
Progress In Electromagnetics Research, PIER 67, 1–24, 2007

ELECTROMAGNETIC SCATTERING FROM
ARBITRARILY SHAPED CHIRAL OBJECTS USING
THE FINITE DIFFERENCE FREQUENCY DOMAIN
METHOD

L. Kuzu

Department of Electrical Engineering and Computer Science
Syracuse University
Syracuse, NY 13244, USA

V. Demir and A. Z. Elsherbeni

Center of Applied Electromagnetics Systems Research (CAESR)
Department of Electrical Engineering
The University of Mississippi
University, MS 38677, USA

E. Arvas

Department of Electrical Engineering and Computer Science
Syracuse University
Syracuse, NY 13244, USA

Abstract—In this paper, finite difference frequency domain (FDFD)
formulation has been developed for the analysis of electromagnetic
wave interaction with chiral materials, and the validity of the
formulation for three dimensional scattering problems has been
confirmed by comparing the numerical results to exact or other
numerical solutions. The influences of the chirality on the scattered
field components are investigated. Numerical results for bistatic
radar cross section (RCS) are presented and compared to reference
solutions and it is found that the proposed FDFD method shows good
agreement. It is realized that the presented method is relatively easy to
program and can be applied to a wide variety of problems of complex
and composite structures efficiently.
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1. INTRODUCTION

Chiral material has been proposed for many applications due to
its unique electromagnetic properties. Among them are antennas
and arrays, antenna radomes, microstrip substrates and waveguides.
Electromagnetic propagation in chiral medium differs from the
behavior of simpler, isotropic materials in several ways [1]. A linearly
polarized wave propagating in a chiral medium undergoes a rotation
of its polarization. For example, scattered field from a homogeneous
chiral cylinder has both TE and TM components even when the
incident field is a pure TE or a pure TM wave incident on the cylinder
[2].

The analysis of chiral materials has been an important topic
in computational electromagnetics especially after artificial chiral
materials have been manufactured in the microwave range in the last
decade. Numerical analysis of chiral materials has been carried out
using a variety of numerical methods, such as the method of moments
(MoM) [2, 3], the finite-difference time-domain (FDTD) method [4, 5],
boundary value solutions (BVS) [6] and so forth. In this paper, the
finite difference frequency domain (FDFD) method has been used.
FDFD method presents a versatile and relatively simple way of solving
Maxwell’s equations in the frequency domain, for arbitrary geometries.
Although this method requires high memory and computer resources,
in other words, it is computationally expensive, recent developments in
the computer systems made possible the effective use of this numerical
technique. One of the most important aspects of this method is
flexibility; each cell can have a permittivity, permeability and chiral
material properties independent of others. Therefore, it is easy to
apply to non-uniform and frequency dependent media. Also it is
not necessary to keep the grid spacing uniform. This is especially
important when large objects with regions that contain small, complex
geometries that require dense grids. Therefore, it can be applied
to a wide variety of problems of complex and composite structures
efficiently.

2. FORMULATION

In this paper, the field equations for scattering by chiral materials
are developed for three-dimensional (3D) problems. The incident field
expressions are also given. A perfectly matched layer surrounding the
discretized solution space is also implemented to absorb the outgoing
waves. The termination of the computational domain considered
in this paper is an absorbing boundary condition (ABC), based on
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the perfectly matched layer (PML) developed by Berenger [7]. The
FDFD/PML solution procedure has been developed and applied for
arbitrarily shaped 3D chiral objects.

Figure 1. Problem geometry for a 3D chiral object.

