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Abstract—This paper presents an effective medium approach to
calculate the attenuation and phase constants of modes in a 3D
connected wire medium both below and above the plasma frequency.
Physical and nonphysical modes in the structure are identified for
all the important lattice directions. According to this, the medium
behaves as an isotropic material in the vicinity of the plasma frequency.
These results were compared with the numerical simulation and it was
observed that the wave spreads below the plasma frequency along all
the important lattice directions with the same attenuation constant.
This implies isotropic behavior of the 3D wire lattice below the plasma
frequency, and thus this medium can be considered as an isotropic
negative permittivity medium.

1. INTRODUCTION

The medium formed by a two-dimensional lattice of ideally conducting
parallel thin wires (wire medium) has been known for a long time [1–
5]. When the wavelength of the incident radiation is much longer than
the intrinsic length-scales of the structure, it is very helpful to consider
this medium as a homogeneous material with averaged constitutive
material parameters (effective medium theory). In the framework of
effective medium (EM) theory, wire media (WM) are described by the
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plasma model, where the corresponding component of the permittivity
dyadic is expressed by the Drude formula. Pendry et al. [6, 7] and
Sievenpiper [8] have independently demonstrated that metallic wire-
mesh structures have a low frequency stop band from zero frequency
to the cutoff frequency. They attributed this to the motion of the
electrons in the metal wires. This low frequency stop band can be
attributed to effective negative dielectric permittivity, and, when the
wire lattice dimensions are chosen properly, negative permittivity can
be obtained even at microwave frequencies [6]. Recently the plasma
model has been corrected by introducing spatial dispersion (SD) into
the Drude formula [9]. Spatial dispersion can be defined as a nonlocal
dispersive behavior of the material, i.e., the constitutive permittivity
and permeability tensors depend not only on the frequency, but also
on the spatial derivatives of the electric and magnetic field vectors
or, for plane electromagnetic waves, on the wave-vector components
determining the direction of propagation. Initially, a strong spatial
dispersion effect was predicted only in the short-wavelength limit [9].
In recent years, modes in both connected and nonconnected double
wire media have been studied [10–13] and spatial dispersion effects
have been discussed not only at low frequencies, but even above plasma
resonant frequencies. Recently a general vector circuit representation
for the description of spatially dispersive uniaxial magneto-dielectric
slabs was presented in [14]. The developed method can also be applied
to study the transmission characteristics of the slab only in the presence
of wires.

Silveirinha and Fernandes [10] described the behavior of both
connected and nonconnected triple wire lattices. In this paper, a
permittivity tensor was derived, which corresponds to a sophisticated
plasma model describing the wire mesh [15]. For the construction of
an isotropic negative permittivity material, a triple connected wire
mesh system seems to be promising [10], as it exhibits weak spatial
dispersion. A simple model of cold plasma was used by Shapiro et al.
[16], who observed the surface waves at the interface between the wire
mesh and the free space, and studied the influence of spatial dispersion
on these waves.

The analysis of the medium consisting of the 3D mesh of connected
wires presented here uses the effective medium approach proposed in
[10]. Assuming propagation of a plane wave, Maxwell equations with
the applied tensor of an effective permittivity, derived in [10], give an
eigenvalue system of equations for possible eigen modes propagating
in the medium. The resulting dispersion equation takes into account
the spatial dispersion. The geometry of the unit cell is depicted in
Fig. 1. The wire mesh has a period a, and the wires have radius rw.
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Figure 1. Triple wire mesh structure formed by a lattice of infinitely
long connected wires.

The structure is assumed to be lossless.
The dispersion characteristics are shown for particular specific

directions of the first Brillouin zone together with the characteristics
determined by the commercial full-wave simulator CST Microwave
Studio (MWS) [17]. An original numerical experiment is proposed
to verify the theory. The triple wire medium is modeled by MWS
as a sphere filled with a system of mutually perpendicular connected
wires. This system is excited by a dipole located at the center of
the sphere. The electric field distribution is calculated. This field is
naturally perturbed by the wires, and is not averaged as the field used
to determine the effective permittivity tensor [10]. Nevertheless, it
can be compared with the field radiated into an empty space, except
for attenuation due to the negative permittivity. This simulates the
omnidirectional propagation of a wave in the triple WM both below and
above the plasma frequency. The results confirm the suitability of the
triple wire medium to be applied as an isotropic negative permittivity
metamaterial near the plasma frequency.

