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Abstract—In this paper, a tabu search tracker with adaptive neuro-
fuzzy inference system (TST-ANFIS) is presented for multiple target
tracking (MTT). First, the data association problem, formulated as an
N-dimensional assignment problem, is solved using the tabu search
algorithm (TSA), and then the inaccuracies in the estimation are
corrected by the adaptive neuro-fuzzy inference system (ANFIS).
The performances of the TST-ANFIS, the joint probabilistic data
association filter (JPDAF), the tabu search tracker (TST), Lagrangian
relaxation algorithm (LRA), and cheap joint probabilistic data
association with adaptive neuro-fuzzy inference system state filter
(CJPDA-ANFISSF) are compared with each other for six different
tracking scenarios. It was shown that the tracks estimated by using
proposed TST-ANFIS agree better with the true tracks than the
tracks predicted by the JPDAF, the TST, the LRA, and the CJPDA-
ANFISSF.
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1. INTRODUCTION

Target tracking [1] is important to military radars as well as to
most civilian radars. In military radars, tracking is responsible for
fire control and missile guidance; in fact, missile guidance is almost
impossible without proper target tracking. Commercial radar systems,
such as civilian airport traffic control radars, may utilize tracking
as a means of controlling incoming and departing airplanes. The
main objective of MTT, is to partition the radar data into sets of
observations (tracks) produced by the same source. Once the tracks are
formed and confirmed, the dynamics of each target (position, velocity,
and acceleration) can be computed. The accuracy of data association
is critically important since mis-association of data to the targets will
lead to tracking failure.

Several methods [1–10], varying in accuracy and computational
effort, have been presented and used to solve the data association
problem. The JPDAF [1] is one of method commonly used for the
MTT. In the JPDAF algorithm, the association probabilities are
determined from the joint likelihood functions corresponding to the
joint hypotheses associating all the returns to different permutations of
the targets and clutter points. The real time computation requirements
of the JPDAF are very high and the computational complexity
increases exponentially as the number of targets increases. To reduce
this computational complexity, Fitzgerald [2] has proposed a simplified
version of the JPDAF, called the cheap JPDAF (CJPDAF) algorithm.
The CJPDAF method is very fast and easy to implement; however, the
tracking performance of the CJPDAF also decreases in either dense
target or cluttered environment. In previous work [3], we proposed
the CJPDA-ANFISSF for MTT. In [3], the state update step of the
CJPDAF was realised with the use of the ANFIS state filter instead
of Kalman filter to improve the accuracy of the CJPDAF. We also
used neural networks for computing the association probabilities [4].
Recently, assignment algorithms [5–10] have been shown to be effective
in data association for target tracking in the presence of clutter.
In assignment, the data association is formulated as a constrained
optimisation problem, where the cost function, usually, a combined
likelihood function evaluated using the results from the state estimator,
is minimised. The N -dimensional assignment problem for associating
data from three or more scans of measurements (N ≥ 3) is known
to be NP-hard. It is well known that solving such a constrained
optimisation problem is intractable. The TSA can be used successfully
to solve NP-hard problems [11]. It is a metaheuristic that guides a local
heuristic search procedure to explore the solution space beyond local



Progress In Electromagnetics Research, PIER 65, 2006 171

optimality. In our previous work [12], an alternative method to LRA
[9, 10] based on the TSA was proposed for MTT. As far as we know,
except our work [12], there is no any application of the TSA to the
target tracking problems, however, we expect that it will find a wide
application area such as the other heuristic optimisation techniques.
In the TST, the target states are updated by using Kalman filter
[13]. The Kalman filtering is effective for simple scenarios such as
in a clutterless environment or a single sensor tracking a single target.
However, under dense target environment, extraneous sensor reports
may be incorrectly used by the Kalman filter for track update, thus
resulting in degraded performance, possibly loss of track may occur.
In this paper, the inaccuracies in the estimation of Kalman filter are
corrected by using ANFIS [14, 15].

The ANFIS is a fuzzy inference system (FIS) implemented in the
framework of an adaptive fuzzy neural network, and is a very powerful
approach for building complex and non-linear relationship between
a set of input and output data. It combines the explicit knowledge
representation of FIS with the learning power of neural networks.

In the following sections, the TSA, the ANFIS, and the TST-
ANFIS technique proposed in this paper are described briefly, and the
simulation studies are then presented.

