest of the paper is organized as follows. The data model
is presented in Section 2. Our 2-D DOA estimation algorithm is
developed in Section 3. Section 4 shows simulation results and
Section 5 makes conclusions.

2. DATA MODEL

Consider the two L-shape uniform linear arrays (ULAs) in the x-z
and the y-z planes shown in Fig. 1 with inter-element equals d, using
three array elements placed on the x, y and z-axes. Each linear array
consists of N elements. The element placed at the origin is common
for referencing purpose.

Suppose that there are K narrow band sources, S(t), with same
wavelength λ impinging on the array, such that kth source has an
elevation angle θk and an azimuth angle φk, k = 1, . . . ,K.

We put the complex base-band representation of the signal
received by the nth element of one sub-array as xn(t) (n = 1, 2, . . . , N),
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Figure 1. The two L-shape array configuration used for the joint
azimuth and elevation (φk, θk) DOA estimation.

the signal sources are far apart from the sub-array. The sub-array
output vector at the snapshot t is then given by

x(t) = (x1(t), x2(t), . . . , xN (t))T =
K∑

k=1

a (θk, φk) sk(t) + η(t)

t = 1, . . . , P (1)

Where η(t) is an N -dimensional complex white noise vector with mean
zero and covariance σ2I, I is the identity matrix of size N , superscript
T denotes transpose of a matrix and a (θk, φk) is the steering vector
defined by

a (θk, φk) = [1, exp(−jϕk), . . . , exp (−jϕk(N − 1))]T (2)

with ϕk depends on the position of the sub-array. The sample
correlation matrix of the array output vector is defined by

Rt = E
{
x(t)x(t)H

}
=

K∑
k=1

σ2
ka (θk, φk) a (θk, φk)

H + σ2I (3)

where H is the Hermitian operator.
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3. PROPOSED TWO-DIMENSIONAL DIRECTION OF
ARRIVAL ESTIMATION ALGORITHM

3.1. Previous Work (MUSIC Algorithm)

Let us review the procedure of the MUSIC algorithm [9]. This classical
subspace algorithm relies on the eigen decomposition of the sample
correlation matrix Rt calculated in (3).

We denote its eigenvalues (in decreasing order) and their
corresponding eigenvectors by λk and vk respectively.

Rt = V ΛV H (4)

where
V = [v1, . . . , vN ] and Λ = diag[λ1, λ2, . . . , λN ] (5)

It can be shown [10, 11] that

λ1 ≥ λ2 ≥ . . . ≥ λK ≥ λK+1 = . . . = λN = σ2 (6)

Here we explain the mechanism of the MUSIC algorithm. If the number
K of sources is smaller than the number N of sensors, all the signal
components are represented in the signal subspace spanned by the
first K eigenvectors v1, . . . , vK , and the remaining N -K eigenvectors
vK+1, . . . , vN represents the noise subspace.

3.2. Elevation and Azimuth Angles Estimation Algorithm

3.2.1. Elevation Angle Estimation Method

Let Z(t) be the N × 1 signal received at the linear sub-array in the
z-axes at the snapshot t.

Z(t) = (z1(t), z2(t), . . . , zN (t))T =
K∑

k=1

a(θk)sk(t) + ηkz(t),

t = 1, . . . , P (7)

where
a(θk) = [1, exp(−jϕk), . . . , exp (−jϕk(N − 1))]T (8)

and
ϕk = exp

(
−j 2πd cos θk

λ

)
(9)

θk is the elevation angle of the kth source signal. ηkz(t) is the additive
White Gaussian noise of the kth source signal at the snapshot t.
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The sample correlation matrix of the sub-array output vector is
defined by

Rz(t) = E
{
z(t)z(t)H

}
=

K∑
k=1

σ2
ka (θk) a (θk)

H + σ2I (10)

We denote its eigenvalues, in decreasing order, and their corresponding
eigenvectors by λk and vk respectively. The K points where the
function

Uz(θ) =
N∑

k+1

vH
k a (θk) aH (θk) vk (11)

approaches zero correspond to the elevation angles θ1, . . . , θK of the
signals. Therefore, the elevation angles estimated θ̂k, k = 1, . . . ,K can
easily be found by maximising the following cost function

Jz(θ) =
1

Uz(θ)
(12)

The exhaustive sweeping operation is usually used to find the local
maxima.

3.2.2. The Azimuth Angle Estimation Method

Let X(t) be the N × 1 signal received at the linear sub-array in the x
axes at the snapshot t.

X(t) = (x1(t), x2(t), . . . , xN (t))T =
K∑

k=1

a(θk, φkx)sk(t) + ηkx(t),

t = 1, . . . , P (13)

where

a(θk, φkx) = [1, exp(−jϕk), . . . , exp (−jϕk(N − 1))]T (14)

and
ϕk = exp

(
−j 2πd sin θk cosφkx

λ

)
(15)

φkx is the azimuth angle of the kth source signal. ηkx(t) is the additive
White Gaussian noise of the kth source signal at the snapshot t in the
x sub-array with mean zero and covariance σ2I.
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The sample correlation matrix of the sub-array output vector is
defined by

Rx(t) = E
{
x(t)x(t)H

}
=

K∑
k=1

σ2
ka (θk, φkx) a (θk, φkx)H + σ2I (16)

Its eigenvalues, in decreasing order, and their corresponding
eigenvectors are denoted by λk and vk respectively.