2. EFFECTIVE PERMITTIVITY DYADIC, DISPERSION
EQUATION

In this work we adopt the relative effective permittivity dyadic
describing the homogenized medium of 3D connected wires obtained in
[10]. This effective permittivity dyadic corresponds to the permittivity
of a nonmagnetized plasma, where the pressure forces are considered
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[15], and reads
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where a is the lattice period, rw is the wire radius and J0 stands for
the Bessel function of the first kind and order zero. In [18] there are
two formulas for the plasma wave number of such a wire array

(kpa)2 ≈ 2π
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The effective permittivity dyadic depends explicitly on the wave
vector, and thus the medium suffers in general from spatial dispersion.
The dispersion equation can be derived from Maxwell’s equations of
the form

∇× E = −jωµ0H, (6)
∇× H = jωε0εE, (7)

where the electric and magnetic field intensity are expected to be in
the form of plane waves

E (r) = E0 exp [−j (k · r)] = E0 exp [−j (kxx + kyy + kzz)] , (8)
H (r) = H0 exp [−j (k · r)] = H0 exp [−j (kxx + kyy + kzz)] . (9)

By solving the set of Equations (6), (7) and assuming k2
0 = ω2ε0µ0

and k2 = k2
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z and the electromagnetic field in the form (8)

and (9), we come to the eigenvalue equation
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Solving (10) means finding the eigen values kx, ky, kz for eigen
waves Ex, Ey, Ez. Rewriting the determinant of (10) into dyadic form
we obtain the dispersion equation as in [10]

det
(
kk − k2I + k2

0ε
)

= 0. (11)

The dispersion characteristics of the particular modes are
determined by solving this dispersion equation.

3. DISPERSION CHARACTERISTICS

Throughout the text we adopt a = 10 mm, rw = 0.5 mm, and thus the
plasma wave number is kp = 194.509 m−1, β1 = 394.303 m−1 and the
constant l0 = 2.018. The corresponding plasma frequency calculated
using (5) is approx. fp = 9.28 GHz. First, we assume the case of kz = 0
and kx �= ky, thus we can obtain isofrequencies kx as a function of ky

for the wave propagating in the x-y plane. In this simplified case, the
determinant in (10) has the form of a polynomial of the variable ky of
the sixth order, and thus generally has 6 roots, which correspond to
3 eigen waves, i.e., 3 sets of solutions with positive and negative sign.
The dependence of ky on kx can be expressed for the first solution as
follows

k2
y1 = k2

0 − k2
x − k2

p, (12)

whereas the other solutions are nonphysical and they read
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Equation (12) corresponds to Equation (7) in [9], setting kz = 0.
The propagation constant (12) is shown in Fig. 2 for two different ratios
k0/kp. The plots in Figs. 2(a) and 2(b) represent circles, which means
that the corresponding wave propagates in the x-y plane with the same
propagation constant in all directions. The frequency dependence of
the propagation constant modulus from (12) is shown in Fig. 3 both
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below and above the plasma frequency fp. The curve below the plasma
frequency corresponds to the case when both kx and ky are pure
imaginary. Thus the size of k represents the size of the attenuation
constant. In the case above the plasma frequency, kx and ky are
considered to be real and the size of k represents the size of the phase
constant. The point where both the real and the imaginary parts
drop to zero corresponds to the plasma frequency fp. By changing the
frequency, we only change the size of k. This is a verification of the
results obtained in Fig. 2, since the dependence of ky on kx is always
a circle for any frequency (except of fp, where k = 0).
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Figure 2. Dependence ky1 = f(kx) (12) for the ratio k0/kp = 0.999
below the plasma frequency (a), and k0/kp = 1.001 above the plasma
frequency (b). The solid line corresponds to the real part, and the
dashed line corresponds to the imaginary part of the propagation
constant ky1.

