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Abstract—A moment method analysis of a broad wall slot coupled
crossed rectangular waveguide junction has been presented in this
paper. The coupling slot is longitudinal/transverse and offset from
the centre lines of the guides. The integral equations, governing
the characteristics of the device, have been obtained using Multiple
Cavity Modeling Technique, taking into account of the finite wall
thickness and the TE00 mode at the slot apertures and have been
solved using Moment Method to obtain the aperture distribution.
The normalized resonant lengths/complex S-parameters have been
calculated from this field distribution for different guide height/slot
offsets/slot widths/slot thickness of the longitudinal/transverse slot
over the frequency band. Numerical data, thus obtained, have been
compared with measured/literature available/CST Microwave Studio
Simulated data. The theory has been validated by the reasonable
agreement obtained between them. It has been shown that, neglecting
the TE00 mode at the slot apertures can adversely effect the estimation
of the resonant frequency and equivalent network parameters.

1. INTRODUCTION

Longitudinal/transverse couplers are widely used for transferring
power from a main waveguide to another crossed waveguide or branch
waveguide. The longitudinal slot behaves nearly as a shunt element
whereas the transverse slot behaves as a series element and that is why
a longitudinal/transverse slot coupled crossed waveguide junctions is
also called a shunt - series coupler. The offset of the slots controls the
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power coupled to the crossed waveguide whereas the length of the slot
determines the resonant frequency.

The slot coupler was initially studied by Watson [1]. He derived
the approximate solutions for several equivalent circuit of the cross
coupler. Later Vu Khac [2] used method of moment to obtain
more precise result for the longitudinal/transverse slot coupler. The
effect of wall thickness was ignored in his analysis. Harrington
and Mautz [3] also presented a general network formulation for the
aperture problems using method of moments. Rengarajan [4] also
used method of moments to analyze the longitudinal/transverse slot
coupled crossed waveguide junction considering the finite wall thickness
and obtained the pertinent integral equations to obtain the aperture
electric field. He considered that the transverse slot is centered and
did not analyze the effect of transverse slot offsets and also neglected
the existence of TE00 mode at the slot aperture. Park et al. [5]
investigated the thick shunt-series coupling slots by solving pertinent
integral equation for the aperture field using pulse basis function
and point matching technique. Results on the resonant length and
resonant conductance in the waveguide, containing the shunt slot, were
presented. Studies on higher order mode coupling between a thick
longitudinal/transverse coupling slot and a pair of straddling radiating
slots in the crossed waveguide were done by Senior [6] using an
integral equation formulation. He used piecewise sinusoidal Galerkin
and Global Galerkin method to solve the integral equations. Wu [7]
analyzed broad wall longitudinal/transverse slot coupler using Finite
Difference Time Domain Technique considering the slot wall thickness.

In this paper Multiple Cavity Modeling Technique (MCMT) [8]
has been applied to study the longitudinal/transverse slot coupled
waveguide cross coupler considering the wall thickness and TE00 mode
at the slot apertures. The existence of this mode in longitudinal
slot radiators was first reported by Vu Khac and Carson [9]. Gupta,
Chakraborty and Das [10] also reported on the effects of inclusion of
the contribution due to this mode on the characteristics of broad wall
longitudinal slot radiators. The TE00 mode has a more significant
effect on the characteristics of the waveguide couplers, which has
been reported by Styanarayana and Chakraborty [11, 12]. Though
not mentioned explicitly, the contribution of this mode was considered
by some researchers, as given in the literature [13, 14]. Some more
discussion on this mode is given in the literature [15].