Consider a chiral scatterer in free space as shown in Fig. 1. The
following constitutive relations in the frequency domain can describe
chiral materials:

D = εE − jκ
√
εoµoH, B = µH + jκ

√
εoµoE (1)

where κ measures the chirality, ε and µ are the dielectric and magnetic
parameter of the media respectively [1]. The assumed time harmonic
convention is e+jωt. All material parameters are non-homogenuous
and anisotropic in general. The Maxwell’s equations in the frequency
domain can be written as

∇× E = −jωB, ∇×H = +jωD. (2)

Substituting (1) into (2) gives

∇× E = −jωµH +
ωκ

c
E, (3a)

∇×H = +jωεE +
ωκ

c
H. (3b)

Although both equations in (3) are continuous equations and are valid
at every point in computational space, the position of the κ in (3a)
is different than that of (3b) when they are written for discrete grid
points. The first is associated with H, whereas the second one is with
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E. After this point, we will use different notations for them, namely
κh and κe.

The formulation developed in this paper is based on the scattered
field formulation in which the total field is the sum of known incident
and unknown scattered fields [8, 9]. Decomposing the total field into
incident and scattered fields gives

∇×Einc+∇×Escat = −jωµH inc+
ωκh

c
Einc−jωµHscat+

ωκh

c
Escat

∇×H inc+∇×Hscat = jωεEinc+jωεEscat+
ωκe

c
H inc+

ωκe

c
Hscat.

(4)

By definition, incident field satisfies Maxwell’s equations in free space,
so that

∇× Einc = −jωµoH inc

∇×H inc = +jωεoEinc.
(5)

Substituting (5) into (4) gives

∇×Escat−
ωκh

c
Escat+jωµHscat =jω (µo − µ)H inc+

ωκh

c
Einc

∇×Hscat−
ωκe

c
Hscat−jωεEscat =jω (ε− εo)Einc+

ωκe

c
H inc.

(6)

Decomposing the vector equations to x, y, and z components, we
obtain six scalar equations as follows:

∂Escat, z

∂y
− ∂Escat, y

∂z
−ωκhx

c
Escat, x+jωµxHscat, x

= jω (µo−µx)Hinc, x+
ωκhx

c
Einc, x

∂Escat, x

∂z
− ∂Escat, z

∂x
−ωκhy

c
Escat, y+jωµyHscat, y

= jω (µo−µy)Hinc, y+
ωκhy

c
Einc, y

∂Escat, y

∂x
− ∂Escat, x

∂y
−ωκhz

c
Escat, z+jωµzHscat, z

= jω (µo−µz)Hinc, z+
ωκhz

c
Einc, z

(7)

∂Hscat, z

∂y
− ∂Hscat, y

∂z
−ωκex

c
Hscat, x−jωεxEscat, x

= jω (εx−εo)Einc, x+
ωκex

c
Hinc, x
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∂Hscat, x

∂z
− ∂Hscat, z

∂x
−ωκey

c
Hscat, y−jωεyEscat, y

= jω (εy− εo)Einc, y+
ωκey

c
Hinc, y

∂Hscat, y

∂x
− ∂Hscat, x

∂y
−ωκez

c
Hscat, z−jωεzEscat, z

= jω (εz−εo)Einc, z+
ωκex

c
Hinc, z

(8)

The set of equations of (7) and (8) forms the basis of the
FDFD numerical algorithm for electromagnetic wave interactions with
arbitrarily shaped three-dimensional chiral objects. Therefore they can
be used to construct the 3D, 2D and 1D FDFD chiral equations.

In order to make the computational space finite, a perfectly
matched layer surrounding the discretized computational space should
be implemented to absorb the outgoing waves. The termination of the
computational domain is based on the perfectly matched layer (PML)
approach developed by Berenger [7]. Following notations in [10] the
unsplit-field PML equations can be written as:

Hx =
1

(jωµo + σm
z )

∂Ey

∂z
− 1(

jωµo + σm
y

) ∂Ez

∂y

Hy =
1

(jωµo + σm
x )

∂Ez

∂x
− 1

(jωµo + σm
z )

∂Ex

∂z

Hz =
1(

jωµo + σm
y

) ∂Ex

∂y
− 1

(jωµo + σm
x )

∂Ey

∂x

(9)