The other specific case is ki �= 0 (i = x, y, z) and the other
two components are equal to zero, thus we observe only the wave
propagation along one axis. This corresponds to the Γ–X direction
in the first Brillouin zone. The frequency dependence of component ki

now reads

k2
i1 = k2

i2 = k2
0 − k2

p i = x, y, z, (17)

k2
i3 =

(
k2

0 − k2
p

)
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It is obvious that (17) is a simplification of (12), and the plot
in Fig. 3 can be adopted for it, changing

√
k2

x + k2
y on its vertical

axis to just ki, since the propagation of the wave along one axis is
equivalent to the propagation along the unit cell face, i.e., in the x-y
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Figure 3. Frequency dependence of the size of the propagation
constant k =

√
k2

x + k2
y both below (dashed line, imaginary part) and

above (solid line, real part) the plasma frequency, for the case kz = 0
and kx �= ky �= 0.

plane. Solution (17) was identified as a TEM mode and solution (18) as
a longitudinal mode in [10]. Solution (18) is identical with (17), except
for the value of the propagation constant, and has the same frequency
dependence. The case of kx = ky and kz = 0 (or in general two of the
components are equal and the remaining is equal to zero) corresponds
to the propagation of a wave along the unit cell face diagonal, the Γ–M
direction in the first Brillouin zone, and the frequency dependence of
the propagation constant component ki now reads
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whereas solution (19) corresponds to a physical wave and is identical
with (17), except for the value, and has the same frequency
dependence. Solutions (20) and (21) do not correspond to any physical
wave. In the case of kx = ky = kz, the wave propagates along the
unit cell diagonal, corresponding to the Γ–R direction in the first
Brillouin zone. The physical solution of the frequency dependence
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of the component kx = ky = kz is now
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The real and imaginary parts of (22) are plotted in Fig. 4.
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Figure 4. Frequency dependence of the propagation constant ki1,2

(i = x, y, z) (22) both below and above the plasma frequency for the
case that all of the propagation constant components are equal. The
solid line corresponds to the real part, and the dashed line corresponds
to the imaginary part, of the propagation constant.

The results presented above were obtained by solving Maxwell
equations with a dielectric permittivity tensor in the form (1). It was
shown, however, that the propagation constant solutions only suffer
from weak spatial dispersion, moreover they are the same for the Γ–X
and Γ–M directions and only the direction Γ–R differs. Thus we can
assume that the medium is almost isotropic in the first Brillouin zone.
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By substituting the simple isotropic model of permittivity in the form

ε =

(
1 −

k2
p

k2
0

)
I. (26)

into the eigenvalue Equation (10) we naturally obtain identical
solutions for all of the important lattice directions, and they are equal
to (17).

The comparison between the propagation constant predicted by
the presented theory and the curves calculated by MWS is shown in
Fig. 5. The propagation constant k2 = k2

x+k2
y +k2

z now has one (Γ–X),
two (Γ–M) or three (Γ–R) components and can be calculated as

k2 = nk2
i i = x, y, z, n = 1, 2, 3, (27)

where n = 1 and ki is calculated with using (17) for the direction Γ–
X, n = 2 and ki is calculated with the use of (19) for the direction
Γ–M and n = 3 and ki is calculated with using (22). MWS calculates
the dispersion characteristics of the wave propagating in the periodical
medium [19]. Consequently, the curve calculated by MWS shows an
upper stop band where no wave propagates. The boundary of this stop
band is described by the condition of Bragg reflection k0a = π. The
presented theory uses a homogenized medium, therefore no such stop
band can be seen and the propagation constant grows to infinity above
the plasma frequency. Fig. 5 shows quite good agreement between
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Figure 5. A comparison of the real part of the propagation constant
k2 = k2
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z calculated by MWS and predicted by the presented
theory for directions Γ–X, Γ–M and Γ–R.
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the propagation constant predicted by the presented theory and the
curves calculated by MWS in the close vicinity above the the plasma
frequency. A difference can also be seen between the simulated curves
for the Γ–X and Γ–M direction, which are the same, and the curve
for the Γ–R direction. The propagation constant below the plasma
frequency cannot be directly computed using MWS, but, the value
of the phase constant calculated by the presented theory shows good
agreement in the close vicinity below the plasma frequency, see Figs. 3
and 4.