2. TABU SEARCH ALGORITHM (TSA)

The TSA [11] is a heuristic approach for solving optimisation problems
by using a guided, local search procedure to explore the entire
solution space without becoming easily trapped in local optima. One
characteristic of tabu search is that it finds good near-optimal solutions
early in the optimisation run. It does not require initial guesses, does
not use derivatives, and is also independent of the complexity of the
cost function considered. Its flexible control framework and several
spectacular successes in solving NP-hard problems caused rapid growth
in its application [11]. Unlike genetic algorithm and other heuristic
techniques, TSA uses a flexible memory of search history to prevent
cycling and to avoid entrapment in local optima.

Tabu search starts with a present solution xnow which has a set of
neighbors, Q. A neighbor, x∗, can be produced by applying a simple
modification to the present solution xnow. This modification is called
a move. In order to get rid of a local minima in the search space, the
move to x∗ can be applied even if x∗ is worse than xnow. However,
this can cause the cycling of the search. To prevent the search from
facing cycling problem as much as possible, a table which is called tabu
list is introduced. All moves that are not permitted, which are called
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tabu moves, are stored in the tabu list. The moves existing in the
tabu list are those carried out most frequently and recently. The use
of the tabu list decreases the possibility of cycling because it prevents
the return within a certain number of iterations to a solution visited
recently. After a subset of feasible solutions, Q∗, are produced from the
present one according to the tabu list and evaluated for the problem,
the next solution is selected from Q∗ and then the tabu list is modified
depending on the selected next solution. The solution evaluated as best
is selected as the next solution xnext. After accepting the next solution
to be the present one, the second loop of the search starts. The loop
is repeated until a predetermined stopping criteria is satisfied.

In order to represent a solution, an integer-valued vector is used
in this paper. The neighbors are generated by adding small integer
values into the parameter values of the current solution. In order to
classify a move to be tabu or not, criterion called tabu restrictions are
employed. The tabu search used in this work has two tabu restrictions,
which were based on recency and frequency memories:

Tabu Restrictions =




recency (k) > recency limit
or

frequency (k) < frequency limit
(1)

The recency of a move is the difference between the present iteration
count and the last iteration count at which that move was created.
The frequency of a move is the count of changes of that move. The use
of tabu restrictions might prevent the search from finding a solution
that has not been visited yet, or the restrictions might even sometimes
cause all available moves to be classified as tabu. Therefore, the tabu
restrictions might be ignored when a freedom is needed. An aspiration
criterion is employed to determine which move should be freed in such
cases. In this work, the following aspiration criterion was employed
when all available moves are classified tabu: a tabu move that loses
its tabu status by the least increase in the value of current iteration is
freed from the tabu list.

3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
(ANFIS)

The ANFIS can simulate and analysis the mapping relation between
the input and output data through a learning algorithm to optimise the
parameters of a given FIS [14, 15]. It combines the powerful features
of FISs with those of artificial neural networks.

The ANFIS architecture consists of fuzzy layer, product layer,
normalised layer, de-fuzzy layer, and summation layer. A typical
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Figure 1. Architecture of ANFIS.

architecture of ANFIS is shown in Fig. 1, in which a circle indicates a
fixed node, whereas a square indicates an adaptive node. For simplicity,
we consider two inputs x, y and one output z in the FIS. The ANFIS
used in this paper implements a first-order Sugeno fuzzy model [15].
For a first-order Sugeno fuzzy model, a common rule set with two fuzzy
if-then rules can be expressed as

Rule 1: If x is A1 and y is B1, then z1 = p1x+ q1y + r1 (2a)
Rule 2: If x is A2 and y is B2, then z2 = p2x+ q2y + r2 (2b)

where Ai and Bi are the fuzzy sets in the antecedent, and pi, qi, and
ri are the design parameters that are determined during the training
process. As in Fig. 1, the ANFIS consists of five layers. Every ith node
in the first layer is an adaptive node with a node output defined by

O1
i = µAi(x), i = 1, 2 (3a)

O1
i = µBi−2(y), i = 3, 4 (3b)

where µAi(x) and µBi−2(y) can adopt any fuzzy membership function
(MF). In this paper, the following triangular MF is used.

triangle(x; a, b, c) =




0, x ≤ a
x− a

b− a
, a ≤ x ≤ b

c− x

c− b
, b ≤ x ≤ c

0, c ≤ x

(4)
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where {ai, bi, ci} is the parameter set that changes the shapes of the
MF. Parameters in this layer are termed the premise parameters.

