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Abstract—In this paper, the higher order hierarchical basis functions
are employed to solve the electric field integral equation for computing
electromagnetic scattering from three-dimension bodies comprising
both conducting and dielectric objects. In higher-order methods of
moments (HO-MoM), the equivalent surface electric and magnetic
currents are usually expanded by the same basis functions, which
are not appropriate in our problem here. The pointwise orthogonal
basis functions respectively for electric and magnetic currents are
proposed in our improved HO-MoM. Quadrilateral patches are used in
curvilinear geometry modeling since they result in the lowest number
of unknowns. Numerical solution procedure is particularly analyzed,
and numerical results are given for various structures and compared
with other available data lastly.

1. INTRODUCTION

Electromagnetic scattering from composite bodies that consist of both
conducting and dielectric objects is an important and challenging
problem in the field of computation electromagnetics [1, 2]. It is
more interested these years both in frequency [3–8] and time domains
[9], especially for complex radar targets in real time. When the
dielectric objects are homogenous or piecewise homogenous, on the
bases of the equivalent principle, the method of moments (MoM) is
preferred because the problem can be formulated in the terms of surface
integrals over the conducting and dielectric surfaces at a few number
of unknowns. However, the MoM usually results in a matrix of very
large scale when applied to analyzing electrically large objects. Some
fast algorithms, such as the multilevel fast multipole algorithm [3, 4],
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precorrected-FFT algorithm [5], and adaptive integral method [6, 7],
are popularly employed to accelerate the matrix-vector manipulation.
Otherwise, higher-order MoM (HO-MoM) can significantly reduce the
number of unknowns, provide great flexibility and need less memory
[10]. In this paper, a HO-MoM is improved to deal with this problem.

The higher order functions can be categorized as interpolatory or
hierarchical. The interpolatory ones, as used in [4], require a mesh with
equally sized elements due to the expansion order, while hierarchical
bases combine the advantages of both low-order and higher order based
into a single flexible basis [11, 12]. So the latter is applied in this paper
with curvilinear geometry modeling by quadrilaterals.

For composite metallic and dielectric structures, if many junctions
are considered [8, 13], the problem will be very complex. A simple
approach is that several separate bodies are respectively processed
and electric field integral equation is employed as the next part,
where it will not be appropriate to expand the equivalent surface
electric and magnetic currents by the same basis functions [2]. The
pointwise orthogonal basis functions respectively for electric and
magnetic currents are proposed in our improved HO-MoM. Then,
numerical solution procedure is particularly analyzed in the part 3.
Lastly, in part 4, numerical results are given for various structures and
compared with other available data.

2. SURFACE INTEGRAL EQUATION

Consider the electromagnetic scattering by an arbitrary shaped 3D
composite metallic and dielectric bodies illuminated by a plane wave
as shown in Fig. 1. Although the bodies are shown distinct, this is not
the general case. If the bodies are joined together, they are treated as
two bodies with a layer of zero-thickness freespace separating them.

We employ the equivalence principle to split the original problem
into two separate ones. The first one is where the fields are equivalent
external to the body and the second one is where the fields are
equivalent internal to the body.

For the problem valid external to the dielectric region, as shown
in Fig. 2, the conductor and dielectric bodies are replaced by fictitious
mathematical surfaces and the region is filled with the homogeneous
material (µ1, ε1) of medium 1. The electric current on Sc is J c, while
electric and magnetic currents on surface external to Sd (S+

d ) are Jd

and Md. The field inside the surface Sd and Sc is set to zero. By
enforcing the continuity of the tangential electric field, the following
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Figure 1. Arbitrary shaped conducting/dielectric body illuminated
by a plne wave.

Figure 2. Equivalent problem outside.

equations are obtained:[
Es1

c (J c,Jd,Md) + Einc
]
tan

= 0, r ∈ Sc (1)[
Es1

d (J c,Jd,Md) + Einc
]
tan

= 0, r ∈ S+
d (2)

where the superscript 1 respresents the scattered field is computed in
the medium 1.

For the second problem, the entire space is filled with the material
of the dielectric medium (µ2, ε2) as shown in Fig. 3. The equivalent
currents on surface internal to Sd (S−d ) is −Jd and −Md. The electric
field is zero outside Sd. By enforcing the continuity of the tangential
electric field on S−d , the following integral equation may be derived:[

Es2
d (−Jd,−Md)

]
tan

= 0, r ∈ S−d (3)
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Figure 3. Equivalent problem inside.

where the superscript 2 represents the scattered field is computed in
the medium 2.