4. NUMERICAL ANALYSIS

The triple wire medium was modeled by the CST Microwave Studio.
The dispersion characteristics calculated by MWS are shown in Fig. 5.
To verify the behavior of the wave in the lower stop band under
the plasma frequency, the structure shown in Fig. 6 was analyzed.
The structure forms one octant of the hollow sphere of triple wire
material with the space period a = 10 mm. The inner sphere radius
is 25 mm, and the outer radius is 105 mm. The wires are rectangular
in cross section, with sides 0.85 mm in length. This shape simplifies
the numerical simulation and at the same time shows the same plasma
frequency fp = 9.28 GHz as the wire medium composed of cylinders.
The structure is fed by a dipole located at its center. Taking into

z

y

x
dipole
arm

Figure 6. Analyzed 3D wire system.
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account the excitation field symmetries, the octant is terminated at
the x-y plane by a perfectly conducting wall and in the x-z and y-z
planes by a perfectly magnetic wall. The field radiated by the dipole at
frequencies below the plasma frequency is spread in the wire medium
as evanescent waves with the distance dependence modified by the 1/r
function [20]

|E| ≈ E0
e−αr

r
(28)

where α is the attenuation constant represented by the imaginary part
of the propagation constant, and r is radial distance.

The electric field distribution calculated by MWS in the medium
shown in Fig. 6 is plotted in Fig. 7 at frequency 7 GHz (k0/kp ≈ 0.75).
The calculated field represents the field in the microstructure, which is
perturbed by the presence of the wires, as distinct from the averaged
field, which defines the effective permittivity (1) [10]. However, the
calculated field can be approximated by (28), as shown in Fig. 7.
Similar plots have been obtained in the frequency band from 5 to
9 GHz. It may be noted from Fig. 7 that the field is attenuated
at the same rate in all shown characteristic directions. This verifies
the isotropy of the medium below the plasma frequency. Attenuation
constant α can be estimated from the calculated field distributions,
but does not fit well the data read from Figs. 3 and 4.
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Figure 7. Distribution of the electric field in the medium from Fig. 6
at particular directions at frequency 7 GHz (k0/kp ≈ 0.75). The line
“approx” represents (28) with the value of α estimated as 120 m−1.
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5. CONCLUSION

This paper has studied the behavior of the triple wire medium with the
aim to apply it as a negative permittivity isotropic metamaterial. The
derivation of the dispersion equation of modes in the 3D lattice is quite
straightforward, and the result is in accord with [10]. The numerical
examples show that there exist eigen modes both below and above
the plasma frequency in all important directions Γ–X, Γ–M and Γ–
R, whereas we used two different models for the relative permittivity
of the medium. Using only a simple isotropic model of permittivity
(26), only physical solutions were found, and with the use of a more
sophisticated model (1) both physical and nonphysical solutions were
found. The physical modes comply with physical intuition, i.e., they
are evanescent below the plasma frequency, and become propagating
above the plasma frequency. Numerical simulations show that the
other modes do not correspond to physical waves and this is the defect
of the model (1). In the direction Γ–M , the attenuation and phase
constants have the same amplitude as in the case of the direction Γ–
X, since the propagation of the wave along one axis is equivalent to
the propagation along the unit cell face.

From Fig. 2, it is obvious that the curves below (imaginary
part) and above (real part) the plasma frequency form a circle, i.e.,
Equation (17) is an analytical expression of a circle. This implies
isotropic propagation of the plane wave along one face of the triple
wire cube. Since the structure is periodic, pass bands and stop bands
should appear in the dispersion diagram. The curves calculated by
MWS are in accord with this hypothesis, as it analyzes the structure
as periodic, whereas the curves representing results of the presented
theory are not. The reason is that we used a homogenized model of the
triple wire medium. The triple wire medium behaves as an isotropic
material for the wave propagating parallel with any coordinate plane.
Taking into consideration the wave propagating in a general direction,
the isotropy is now in general removed. However, a comparison of the
dispersion characteristics calculated in various directions shows that in
the first approximation the triple wire medium can be considered as
an isotropic material in the close vicinity of the plasma frequency.

The modeling by the Microwave Studio verifies these theoretical
results. The original numerical experiment shows the distribution of
the electric field excited by the dipole located in the center of the
sphere of the 3D wire material. The wave spreads in this system in the
same way, except for the attenuation due to the negative permittivity,
as in the empty space. The value of the attenuation constant and
consequently the permittivity can be estimated from the resulting
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distributions. The wave amplitude decreases at the same rate in all
directions. This validates the isotropy of the medium even below the
plasma frequency.

This paper proves that the triple medium of connected wires is a
good candidate for an isotropic negative permittivity metamaterial.
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