With the same MUSIC procedure used for estimation of the
elevation angle θ̂k, we can estimate φkx using the sub-array elements
in the x axis with the elevation angle θ̂k obtained from (12).

The K points where the function

Ux

(
θ̂, φx

)
=

N∑
k+1

vH
k a

(
θ̂k, φkx

)
aH

(
θ̂k, φkx

)
vk (17)

Ux

(
θ̂, φx

)
approaches zero correspond to the azimuth angles

φ1x, . . . , φKx of the signals. Therefore, the azimuth angles estimated
φkx, k = 1, . . . ,K can easily be found by maximising the following cost
function

Jx(φx) =
1

Ux

(
θ̂, φx

) (18)

In the same way we estimate the azimuth angle φ̂ky using the y axis
sub-array. The N × 1 signal received Y (t) at the linear sub-array in
the y-axes at the snapshot t can be rewritten as

Y (t) = (y1(t), y2(t), . . . , yN (t))T =
K∑

k=1

a(θk, φky)sk(t) + ηky(t),

t = 1, . . . , P (19)

where

a(θk, φky) = [1, exp(−jϕk), . . . , exp (−jϕk(N − 1))]T (20)

and
ϕk = exp

(
−j 2πd sin θk cosφky

λ

)
(21)

Finally, the azimuth angle estimation φ̂k can be written as

φ̂k =




1
2

(
φ̂kx + φ̂ky

)
if both φ̂kx and φ̂ky are real

φ̂kx if φ̂ky is complex

φ̂ky if φ̂kx is complex

(22)
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3.2.3. Computational complexity Algorithm

Regarding major computational complexity, the MUSIC algorithm
requires O(N3 + 3N2L) multiplication in calculating the eigen
decomposition for a sample correlation matrix with an N -element
array and L snapshots. The computational load of the PM algorithm
is in O(3NLK), where K is the number of incident sources. Using
MUSIC techniques, the complexity is costly and high especially when
the number of sources and antenna elements are large.

However, the PM requires pair matching between the 2-D azimuth
and elevation angle estimation (θ, φ) and can have an estimation failure
problem when elevation angles are between 70◦ and 90◦. The elevation
angle in typical mobile communications is in the range of 70◦ and 90◦.
Thus, the application of the MUSIC method of the two L-shape arrays
to mobile communications should be considered.

The cost and time requirement of rigorous uncertainty analysis
is quite high, which in general means that methods that employ
such rigorous analysis are normally implemented only by National
Measurement Institutes and are rarely applied to routine testing
or calibration [17]. The purpose of this paper is to show how to
remove these problems in the MUSIC method without additional
computational loads. This paper employ a configuration of two L-
shape arrays, which allow no pair matching between the azimuth
angle estimate and the elevation angle estimate of the source k. In
addition, with the proposed two L-shape arrays in the x-z and y-z
planes, we can completely remove the failure problem. Comparing with
the PM, MUSIC algorithm reduces the means, variances and standard
deviations significantly.

4. SIMULATION RESULT

Computer simulations have been conducted to evaluate the 2-D DOA
estimation performance of the proposed method. The performance of
the two L-shape array with the MUSIC method is compared to that
of [8] using the PM method.

A half wavelength of the incoming signals is used for the spacing
between the adjacent elements in each uniform linear array. The total
number of elements for the proposed two L-shape algorithm was 16.
We assume one single source K = 1, with direction of arrival DOA
(θ, φ). The additive noise is White Gaussian processes. The L = 200
number of snapshots per trial and 1000 independent trials in total are
used.

Table 3 lists the standard deviation of the azimuth angle
estimation of the four latest values, witch we used for simulation,
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Figure 2. Histogram of elevation DOA estimations for a single source
of DOA at (85◦, 40◦), SNR = 10 dB, and N = 5 elements by using
the PM algorithm.

Figure 3. Histogram of azimuth DOA estimations for a single source
of DOA at (85◦, 40◦) SNR = 10 dB, N = 5 elements by using the PM
2-L-shape array configuration.
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Figure 4. Histogram of elevation DOA estimations for a single source
of DOA at (85◦, 40◦) SNR = 10 dB, N = 5 elements by using the
proposed MUSIC of the 2-L-shape arrays configuration.
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Figure 5. Histogram of azimuth DOA estimations for a single source
of DOA at (85◦, 40◦) SNR = 10 dB, N = 5 elements by using the
proposed MUSIC-2-L-shape array configuration.
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Figure 6. Standard deviation of the azimuth angle estimation versus
SNR for a single source at (70◦, 60◦) using both the PM method in [8]
and the proposed MUSIC of the 2-L-shape arrays.

of signal to noise ratio (SNR) cases between 13 dB and 16 dB, using
the proposed MUSIC of the 2-L-shape arrays. We observe that the
standard deviation tend towards zero when the SNR become high.