3. NUMERICAL SOLUTION PROCEDURE USING
HIGHER ORDER HIERATICAL BASIS FUNCTIONS

3.1. Curvilinear Geometry Modeling

In order to obtain a flexible algorithm that can be easily applied to
different structures, it is desirable to perform the geometrical modeling
by using only one specific simple class of isoparametric elements,
e.g., bilinear surfaces. A bilinear surface is, in general, a nonplanar
quadrilateral, which is defined uniquely by its four arbitrarily spaced
vertices. The parametric equation of such an isoparametric element
can be written in the form as [13]

r(u, v) = rc + uru + vrv + uvruv, −1 ≤ u, v ≤ 1 (4)

where vectors rc, ru, rv, and ruv are expressed as linear combinations
of the vertex position vectors (A1)–(A4).

3.2. Pointwise Orthogonal Basis Functions

Consider a curved quadrilateral patch with an associated parametric
curvilinear coordinate system defined by −1 ≤ u, v ≤ 1. The surface
current density on each patch is represented as

J(u, v) =
Nu∑
i=0

Nv−1∑
j=0

αuijfuij(u, v) +
Nu−1∑
i=0

Nv∑
j=0

αvijfvij(u, v) (5)
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where

fuij(u, v) =
Pi(u)vj

J(u, v)
au(u, v) (6)

fvij(u, v) =
uiPj(v)
J(u, v)

av(u, v) (7)

J(u, v) = |au(u, v) × av(u, v)|

Pi(u) =




1 − u, i = 0
1 + u, i = 1
ui − 1, i ≥ 2, even
ui − u, i ≥ 3, odd

au(u, v) =
∂r(u, v)
∂u

, av(u, v) =
∂r(u, v)
∂v

(8)

Nu and Nv are the adopted degrees of the polynomial current
approximation, αuij and αvij are unknown coefficients. au and av

are unitary vectors.
The basis functions for magnetic current M should be pointwise

orthogonal to those for J , in the form as

M(u, v) =
Nu∑
i=0

Nv−1∑
j=0

βuijguij(u, v) +
Nu−1∑
i=0

Nv∑
j=0

βvijgvij(u, v) (9)

where

guij(u, v) =
Pi(u)vj

J(u, v)
n̂(u, v) × au(u, v) (10)

gvij(u, v) =
uiPj(v)
J(u, v)

n̂(u, v) × av(u, v) (11)

n̂(u, v) =
au(u, v) × av(u, v)

J(u, v)
(12)

βuij and βvij are unknown coefficients.

3.3. Matrix Element Evaluation

Using the potential theory, the scattered electric field Es due to the
electric current J and the magnetic current M may be written in terms
of potential functions as [1]

Es(J ,M) = −jωA(J) −∇Φ(J) − 1
ε
∇× F (M) (13)
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Without loss of generality, only u-directed components in testing and
basis functions are considered in the following with the understanding
that v-directed components can be obtained by interchanging u and v.
We substitute (5), (9) into (13), take the testing functions the same as
the basis functions of J . The general expression for the MoM matrix
elements is

Zpq = Z ′
pq + Z ′′

pq (14)

Z ′
pq =

〈
fu

p ,−jωA(fu
q )

〉
+

〈
fu

p ,−∇Φ(fu
q )

〉
(15)

Z ′′
pq =

〈
fu

p ,−
1
ε
∇× F (gu

q )
〉

(16)

where fu
p is the u-directed component of the p’th testing function, and

fu
q is the u-directed component of the q’th basis function. Z ′

pq can be
written as linear combinations of the generic integral [12]

ξuu(im, jm, in, jn) =∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
uim

m v
jm
m u

in
n v

jn
n (an

u · am
u )g(R)dundvndumdvm (17)

where g(R) = e−jkR/(4πR) is the Green’s function, and k is the wave
number, R = |r − r′| is the distance from the field point, r, to the
source point, r′.

Let

I1(im, jm, in, jn) =
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
uim

m v
jm
m u

in
n v

jn
n g(R)dundvndumdvm

(18)
and we have

ξuu(im, jm, in, jn) = rm
u · rn

uI1(im, jm, in, jn)
+rm

u · rn
uvI1(im, jm, in, jn + 1)

+rm
uv · rn

uI1(im, jm + 1, in, jn)
+rm

uv · rn
uvI1(im, jm + 1, in, jn + 1) (19)

when v-directed components in basis and testing functions are
considered, (19) can be rewritten as (A5)–(A7).