Ex =
1(

jωεo + σe
y

) ∂Hz

∂y
− 1

(jωεo + σe
z)
∂Hy

∂z

Ey =
1

(jωεo + σe
z)
∂Hx

∂z
− 1

(jωεo + σe
x)

∂Hz

∂x

Ez =
1

(jωεo + σe
x)

∂Hy

∂x
− 1(

jωεo + σe
y

) ∂Hx

∂y

(10)

where in the PML region

εx = εo +
σe

x

jω
µx = µo +

σm
x

jω

εy = εo +
σe

y

jω
µy = µo +

σm
y

jω

εz = εo +
σe

z

jω
µz = µo +

σm
z

jω

(11)
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and outside the PML region

ε = εx = εy = εz = ε′ − jε′′

µ = µx = µy = µz = µ′ − jµ′′.
(12)

Note that if the medium is lossy then the real part of the ε represents
the dielectric constant of the medium and the imaginary part of the
ε represents the loss tangent of the medium. Similarly, the real part
of the µ represents the magnetic permeability of the medium and the
imaginary part of it represents the magnetic loss of the medium.

Figure 2. 3D structure of PML layers.

We can combine PML equations with chiral equations to obtain
one set of equations which is valid both for the PML region and the
non-PML region in the computational space as:

Hscat, x − j

ωµxy

∂Escat, z

∂y
+

j

ωµxz

∂Escat, y

∂z
+

jκhx

µxic
Escat, x

=
(µo − µxi)

µxi
Hinc, x − jκhx

µxic
Einc, x

Hscat, y −
j

ωµyz

∂Escat, x

∂z
+

j

ωµyx

∂Escat, z

∂x
+

jκhy

µyic
Escat, y

=
(µo − µyi)

µyi
Hinc, y −

jκhy

µyic
Einc, y
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Hscat, z −
j

ωµzx

∂Escat, y

∂x
+

j

ωµzy

∂Escat, x

∂y
+

jκhz

µzic
Escat, z

=
(µo − µzi)

µzi
Hinc, z −

jκhz

µzic
Einc, z

(13)

where in the non-PML region

µxi = µx, µxy = µx, µxz = µx,

µyi = µy, µyx = µy, µyz = µy,

µzi = µz, µzx = µz, µzy = µz,

κhx = κhz = κhy = κ

(14)

and in the PML region

µxi = µo, µxy = µo +
σm

y

jω
, µxz = µo +

σm
z

jω
,

µyi = µo, µyz = µo +
σm

x

jω
, µyz = µo +

σm
z

jω
,

µzi = µo, µzx = µo +
σm

x

jω
, µzy = µo +

σm
y

jω
,

κhx = κhy = κhz = 0.

(15)

Similarly, we can write the three-dimensional chiral equations with
PML for E field components using (8) leaving the incident fields on
the right, as:

Escat, x − 1
jωεxy

∂Hscat, z

∂y
+

1
jωεxz

∂Hscat, y

∂z
+

κex

jεxic
Hscat, x

=
(εo − εxi)

εxi
Einc, x − κex

jεxic
Hinc, x

Escat, y −
1

jωεyz

∂Hscat, x

∂z
+

1
jωεyx

∂Hscat, z

∂x
+

κey

jεyic
Hscat, y

=
(εo − εyi)

εyi
Einc, y −

κey

jεyic
Hinc, y

Escat, z −
1

jωεzx

∂Hscat, y

∂x
+

1
jωεzy

∂Hscat, x

∂y
+

κez

jεzic
Hscat, z

=
(εo − εzi)

εzi
Einc, z −

κez

jεzic
Hinc, z

(16)
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where in the non-PML region

εxy = εx, εxz = εx, εxi = εx,

εyx = εy, εyz = εy, εyi = εy,

εzx = εz, εzy = εz, εzi = εz,

κex = κey = κez = κ

(17)

and in the PML region

εxy = εo +
σe

y

jω
, εxz = εo +

σe
z

jω
, εxi = εo,

εyx = εo +
σe

x

jω
, εyz = εo +

σe
z

jω
, εyi = εo,

εzx = εo +
σe

x

jω
, εzy = εo +

σe
y

jω
, εzi = εo,

κex = κey = κez = 0.