Every node in the second layer is a fixed node labeled Π, whose
output is the product of all the incoming signals:

O2
i = ωi = µAi(x)µBi(y), i = 1, 2 (5)

Each node output represents the firing strength of a rule.
Every node in the third layer is a fixed node labeled N . The ith

node calculates the ratio of the ith rule’s firing strength to the sum of
all rules’ firing strengths:

O3
i = ωi =

ωi

ω1 + ω2
, i = 1, 2 (6)

where ωi is referred to as the normalised firing strengths.
Every ith node in the fourth layer is an adaptive node with the

following node function:

O4
i = ωizi = ωi (pix+ qiy + ri) , i = 1, 2 (7)

where ωi is the output of layer 3, and {pi, qi, ri} is the parameter set.
Parameters in this layer are termed the consequent parameters.

The single node in the fifth layer is a fixed node labeled Σ that
computes the overall output as the summation of all incoming signals:

O5
1 =

2∑
i=1

ωizi =
ω1z1 + ω2z2
ω1 + ω2

(8)

It is seen from the ANFIS architecture that when the values of the
premise parameters are fixed, the overall output can be expressed as a
linear combination of the consequent parameters:

z = (ω1x) p1 + (ω1y) q1 + (ω1) r1 + (ω2x) p2 + (ω2y) q2 + (ω2) r2 (9)

The optimal values of the consequent parameters can be found by
using the least-square method (LSM). When the premise parameters
are not fixed, the search space becomes larger and the convergence of
training becomes slower. The hybrid learning algorithm [14] combining
the LSM and the backpropagation (BP) algorithm can be used to solve
this problem. This algorithm converges much faster since it reduces the
dimension of the search space of the BP algorithm. During the learning
process, the premise parameters in the layer 1 and the consequent
parameters in the layer 4 are tuned until the desired response of the
FIS is achieved.
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4. TABU SEARCH TRACKER WITH ANFIS
(TST-ANFIS)

The data association problem can be written as the following N -
dimensional assignment problem:

minimise:
M1∑

i1=0

· · ·
MN∑

iN=0

ci1,...,iNχi1,...,iN ,

subject to:
M2∑

i2=0

· · ·
MN∑

iN=0

χi1,...,iN = 1, i1 = 1, . . . ,M1,

M1∑
i1=0

· · ·
Mk−1∑

ik−1=0

Mk+1∑
ik+1=0

· · ·
MN∑

iN=0

χi1,...,iN = 1,

for ik = 1, . . . ,Mk and k = 2, . . . , N − 1,
M1∑

i1=0

· · ·
MN−1∑

iN−1=0

χi1,...,iN = 1, iN = 1, . . . ,MN

χi1,...,iN ⊂ {0, 1}, for all i1, . . . , IN ,

(10)

where ci1,...,iN is the cost of associating the measurement sequence to
track t, χi1,...,iN is the binary variable, taking values 0 or 1, and M is
the number of the measurements in each scan. The TSA is employed
to find the most likely set of N -tuples such that each measurement is
assigned to one and only one target, or declared false and each target
receives at most, one measurement from each scan.

The cost ci1,...,iN can be expressed as the cumulative negative log-
likelihood ratio given by

ci1,...,iN = −
N∑

m=1

lnLim(i1, . . . , im) (11)

with the negative log-likelihood ratio of the track-measurement
sequence i1, . . . , im is

− lnLim(i1, . . . , im) =
1
2

[zim − ẑi1,...,im ]′ · S−1
i1,...,im

· [zim − ẑi1,...,im ]

+ ln
λe|2πSi1,...,im |1/2

PD
(12)



176 Turkmen and Guney

where z is the measurement associated with track t at scan m, ẑ is
the predicted measurement from target t with covariance S, λe is the
spatial density of the false alarms, and PD is the detection probability.

The cost function for the TSA is defined as:

E = minimise


 M1∑

i1=0

· · ·
MN∑

iN=0

ci1,...,iNχi1,...,iN


 (13)

To find the best suitable measurement sequence, the cost function given
in Eqn. (13) will be minimised by the TSA.