Next, extracting the principle part of the curl term, we may
rewrite (16) as
〈

fm
u ,−

1
ε
∇×F (gn

u)
〉

= −1
ε

〈
fm

u ,±
1
2
n̂(u, v)×gn

u

〉
−1
ε

〈
fm

u ,∇×F̃ (gn
u)

〉
(20)
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where F̃ represents F with singular term removed. And in the first
inner product term of the right-hand side of (20), the positive sign is
used when r ∈ S+

d , and negative sign otherwise.
Note (6) and (10), there may be〈

fm
u ,±

1
2
n̂(un, vn)×gn

u

〉
=

〈
fm

u ,±
1
2
n̂(un, vn)×(n̂(un, vn) × fn

u)
〉

= ∓1
2
〈fm

u ,f
n
u〉

Similarly, as (17)–(19), 〈fm
u ,f

n
u〉 may be written as linear combinations

of (21).

ξuu
2 (im, jm, in, jn) = rm

u · rn
uI2(im, jm, in, jn)

+rm
u · rn

uvI2(im, jm, in, jn + 1)
+rm

uv · rn
uI2(im, jm + 1, in, jn)

+rm
uv · rn

uvI2(im, jm + 1, in, jn + 1) (21)

where

I2(im, jm, in, jn) =
∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
uim

m v
jm
m u

in
n v

jn
n

1
J
dundvndumdvm

(22)
When v-directed components in basis and testing functions are
considered, (21) can be respectively rewritten as (A8)–(A10).

The second inner product term of the right-hand side of (20) can
be written as linear combinations of the generic integral

ξuu
3 (im, jm, in, jn) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
uim

m v
jm
m u

in
n v

jn
n am

u

·
[
(n̂n × ·an

u) ×∇′g(R)
]
dundvndumdvm (23)

Substituting (12) into (23), we obtain

ξuu
3 (im, jm, in, jn) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
uim

m v
jm
m u

in
n v

jn
n am

u

·
[
((an

u×an
v )×an

u)×∇′g(R)
J

]
dundvndumdvm (24)

where R 
= 0. When v-directed components in basis and testing
functions are considered, (24) can be respectively rewritten as (A11)–
(A13).

(18), (22) and (24) may be computed using the Gauss-Legendre
integration formulations or numerical annihilation procedure of self-
term matrix elements. Then, matrix elements are evaluated.
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4. NUMERICAL EXAMPLES

In this section, some numerical examples are presented to validate
the implementation procedure and to demonstrate the accuracy of the
present method. As all known, HO-MoM requires less memory and
CPU time [8], so the taken memory and CPU time in the method are
not shown here.

As a first example, we consider the electromagnetic scattering from
a 0.5λ (λ is the wavelength in free space) dielectric cube of εr = 2.0
(the relative permittivity) covered by a conducting plate of dimension
0.5λ × 0.5λ. The conducting plate is placed on the top surface of
the dielectric cube. The composite structure is illuminated by an
x-polarized plane wave incident from the bottom (θ = 180◦). The
conducting plate was divided into 16 quadrilaterals. The dielectric
cube was approximated by 96 quadrilaterals. In our HO-MoM of this
case, the order is M = Nu = Nv = 1. The bistatic RCS computed in
the plane ϕ = π is shown in Fig. 4. Very good agreement is observed
between the traditional MoM of RWG basis functions solution and our
method.

θ (Deg)

σ
λ2

Figure 4. Bistatic RCS of a disk/cube structure.

As the second example consider the electromagnetic scattering
from a conducting cylinder capped by a dielectric cone as shown in
Fig. 5. The conducting cylinder has a diameter of 0.6λ and a height of
0.6λ. The conducting cylinder is capped by a dielectric cone of height
0.6λ and has the same diameter as that of the conducting cylinder. The
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θ (Deg)

σ
λ2

Figure 5. Bistatic RCS of a conducting cylinder/dielectric cone
structure.

Figure 6a. The planform of the
missle model.

Figure 6b. The side view of the
missle model.

dielectric constant for the cone is εr = 2.0. The structure is illuminated
by a plane wave which is traveling from the tip of the dielectric cone
toward the conducting cylinder. The dielectric cone and the conducting
cylinder are modeled by 56 and 96 quadrilaterals. The bistatic RCS
in the plane ϕ = π with M = 1 and M = 2, which are compared with
Rao’s result [2] and those from fast multipole algorithm based on RWG
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θ (Deg)

σ
λ2

(dB)

Figure 7. Bistatic RCS of the composite missile model.

basis functions (RWG-FMM), are plotted in Fig. 5. We can see that
agreement is reasonable.