(18)

The finite difference method will be used to solve (13) and (16).

2.1. Incident Field Expressions

The incident plane wave shown in Fig. 3 can be implemented as

E =
(
Eθθ̂ + Eφφ̂

)
e−j�k·�r (19)

where Eθ and Eφ specify the amplitude of the plane wave. One can
write the propagation and position vectors, respectively, as

�k = −k (x̂ sin θinc cosφinc + ŷ sin θinc sinφinc + ẑ cos θinc) , (20)
�r = x̂x + ŷy + ẑz. (21)

where k = ω
c where c = 1√

µoεo
is the speed of light. The incident plane

wave comes from the direction where (θ, φ) = (θinc, φinc).
The position vector �r is measured from the origin (0, 0, 0) to

the position of each electric and magnetic field component inside the
computational domain. Both Eθ and Eφ have to be transformed to
Cartesian coordinates in order to fit the Cartesian Yee grid to be used
in the computational domain. Therefore the amplitudes of the incident
plane waves in the x, y, and z directions are calculated as follows:

Ex0 = Eθ cos θinc cosφinc − Eφ sinφinc (22a)
Ey0 = Eθ cos θinc sinφinc + Eφ cosφinc (22b)
Ez0 = −Eθ sin θinc. (22c)
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Figure 3. Incident plane wave in a 3D space.

The corresponding magnetic field components are

Hx0 =
1
η

(Eθ cos θinc cosφinc + Eθ sinφinc) (23a)

Hy0 =
1
η

(Eφ cos θinc sinφinc − Eθ cosφinc) (23b)

and

Hz0 =
1
η

(−Eφ sin θinc) . (23c)

After performing the dot product of (20) and (21) and using the field
amplitudes (22) and (23), we obtain the incident field components for
3D problems as follows:

Einc, z=(−Eθ sin θinc) (24a)

e+jk(x sin θinc cos φinc+y sin θinc sin φinc+z cos θinc)

Einc, y=(Eθ cos θinc sinφinc + Eφ cosφinc) (24b)

e+jk(x sin θinc cos φinc+y sin θinc sin φinc+z cos θinc)

Einc, x=(Eθ cos θinc cosφinc − Eφ sinφinc)

e+jk(x sin θinc cos φinc+y sin θinc sin φinc+z cos θinc) (24c)

Hinc, z=
1
η

(−Eφ sin θinc) (24d)

e+jk(x sin θinc cos φinc+y sin θinc sin φinc+z cos θinc)



10 Kuzu et al.

Hinc, y=
1
η

(Eφ cos θinc sinφinc − Eθ cosφinc) (24e)

e+jk(x sin θinc cos φinc+y sin θinc sin φinc+z cos θinc)

Hinc, x=
1
η

(Eφ cos θinc cosφinc + Eφ sinφinc) (24f)

e+jk(x sin θinc cos φinc+y sin θinc sin φinc+z cos θinc)

where η =
√

µo

εo
and k are the intrinsic impedance and the wavenumber

of the medium, respectively, where the incident field is excited (chosen
as air), φinc and θinc are the incident angles with respect to the x- and
z-axes, respectively, and x, y, and z are the Cartesian coordinates.

2.2. Finite Difference Application

Maxwell’s equations are discretized using a Yee cell as shown in Fig. 4.
Therefore, the first step in the construction of the FDFD algorithm
is the discretization of the computational space into cells and the
definition of the locations of the electric and magnetic field vectors
associated with each cell. Yee [11] developed an algorithm in which the
electric and magnetic field vector components are located in a staggered
fashion as shown in Fig. 4. The reason for the staggered grid is that
when the curl operator is approximated using a difference formula, the
resulting derivative is evaluated at a point that is in between the sample
locations used in the difference formula. In each cell three electric field
components and three magnetic field components are defined. They do