It is evident from the literature [1] that the estimation error is
determined primarily by the state space model and the measurement
model. Since the estimation and the prediction vectors are closely
related to the tracker, and hence to the estimation error, therefore
they are suitable to be the inputs of the ANFIS. Thus, the inputs of
the ANFIS are the position difference (δ1) between the measurement
and the estimation vectors, the position difference (δ2) between the
estimation and the prediction vectors, and the velocity difference (δ3)
between the estimation and the prediction vectors. The output of the
ANFIS is the estimation correction. Fig. 2 shows a block diagram
of the method proposed in this paper. The proposed method can be
called as TST-ANFIS.

[(Improved  
Tracks) x, y]1-4

 Tracking 
 Parameters 

    [(Estimation  
      Correction ) x, y]1-4

[(Tabu Search Tracker Tracks) x, y]1-4

[( 3)x, y]1-4

      [( 2)x, y]1-4

      [( 1)x, y]1-4

 
 
 
 
 
 

Tabu 
Search 
Tracker 

 
 
 
 
 
ANFIS 

+

δ

δ

δ

Figure 2. Block diagram of TST-ANFIS.
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Table 1. Initial positions and velocities for targets in scenarios 1–6.

Scenarios Targets x (km) y (km)  (km/s)  (km/s) 

1 0 0 0.50 0.41 Two crossing targets 
2 0 2 0.50 0.2

1 0.5 3.2 0.50 0.001
2 Two parallel targets 2 0.5 4.8 0.47 0.001

1 20.45 11.25 -0.45 -0.25
3 

Two targets  
(one manoeuvring) 2 20.45 6.8 -0.45 0.001

1 20.45 11.25 -0.45 -0.25
4 

Two manoeuvring 
targets  2 20.45 2.75 -0.45 0.25

1 0 0 0.50 0.4

2 0 2 0.50 0.2

3 0 16 0.50 -0.4
5 Four crossing targets 

4 0 10 0.50 -0.2

1 0.5 3.2 0.50 0.001
2 0.5 4.8 0.47 0.001
3 0.5 6.7 0.52 0.001

6 Four parallel targets 

4 0.5 8.3 0.48 0.001

y
. .
x

5. SIMULATIONS

In this section, several simulation examples are presented to illustrate
the implementation of the proposed tracker that incorporates an
ANFIS into the TST, and to compare its performance with those of
the JPDAF, TST, LRA, and CJPDA-ANFISSF methods. Six different
test scenarios are considered for this purpose. The trajectories of two
crossing targets in scenario 1, two parallel targets in scenario 2, two
targets (one maneuvering) in scenario 3, two maneuvering targets in
scenario 4, four crossing targets in scenario 5, and four parallel targets
in scenario 6 are shown in Figs. 3–8, respectively. The initial positions
and velocities of targets in scenarios 1-6 are listed in the Table 1. The
initial states are the true states with prescribed covariance. In Fig. 5,
the first target is maneuvered in the y direction with acceleration
of 50 m/s2 from t = 13 s to t = 23 s while the second target is not
maneuvered. In Fig. 6, the first target is maneuvered in the y direction
with acceleration of 50 m/s2 from t = 13 s to t = 23 s and the second
target is maneuvered in the y direction with acceleration of −50 m/s2
from t = 13 s to t = 23 s. The maximum number of targets that can be
tracked by the proposed method is the one that is usually encountered
in practice. The trajectories in scenarios 1-6 are also similar to the
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Figure 3. Tracking two crossing targets in scenario 1 using (a) TST
and (b) TST-ANFIS.
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Figure 4. Tracking two parallel targets in scenario 2 using (a) TST
and (b) TST-ANFIS.

ones widely used in the literature.
The discretized state equation for each target can be written as

Xt(k + 1) = Ft(k)Xt(k) +Gt(k)wt(k) (14)

where X is the target state vector, F and G are known matrices
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Figure 5. Tracking two targets (one maneuvering) in scenario 3 using
(a) TST and (b) TST-ANFIS.
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Figure 6. Tracking two maneuvering targets in scenario 4 using (a)
TST and (b) TST-ANFIS.

describing the dynamics of the target, and w is a vector of zero-mean
Gaussian noise uncorrelated with any such noise vector at a different
instant of time. The state vector is given by

Xt(k) = [x y ẋ ẏ]T (15)

where x and y are the position components, and ẋ and ẏ are the velocity
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Figure 7. Tracking four crossing targets in scenario 5 using (a) TST
and (b) TST-ANFIS.
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Figure 8. Tracking four parallel targets in scenario 6 using (a) TST
and (b) TST-ANFIS.

components of the target t at time k. Ft(k) and Gt(k) are defined by

Ft(k) =




1 0 T 0
0 1 0 T

0 0 1 0
0 0 0 1


 Gt(k) =



T 2/2 0

0 T 2/2
T 0
0 T


 (16)
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where T is sampling interval. In the simulation the sampling interval
was assumed to be 1 s. The covariance matrix of the process noise can
be expressed as

Qt(k) =




(
σt

x(k)
)2 0

0
(
σt

y(k)
)2


 (17)

The associated variances were selected as
(
σt

x(k)
)2 = 0.005 km2s−4 and(

σt
y(k)

)2
= 0.005 km2s−4.