The normal rectangular waveguide modes are formulated for zero
electric fields on the waveguide walls. The corresponding magnetic
field is maximum on the waveguide walls and zero at the center of the
waveguide. When a slot is milled on the waveguide wall it creates a
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disturbance in the field structure. The electric field on the waveguide
walls in this region is no longer zero and has a finite value. The
field in this non-conventional lossy rectangular waveguide region when
expressed as a set of orthogonal functions of those regular rectangular
waveguide modes, this particular TE00 mode (which is also a solution
of the Helmholtz Equation satisfying the boundary conditions near
the slot region) arises. This component when integrated over the
cross-section of the rectangular waveguide results in a non-zero value,
which supports the existence of the aperture field. This component
of longitudinal magnetic field may be assumed to have a path closed
through the longitudinal components of the slot region and that of the
tangential component of the other side of the slot. It should be noted in
this connection, that in the case of an aperture in the transverse plane
the aperture field is supported by the regular rectangular waveguide
magnetic fields itself and the existence of this mode does not arise. The
characteristics of this TE00 mode are as follows: 1. This mode has an
axial magnetic field only, which is constant all over the corresponding
waveguide cross section. 2. The corresponding cut-off wave number
vanishes. 3. The mode exists only for the longitudinal magnetic current
on the waveguide wall.

2. PROBLEM FORMULATION

Figure 1 shows the three dimensional view of the shunt/series coupled
waveguide cross coupler. The main waveguide is designated by port

 

 
 

Figure 1. Three dimensional views of a shunt / series coupled crossed
waveguide junction.
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Figure 2. Position details of the slot and its dimensions of a
shunt/series coupled crossed waveguide junction.

1 and port 2 whereas the crossed branch waveguide is designated by
port 3 and port 4. A coupling slot is milled in the common broad
wall of the two waveguide. Figure 2 shows the location of the slot
which is offset by an amount Xln from the center line of the main
waveguide and by an amount Ztr from the center line of the branch
waveguide and the slot is of length 2l and width 2w. 2t is the
common wall thickness or the slot thickness. Both the waveguides
are assumed to be composed of perfectly conducting walls and to be
filled with homogeneous isotropic lossless dielectric. From Figure 3
it may be noted that the structures have three regions, namely, two
waveguide regions and one cavity region. The interfacing apertures
between different regions have been replaced by equivalent magnetic
current densities. The magnetic current distribution in aperture 1 is
Maperture1

z whereas Maperture2
z is the magnetic current distribution in

aperture 2. Applying the continuity of the tangential component of
the magnetic field across the aperture 1 and aperture 2 we get the
boundary conditions respectively as:
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Figure 3. Details of region and magnetic currents in a shunt/series
coupled crossed waveguide junction.

when the excitation is given through main waveguide and
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(4)
when the excitation is through branch waveguide. In equations (1)–(4),
the magnetic currents at the apertures are assumed to be

Maperture
z =

∞∑
p=1

Aaperture
pz maperture

pz (5)

where Aaperture
pz are basis coefficients and the basis function

maperture
pz (p = 1, 2, 3 . . .M) are defined by
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Where 2a× 2b is the cross sectional dimension of the waveguide.
The Z-component of incident magnetic field at the main

waveguide is the dominant TE10 mode and is given by

H inc m
z = −j sin

(
πx

2a

)
e−jβz (8)

for the branch waveguide the same is given by
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The tangential component of the magnetic field scattered inside the
cavity is given by [8]
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The magnetic field scattered inside the cavity region due to the source
is determined by using cavity Green’s function of the electric vector
potential. The cavity Green’s function has been derived by solving
the Helmholtz equation for the electric vector potential for the unit
magnetic current source.

The scattered magnetic fields in the waveguide region due to the
presence of the magnetic current densities at the slot apertures has
been calculated using waveguide Green’s function [16] and is given by
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for the main waveguide and
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for the branch waveguide.
Where

S(p) =
pπ

2lγmn
(14)

and

F (p,m) = cos
[
π

2

{(
p

l
−m

a

)
Ztr+

p

l
(l−Ztr)−m

}]
sin c

{
πl

2

(
p

l
−m

a

)}

− cos
[
π

2

{(
p

l
+
m

a

)
Ztr+

p

l
(l−Ztr)+m

}]
sin c

{
πl

2

(
p

l
+
m

a

)}
(15)

Applying Galerkin’s method to the boundary conditions where the
same entire domain sinusoidal function is used for testing the expanded
magnetic fields, the final form will be a matrix equation of the form
For main waveguide excitation:

[L11]{Aaperture1} + [L12]{Aaperture2} = {Linc m} (16)
[L21]{Aaperture1} + [L22]{Aaperture2} = {0} (17)

For branch waveguide excitation:

[L11]{Aaperture1} + [L12]{Aaperture2} = {0} (18)
[L21]{Aaperture1} + [L22]{Aaperture2} = {Linc b} (19)

Where
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Solving the matrix equation the basis coefficients can be calculated.
The +Z and −Z directed scattered field inside the main waveguide at
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the z = 0 plane is given by
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respectively. Similarly the +X and −X component of the dominant
mode scattered field inside the branch waveguide at x = 0 plane is
given by
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The dominant mode reflection coefficients in the main waveguide can
be calculated as
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The transmission coefficient at port 2 due to excitation at port 1 is
given by
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and the transmission coefficient at port 3 and port 4 is given by
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Similarly the S-parameters of the circuit when excited by a dominant
mode in the branch waveguide is given by
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The equivalent shunt admittance and series impedance, as shown in
Figure 4, can be calculated from the complex reflection coefficient using
the following equations [16]

Y = − 2Γ
1 + Γ

(33)

Z =
2Γ

1 − Γ
(34)

Stern and Elliot [17] explained the importance of the resonant length
of a slot. For compound radiating and coupling slots, resonance has
been defined by the phase relation of the forward scattered TE10 mode
with the incident TE10 mode [18, 19]. This condition corresponds to
a maximum of energy radiated or coupled into the branch waveguide,
and this condition is applicable for the shunt and series elements also
[1, 4, 7]. This definition of resonance for the longitudinal/transverse
coupling slot is consistent with compound coupling slot and is also
consistent with compound coupling slot results for the limiting case
of zero tilt [19]. The second definition of resonance is based on the
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condition that the backward scattered TE10 mode is out of phase with
the incident TE10 mode. This definition has been employed for shunt-
type elements, longitudinal/transverse slot couplers, and longitudinal
radiating slots [5, 6, 17]. Rengarajan [4] mentioned that the resonant
length based on the forward scattered wave phase is difficult to
determine experimentally whereas that based on the backscattered
wave phase is easy to measure.

The definitions given above are same for an ideal shunt/series
element [4]. Since longitudinal radiating slots and coupling slots
do not behave as perfect shunt elements [20], the two definitions
results in different slot lengths - the resonance definition based on the
forward scattered wave phase predicts slightly longer slots. The shunt
representation also becomes poorer for smaller waveguide dimensions
and larger offsets. So the resonance conditions are not perfectly true
to define the resonant length of such circuits.

Since the slots are radiating or coupling power to a branch
waveguide, they can be represented by a lossy transmission line with
distributive circuit parameters. So the more exact equivalent circuit of
a slot coupled crossed waveguide junction is a Tee/Pi network rather
than a simple single shunt/series element and is shown in Figure 4.

 

Figure 4. (a) Equivalent shunt model (b) Equivalent tee model (c)
Equivalent series model and (d) Equivalent Pi model of slot coupled
crossed waveguide junction.



Progress In Electromagnetics Research, PIER 67, 2007 307

The equivalent circuit parameters are goven by

Y1 =
1 − Γ − T

1 + Γ + T
(35a)

Y2 =
2T

(1 + Γ + T )(1 + Γ − T )
(35b)

Z1 =
1 + Γ − T

1 − Γ + T
(35c)

Z2 =
2T

(1 − Γ + T )(1 − Γ − T )
(35d)

For accurate determination of the resonant length, the resonance
conditions must be defined in terms of the above Tee/Pi network
equivalent circuits.

3. NUMERICAL RESULTS

3.1. Resonant Characteristics of the Slot

Figure 5 shows the comparison of normalized resonant length data for
the longitudinal/transverse slot coupler with 2a = 22.86 mm, 2w =
1.5875 mm, Ztr = 0 mm and f = 9.3 GHz as a function of slot offset
Xln as obtained using this theory and Wu [7]. The effects of waveguide
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Figure 5. Plot of normalized resonant length as a function of slot
offsets in main waveguide for different waveguide height and slot
thickness.
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Figure 6. Plots of magnitude of reflection coefficient at resonance as
a function of slot offsets in main waveguide for different guide height.