Figure 4. Yee cell demonstrating the positions of the E and H field
vector components within a cubical grid.
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not coincide with the nodes (i, j, k) of the Cartesian grid. The electric
field components are located at the centers of the edges of the cell
and the magnetic field components are normal to the centers of the
faces. This special configuration depicts Faraday’s Law and Ampere’s
Law. In Figs. 4 and 5, it can be seen that each magnetic field vector
component is surrounded by four electric field components forming a
loop around it and simulating Faraday’s law, and each electric field
vector component is surrounded by four magnetic field components
forming a loop around it and simulating Ampere’s Law. Using this
scheme, one can describe the explicit finite difference approximation of
Maxwell’s equations.

Figure 5. Top view of field components of a three dimensional FDFD
grid.

In the three-dimensional Yee grid shown in Fig. 4, we apply finite
difference method to (13) as follows

Hscat, x(i, j, k) +
1

jω∆yµxy(i, j, k)
Escat, z(i, j + 1, k)

− 1
jω∆yµxy(i, j, k)

Escat, z(i, j, k)− 1
jω∆zµxz(i, j, k)

Escat, y(i, j, k+1)

+
1

jω∆zµxz(i, j, k)
Escat, y(i, j, k) − κhx(i, j, k)

jcµxi(i, j, k)
1
8
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


+Escat, x(i, j, k)+Escat, x(i−1, j, k)
+Escat, x(i, j+1, k)+Escat, x(i−1, j+1, k)
+Escat, x(i, j, k+1)+Escat, x(i, j+1, k+1)
+Escat, x(i−1, j, k+1)+Escat, x(i−1, j+1, k+1)




=
(µo − µxi(i, j, k))

µxi(i, j, k)
Hinc, x(i, j, k) +

κhx(i, j, k)
jcµxi(i, j, , k)

1
8


+Einc,x(i, j, k) + Einc, x(i−1, j, k)
+Einc,x(i, j+1, k)+Einc, x(i−1, j+1, k)
+Einc,x(i, j, k+1)+Einc, x(i, j+1, k+1)
+Einc,x(i−1, j, k+1)+Einc, x(i−1, j+1, k+1)


 (25a)

Hscat,y(i, j, k)− κhy(i, j, k)
jcµyi(i, j, k)

1
8


+Escat,y(i, j, k)+Escat,y(i+1, j, k)
+Escat,y(i, j−1, k)+Escat,y(i+1, j−1, k)
+Escat,y(i, j, k+1)+Escat,y(i+1, j, k+1)
+Escat,y(i, j−1, k+1)+Escat,y(i+1, j−1, k+1)




+
1

jω∆zµyz(i, j, k)
Escat, x(i, j, k+1)− 1

jω∆zµyz(i, j, k)
Escat, x(i, j, k)

− 1
jω∆xµyx(i, j, k)

Escat, z(i+1, j, k)+
1

jω∆xµyx(i, j, k)
Escat, z(i, j, k)

=
(µo − µyx(i, j, k))

µyi(i, j, k)
Hinc,y(i, j, k) +

κhy(i, j, k)
jcµyi(i, j, k)

1
8


+Einc, y(i, j, k) + Einc, y(i + 1, j, k)
+Einc, y(i, j − 1, k) + Einc, y(i + 1, j − 1, k)
+Einc, y(i, j, k + 1) + Einc, y(i + 1, j, k + 1)
+Einc, y(i, j − 1, k + 1) + Einc, y(i + 1, j − 1, k + 1)


 (25b)

Hscat, z(i, j, k) − κhz(i, j, k)
jcµzi(i, j, k)

1
8


+Escat, z(i, j, k) + Escat, z(i + 1, j, k)
+Escat, z(i, j + 1, k) + Escat, z(i + 1, j + 1, k)
+Escat, z(i, j, k − 1) + Escat, z(i + 1, j, k − 1)
+Escat, z(i, j + 1, k − 1) + Escat, z(i + 1, j + 1, k − 1)