Table 4 lists the standard deviation of the elevation angle
estimation of the eighth latest values, witch we used for simulation, of
signal to noise ratio (SNR) cases between 9 dB and 16 dB. We observe
that the standard deviation tend towards zero when the SNR become
high.

Figs. 2 and 3 show the histogram plots for the joint elevation and
azimuth angles, respectively, for a single source with DOA (85◦, 40◦)
and signal to noise ratio SNR = 10 dB, by using the PM of the 2-L-
shape arrays in [8].

Figs. 4 and 5 show the corresponding histogram plots for the joint
elevation and azimuth angles estimation, respectively, by using the
proposed MUSIC algorithm of the 2-L-shape arrays

We observe that both of the two methods give a very close joint
DOA estimation and the clear peaks appear around (85◦, 40◦). No
failure can be observed in the two cases. However, it is clear that the
proposed algorithm improves the performance significantly compared
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Figure 7. Standard deviation of the elevation angle estimation versus
SNR for a single source at (70◦, 60◦) using both the PM method in [8]
and the proposed MUSIC of the 2-L-shape arrays.

to the PM algorithm and it reduces the estimation error of both the
azimuth and elevation angles.

Figs. 6 and 7, show the standard deviation of the azimuth and
elevation angle estimation versus the SNR in dB for a single source of
DOA (70◦, 60◦), respectively. The total number of elements used is 16
for both methods. It is clear from Fig. 6 that the PM method in [8] is
worse than the proposed MUSIC method of the 2-L-shape arrays after
3 dB for the azimuth angle estimation.

In addition, we observe from Fig. 7 that the performance of the
proposed algorithm gives much better performance for elevation angle
estimation, especially at a low SNR value, than the PM method in [8]
and [5].

Tables 1 and 2, list the means, variances and standard deviations
of various elevation angle cases between 71◦ and 89◦ at a 40◦ azimuth
angle for the PM in [8] and the proposed MUSIC of 2-L-shape arrays,
respectively. A single source and 10 dB SNR are considered again. We
observe that both of the two methods give good estimation quality
with no estimation failure.

As the elevation angle approaches 90◦, the DOA estimation quality
of the proposed MUSIC method is slightly better than the PM in [8].
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Table 1. Means, variances and standard deviation at SNR = 10 dB
for fixed azimuth angle φ = 40◦ and different elevation angle by using
the PM method.

in Degrees Mean of k
Variance of 

k

Standard 
Deviation of k

71 71.2528 0.0150 0.1292 

74 74.2237 0.0110 0.1047 

77 77.1784 0.0068 0.0825 

80 80.0998 0.0037 0.0612 

83 83.0998 0.0020 0.0442 

86 86.0564 0.00063242 0.0251 

89 89.0146 0.00037145 0.0061 

θ
θ θ

^
^ ^

Table 2. Means, variances and standard deviation at SNR = 10 dB
for fixed azimuth angle φ = 40◦ and different elevation angle by using
the Proposed MUSIC method.

θ in Degrees Mean of kθ Variance of

kθ
Standard

Deviation of 
kθ

71 71.0304 0.0118 0.1049

74 74.0107 0.0103 0.1041

77 77.0068 0.0080 0.0893

80 80.0050 0.0011 0.04048

83 83.0029 0.0008 0.02895

86 86.0010 0.0004 0.00633

89 89.0002 0.0001 0.00096
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Table 3. Standard deviation of the azimuth angle estimation at SNR
between 13 dB and 16 dB for a single source at (70◦, 60◦) using the
proposed MUSIC of the 2-L-shape arrays.

SNR (dB) 13 14 15 16

STD (deg) 0.0098 0.0064 0.0041 0.0009

Table 4. Standard deviation of the elevation angle estimation at SNR
between 9 dB and 16 dB for a single source at (70◦, 60◦) using the
proposed MUSIC of the 2-L-shape arrays.

SNR
(dB)

9 10 11 12 13 14 15 16

STD
(deg)

0.0019 0.0015 0.0010 0.0008 0.0006 0.0004 0.0002 0.0001

In a typical mobile communication environment, the elevation angle
would be between 71◦ and 89◦. Therefore, the proposed algorithm
would be more practical than the PM in [8].

5. CONCLUSION

An antenna array configuration was proposed using the MUSIC
method, for the 2-D azimuth and elevation angle estimation problem
and compared with the PM algorithm of the 2-L-shape arrays in [8].
MUSIC can be applied to all array configurations. The superiority
of the proposed algorithm over PM algorithm is shown through
simulations.

(1) The proposed scheme reduces the estimation error of both the
azimuth and elevation angles.

(2) It shows better performance at low SNR, than the PM scheme.
(3) The MUSIC algorithm reduces the estimation failure problems

when elevation angles are between 70◦ and 90◦. Furthermore,
the proposed two L-shape algorithm shows no failure for all pair
angles.
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