size 2b and wall thickness 2t are also studied in the figure. Figure 6
shows the plot of absolute value of reflection coefficient at resonance
for a longitudinal/transverse slot coupled waveguide junction with
2a = 22.86 mm, 2w = 1.5875 mm, 2t = 0.762 mm, Ztr = 0 mm
and f = 9.3 GHz as a function of slot offset Xln considering TE00

mode. The data obtained by Wu [7] has been plotted in the same
figure for comparison. The plot of normalized resonant length is
plotted in Figure 7 as a function of frequency for 2a = 22.86 mm,
2w = 1.5876 mm, 2t = 0.762 mm and Ztr = 0 mm. The effects of
waveguide size 2b and slot offsets Xln are also studied in the figure.
The plot of normalized resonant length is plotted in Figure 8 as a
function of slot offset for 2a = 22.86 mm, 2t = 0.762 mm, Ztr = 0 mm
and f = 9.3 GHz. The effects of waveguide size 2b and slot width 2w
are also studied in the figure.

3.2. Off Resonant Characteristics of the Slot

Scattering parameters for longitudinal/slot coupled waveguide junction
with: 2a = 22.86 mm, 2b = 10.16 mm, 2t = 0.762 mm, 2w =
1.5875 mm, Xln = 3.81 mm and Ztr = 0 mm has been calculated
and has been compared with that obtained by Wu [7] in Figure 9.
Resonance frequency was adjusted to 9.3 GHz by changing the slot
length.

The effect of TE00 mode on the equivalent shunt/series parameters
is shown in Figure 10 to 11. The slot dimensions for this case is chosen
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Figure 8. Plot of normalized resonant length as a function of slot
offsets in main waveguide for different guide height and slot widths.

to be 2a = 22.86 mm, 2b = 10.16 mm, 2l = 16 mm, 2w = 0.8 mm,
Xln = 8 mm and Ztr = 2 mm. The comparison of shunt and tee
model/series and pi is shown in Figures 12 and 13 for a slot with 2a =
22.86 mm, 2b = 10.16 mm, 2t = 1.27 mm, 2w = 1 mm, 2l = 16 mm,
Xln = 6 mm and Ztr = 0 mm.

The S-parameter of a slot coupled waveguide junction with 2a =
22.86 mm, 2b = 10.16 mm, 2l = 16 mm, 2w = 0.8 mm, 2t = 1.27 mm,
Xln = 8 mm and Ztr = 2 mm has been compared with measured data
and is shown in Figures 14 and 15.
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Figure 12. Comparison of shunt and tee network.
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Figure 13. Comparison of series and pi network.
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Figure 14. Comparison of MCMT, CST and measured data of
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Figure 15. Comparison of MCMT, CST and measured data of
S44, S34 and S14.

4. CONCLUSION

A rigorous analysis of a longitudinal/transverse slot coupled crossed
waveguide junction has been presented in this paper. The results
obtained using Multiple Cavity Modeling Technique is in good
agreement with the literature (Figures 5, 6 and 9)/measured and CST
simulated data (Figures 14 and 15). Figures 7 and 8 reveals that
the normalized resonant length decreases with increase in frequency,
guide height and decrease in slot offset and slot width except for
2b = 10.16 mm and slot offset less than 4.45 mm when the normalized
resonant length decrease with increase in slot width. From Figures 10
and 11 it is clear that TE00 mode has an effect on the equivalent
circuit of the slot coupled crossed waveguide junction and hence can
not be neglected. Figure 12 reveals that the tee representation is
better than the shunt representation because at resonance frequency,
obtained from shunt representation, there is some non-vanishable series
reactance in tee network representation. However Figure 13 shows
that the series representation of the branch waveguide is acceptable
because the shunt element in pi representation is zero over the entire
frequency band and the series admittance is equal to the inverse of
the series impedance in series representation. This is due to the fact
that the coupling slot being thin, the equivalent physical length of the
lossy transmission line in the branch waveguide is also very small and
hence the total distributed circuit parameters can be represented by
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a simple series element. However, since the slot has a considerably
large electrical length (almost half of the guided wavelength) in main
waveguide the equivalent physical length of the lossy transmission line
in main waveguide is also large and hence it is not possible to represent
the total distributed circuit parameters by a simple shunt element.
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