+
1

jω∆xµzx(i, j, k)
Escat,y(i+1, j, k)− 1

jω∆xµzx(i, j, k)
Escat, y(i, j, k)
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− 1
jω∆yµzy(i, j, k)

Escat,x(i, j+1, k)+
1

jω∆yµzy(i, j, k)
Escat, x(i, j, k)

=
(µo − µzi(i, j, k))

µzi(i, j, k)
Hinc,z(i, j, k) +

κhz(i, j, k)
jcµzi(i, j, k)

1
8


+Einc, z(i, j, k) + Einc, z(i + 1, j, k)
+Einc, z(i, j + 1, k) + Einc, z(i + 1, j + 1, k)
+Einc, z(i, j, k − 1) + Einc, z(i + 1, j, k − 1)
+Einc, z(i, j + 1, k − 1) + Einc, z(i + 1, j + 1, k − 1)


 . (25c)

Similarly, the finite difference equations representing (16) are given
by

Escat, x(i, j, k) − 1
jω∆yεxy(i, j, k)

Hscat, z(i, j, k)

+
1

jω∆yεxy(i, j, k)
Hscat,z(i, j−1, k)+

1
jω∆zεxz(i, j, k)

Hscat, y(i, j, k)

− 1
jω∆zεxz(i, j, k)

Hscat,y(i, j, k−1)+
κex(i, j, k)
jεxi(i, j, k)c

1
8


+Hscat, x(i, j, k) + Hscat, x(i, j, k − 1)
+Hscat, x(i + 1, j, k) + Hscat, x(i + 1, j, k − 1)
+Hscat, x(i, j − 1, k) + Hscat, x(i, j − 1, k − 1)
+Hscat, x(i + 1, j − 1, k) + Hscat, x(i + 1, j − 1, k − 1)




=
(εo − εxi(i, j, k))

εxi(i, j, k)
Einc, x(i, j, k) − κex(i, j, k)

jεxi(i, j, , k)c
1
8


+Hinc, x(i, j, k) + Hinc, x(i, j, k − 1)
+Hinc, x(i + 1, j, k) + Hinc, x(i + 1, j, k − 1)
+Hinc, x(i, j − 1, k) + Hinc, x(i, j − 1, k − 1)
+Hinc, x(i + 1, j − 1, k) + Hinc, x(i + 1, j − 1, k − 1)


 (26a)

Escat, y(i, j, k) +
1

jω∆xεyx(i, j, k)
Hscat, z(i, j, k)

− 1
jω∆xεyx(i, j, k)

Hscat,z(i−1,j,k)− 1
jω∆zεyz(i, j, k)

Hscat,x(i,j,k)

+
1

jω∆zεyz(i, j, k)
Hscat,x(i, j, k−1)+

κey(i, j, k)
jcεyi(i, j, k)

1
8


+Hscat, y(i, j, k) + Hscat, y(i, j, k − 1)
+Hscat, y(i, j + 1, k) + Hscat, y(i, j + 1, k − 1)
+Hscat, y(i− 1, j, k) + Hscat, y(i− 1, j, k − 1)
+Hscat, y(i− 1, j + 1, k) + Hscat, y(i− 1, j + 1, k − 1)



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=
(εo − εyi(i, j, k))

εyi(i, j, k)
Einc, y(i, j, k) − κey(i, j, k)

jcεyi(i, j, k)
1
8


+Hinc, y(i, j, k) + Hinc, y(i, j, k − 1)
+Hinc, y(i, j + 1, k) + Hinc, y(i, j + 1, k − 1)
+Hinc, y(i− 1, j, k) + Hscat, y(i− 1, j, k − 1)
+Hinc, y(i− 1, j + 1, k) + Hscat, y(i− 1, j + 1, k − 1)


 (26b)

Escat,z(i, j, k) − 1
jω∆xεzx(i, j, k)

Hscat, y(i, j, k)