The measurement model can be written as

z(k) = H(k)Xt(k) + v(k) (18)

where z(k) is the measurement vector, H is a known matrix, and v is
a zero-mean Gaussian noise vector independent of wt. It was assumed
that only position measurements are available so that

H(k) =

[
1 0 0 0
0 1 0 0

]
for all k (19)

The covariance matrix of measurement noise v(k) was R(k) =
diag(0.1, 0.1) km2 assuming all the measurement noise to be uncor-
related. The probability of detection was selected as 0.9.

In the simulation studies, there are two and four targets in
scenarios (1–4) and (5 and 6), respectively. The sensors can receive
eight measurements at every scan for all scenarios. Therefore, there
are six and four clutter points at every scan for scenarios (1–4) and
(5 and 6), respectively. The clutter points are uniformly located in
the measurement space with an average value about two clutter points
per validation gate. The false alarm rate of the sensor is chosen as to
give the selected number of clutter points. The scan number in every
sliding window is 5. As mentioned before, the solutions of the problem
are represented by integer valued arrays. This representation can be
explained for scenario 1 as follows: For target one in scenario 1, if
the corresponding sequence consists of the first measurement of scan
1, the second measurement of scan 2, the fourth measurement of scan
3, the fifth measurement of scan 4, the eighth measurement of scan 5;
and for target two, the corresponding sequence consists of the sixth
measurement of scan 1, the fourth measurement of scan 2, the seventh
measurement of scan 3, the fourth measurement of scan 4, the fifth
measurement of scan 5, then the solution is a string [1, 2, 4, 5, 8, 6, 4,
7, 4, 5]. Similar representations were used for other scenarios. There
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Table 2. Performance comparison of JPDAF, TST, LRA, CJPDA-
ANFISSF, and TST-ANFIS methods.

RMS tracking errors (km)  Percentage improvement (%) 

Scenarios Targets JPDAF 
[1] 

TST 
[12] 

LRA 
[9, 10] 

CJPDA-
ANFISSF 

[3] 

Present 
method 
(TST-

ANFIS) 

with 
respect to 
JPDAF 

 

with 
respect to 

TST 
 

with 
respect to 

LRA 
 

with 
respect to 
CJPDA-

ANFISSF 

1 0.2905 0.2236 0.2305 0.0918 0.0724 75 68 69 21 
1 

2 0.1858 0.1594 0.1574 0.0852 0.0578 69 64 63 32 

1 0.1524 0.1086 0.1002 0.0512 0.0412 73 62 59 20 
2 

2 0.1668 0.1602 0.1631 0.1078 0.0727 56 55 55 33 

1 0.1716 0.1483 0.1498 0.1085 0.0882 49 41 41 19 
3 

2 0.1604 0.1472 0.1433 0.0685 0.0520 68 65 64 24 

1 0.2776 0.2380 0.2298 0.1356 0.1021 63 57 56 25 
4 

2 0.1719 0.1505 0.1528 0.0875 0.0655 62 56 57 25 

1 0.1918 0.1676 0.1787 0.0785 0.0585 69 65 67 25 

2 0.2877 0.2513 0.2418 0.1225 0.0974 66 61 60 20 

3 0.2491 0.2023 0.2089 0.0985 0.0824 67 59 61 16 
5 

4 0.2847 0.2037 0.1955 0.1258 0.0961 66 53 51 24 

1 0.2019 0.1656 0.1663 0.0787 0.0547 73 67 67 30 

2 0.1822 0.1532 0.1513 0.0897 0.0703 61 54 54 22 

3 0.2537 0.1995 02014 0.1015 0.0831 67 58 59 18 
6 

4 0.2477 0.2238 0.2314 0.1158 0.0919 63 59 60 21 

are 10 and 20 elements in the solution strings for scenarios (1–4) and
(5 and 6), respectively.