The last example is a complex radar target, a kind of missile
model, as shown in Figure 6a and Figure 6b. The unit of labels is
meter (m). The main part is a circle cylinder. The front part is
half a spheroids, and the tail is half a sphere. The head is dielectric
of the material εr = 2.0, and other parts are conducting structures.
The incident wave is z-polarized and y-traveling with frequency f =
0.6 GHz. The dielectric head and the conducting body are modeled
by 64 and 472 quadrilaterals. The bastatic RCS of our method in the
plane ϕ = −0.5π with M = 2 and the result from RWG-FMM are
shown in Fig. 7.

5. CONCLUSIONS

In this work, the higher order hieratical basis functions in HO-MoM
are extended to solve the electric field integral equation for computing
electromagnetic scattering from three-dimension bodies comprising
both conducting and dielectric objects. The pointwise orthogonal basis
functions are proposed and the numerical procedure is particularly
analyzed. Several numerical results are presented to demonstrate the
accuracy of the method.
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APPENDIX A.

A.1. Constant Vectors in (4)

Suppose the vertex position vectors of a bilinear patch is respectively
r1, r2, r3, and r4 in turn. The vectors in parametric equation can be
written as

rc = 0.25(r1 + r2 + r3 + r4) (A1)
ru = 0.25(−r1 − r2 + r3 + r4) (A2)
rv = 0.25(−r1 + r2 + r3 − r4) (A3)

ruv = 0.25(r1 − r2 + r3 − r4) (A4)

A.2. Other Integrations Similar to (19)

When v-directed components in basis and testing functions are
considered, (19) can be rewritten as

ξuv(im, jm, in, jn) = rm
u · rn

v I(im, jm, in, jn)
+rm

u · rn
uvI(im, jm, in + 1, jn)

+rm
uv · rn

v I(im, jm + 1, in, jn)
+rm

uv · rn
uvI(im, jm + 1, in + 1, jn) (A5)

ξvu(im, jm, in, jn) = rm
v · rn

uI(im, jm, in, jn)
+rm

v · rn
uvI(im, jm, in, jn + 1)

+rm
uv · rn

uI(im + 1, jm, in, jn)
+rm

uv · rn
uvI(im + 1, jm, in, jn + 1) (A6)

ξvv(im, jm, in, jn) = rm
v · rn

v I(im, jm, in, jn)
+rm

v · rn
uvI(im, jm, in + 1, jn)

+rm
uv · rn

v I(im + 1, jm, in, jn)
+rm

uv · rn
uvI(im + 1, jm, in + 1, jn) (A7)

A.3. Other Integrations Similar to (21)

When v-directed components in basis and testing functions are
considered, (21) can be rewritten as

ξuv
2 (im, jm, in, jn) = rm

u · rn
v I2(im, jm, in, jn)

+rm
u · rn

uvI2(im, jm, in + 1, jn)
+rm

uv · rn
v I2(im, jm + 1, in, jn)

+rm
uv · rn

uvI2(im, jm + 1, in + 1, jn) (A8)
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ξvu
2 (im, jm, in, jn) = rm

v · rn
uI2(im, jm, in, jn)

+rm
v · rn

uvI2(im, jm, in, jn + 1)
+rm

uv · rn
uI2(im + 1, jm, in, jn)

+rm
uv · rn

uvI2(im + 1, jm, in, jn + 1) (A9)
ξvv
2 (im, jm, in, jn) = rm

v · rn
v I2(im, jm, in, jn)

+rm
v · rn

uvI2(im, jm, in + 1, jn)
+rm

uv · rn
v I2(im + 1, jm, in, jn)

+rm
uv · rn

uvI2(im + 1, jm, in + 1, jn) (A10)

A.4. Other Integrations Similar to (24)

When v-directed components in basis and testing functions are
considered, (24) can be rewritten as

ξuv
3 (im, jm, in, jn) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
uim

m v
jm
m u

in
n v

jn
n am

u

·
[
((an

u × an
v ) × an

v ) × ∇′g(R)
J

]
dundvndumdvm

(A11)

ξvu
3 (im, jm, in, jn) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
uim

m v
jm
m u

in
n v

jn
n am

v

·
[
((an

u × an
v ) × an

u) × ∇′g(R)
J

]
dundvndumdvm

(A12)

ξvv
3 (im, jm, in, jn) =

∫ 1

−1

∫ 1

−1

∫ 1

−1

∫ 1

−1
uim

m v
jm
m u

in
n v

jn
n am

v

·
[
((an

u × an
v ) × an

v ) × ∇′g(R)
J

]
dundvndumdvm

(A13)
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