For target tracking applications, there are two types of data
generators, namely measurement and simulation. The selection of a
data generator depends on the application and the availability of the
data generator. In this paper, 1240 training data sets were obtained
from the neighbourhood of the true trajectories. The true trajectories
were corrupted with different clutter points and training data sets
were collected by realising the TST for the tracking scenarios. After
training, the ANFIS was used to improve the accuracy of the state
estimation for six different test scenarios shown in Figs. 3–8. In the
test scenarios, the true target trajectories were corrupted with random
clutter points which were not used in training. 40 and 35 test data
sets were used for each target in scenarios (1, 2, 5, 6) and (3, 4),
respectively. Therefore, a total of 620 test data sets were used.

The input and output data sets were scaled between 0.0 and
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1.0 before training. The number of epoch was 15 for training. The
number of MFs for the input variables, δ1, δ2, and δ3 are 6, 6, and 6,
respectively. The number of rules is then 216 (6 × 6 × 6 = 216). The
triangular MF is used for all input variables. It is clear from Eqn. (4)
that the triangular MF is specified by three parameters. Therefore,
ANFIS used here contains a total of 918 fitting parameters, of which
54 (6 × 3 + 6 × 3 + 6 × 3 = 54) are the premise parameters and 864
(4 × 216 = 864) are the consequent parameters.

For comparison, we also obtained the tracking results of the
TST, the JPDAF, the LRA, and the CJPDA-ANFISSF for six test
scenarios. The tracking performances of the TST and the TST-ANFIS
are compared in Figs. 3–8. As it is seen from Figs. 3–8, the TST-
ANFIS tracks are closer to the true tracks than the tracks predicted
by the TST for all scenarios. The results of JPDAF, the LRA, and the
CJPDA-ANFISSF are not shown in Figs. 3–8 for clarity. Table 2 gives
the comparative performances of the JPDAF, TST, LRA, CJPDA-
ANFISSF, and TST-ANFIS methods in terms of RMS tracking error.
The percentage improvement obtained by using the TST-ANFIS is
also listed in Table 2. This percentage improvement is calculated
as the ratio of the difference between the RMS errors of the TST-
ANFIS method and the competing method (JPDAF, TST, LRA, or
CJPDA-ANFISSF) to the RMS error of the competing method. It is
evident from Table 2 that in all cases the results of the TST-ANFIS are
better than those of the JPDAF, TST, LRA, and CJPDA-ANFISSF
methods. The RMS tracking error values clearly show that a significant
improvement is obtained over the results of the JPDAF, TST, LRA,
and CJPDA-ANFISSF methods. When ANFIS is employed, the
average percentage improvement with respect to JPDAF, TST, LRA,
and CJPDA-ANFISSF 65%, 59%, 59%, and 23% respectively. The
incorporation of an ANFIS into the TST leads to good accuracy in
tracking multiple targets. It is clear from Table 2 that the RMS error
values of the TST are smaller than those of the JPDAF. Table 2 also
shows that the tracking results of the LRA algorithm are nearly equal
to those of the TST. However the TST takes an average CPU time
of 2 seconds whereas the LRA takes an average CPU time of 4.05
seconds for scenarios 1 to 6 running on a Pentium IV 2-GHz PC
with 256 MB of RAM memory. Obviously, the TST is faster than
the LRA for data association. A prominent advantage of the ANFIS
model is that, after proper training, ANFIS completely bypasses the
repeated use of complex iterative processes for new cases presented to
it. Even if training takes a few minutes, the test process takes only a
few microseconds to produce the result. Therefore, CPU times of the
TST and TST-ANFIS methods are nearly equal.
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6. CONCLUSION

The TST-ANFIS technique is presented for MTT. The data association
problem formulated as an N-dimensional assignment problem is
solved using TSA. The incorporation of the ANFIS into the TST
is then proposed to increase its tracking performance. Performance
evaluations of the TST, JPDAF, the LRA, the CJPDA-ANFISSF, and
the TST-ANFIS are presented using simulation studies. Six different
tracking scenarios are considered for this evaluation. It was shown
that the estimation results of the TST-ANFIS are better than those of
the TST, the LRA, the JPDAF, and the CJPDA-ANFISSF. The very
good agreement between the TST-ANFIS tracks and the true tracks
supports the validity of TST-ANFIS technique proposed in this paper.
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