+
1

jω∆xεzx(i,j,k)
Hscat, y(i−1, j, k)+

1
jω∆yεzy(i, j, k)

Hscat,x(i, j, k)

− 1
jω∆yεzy(i, j, k)

Hscat, x(i, j−1, k)− jκez(i, j, k)
cεzi(i, j, k)

1
8


+Hscat, z(i, j, k) + Hscat, z(i− 1, j, k)
+Hscat, z(i, j − 1, k) + Hscat, z(i− 1, j − 1, k)
+Hscat, z(i, j, k + 1) + Hscat, z(i− 1, j, k + 1)
+Hscat, z(i, j − 1, k + 1) + Hscat, z(i− 1, j − 1, k + 1)




=
(εo − εzi(i, j, κ))

εzi(i, j, k)
Einc,z(i, j, k) +

jκez(i, j, k)
cεzi(i, j, k)

1
8


+Hinc, z(i, j, k) + Hinc, z(i− 1, j, k)
+Hinc, z(i, j − 1, k) + Hinc, z(i− 1, j − 1, k)
+Hinc, z(i, j, k + 1) + Hinc, z(i− 1, j, k + 1)
+Hinc, z(i, j − 1, k + 1) + Hinc, z(i− 1, j − 1, k + 1)


 . (26c)

The positions of the material parameters (ε, µ and κ) are
shown in Fig. 6. Notice that all values of ε are associated with
E field components, and all values of µ are associated with H field
components. The κe’s are associated with E field components whereas
the κh’s are associated with H field components.

The field components on the extended computational boundary
are set to zero (i.e., a perfect electric conductor (PEC) wall is assumed
at the outer side of the PML layers. The 6 field components in
the interior nodes can be computed by solving the linear system of
equations (25) to (26). For a problem consisting of N Yee cells these
equations can be arranged in a matrix form as [A][EH] = [F ] where
[A] is a (6N × 6N) coefficients matrix, [EH] is the unknown vector
of size 6N containing scattered E and H fields components, and [F ]
is the excitation vector of size 6N representing the right hand side of
equations (25) and (26), and they are a function of all incident field
components. The coefficient matrix [A] is a highly sparse matrix with
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Figure 6. Position of the material parameters ε, µ and κ in a face of
one cell.

only 13 non-zero elements in each row, therefore only non-zero elements
are stored while performing the matrix solution. It is not feasible to
employ direct solution techniques in order to solve such very large
sparse matrix equations. Iterative solvers such as BICGSTAB [12] are
usually used in these cases. The numerical results obtained in this
paper are based on our developed Fortran code based on the “vanilla”
version of BiCGstab [13].

2.3. Accuracy and Computational Considerations

Spacing of the grid determines the accuracy and the cost of the
computation. Therefore it is very critical to select the grid spacing,
∆x, ∆y and ∆z properly in order to secure the accuracy of the
computations without increasing the simulation time significantly. A
good choice for selection of the grid spacing is to set it to be at most
one-twentieth of the minimum wavelength of the frequency of interest,
i.e.,

∆xmax, ∆ymax, and ∆zmax ≤ 1
20

λmin (27a)

where
λmin =

c

fmax
√
µr maxεr max

(27b)

and c is the speed of light in the free-space, µr max and εr max are
the maximum relative permeability and relative permittivity in the
computational domain, and fmax indicates the maximum frequency of
interest.
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3. NUMERICAL RESULTS

3.1. Scattering from 3D Chiral Structures

In this section, the FDFD/PML solution procedure is applied to three-
dimensional arbitrarily shaped chiral objects. The computer program
is first validated by considering the case of scattering by a chiral
sphere. The numerical solutions of the bistatic radar cross sections (the
co-polarized bistatic radar cross section σθθ and the cross-polarized
bistatic radar cross section σφθ) are compared to the exact solutions
for different material parameters. An analysis of the errors of the
numerical solutions for the sphere is presented. To demonstrate that
the proposed method is able to analyze a chiral body of arbitrary
shape, the numerical solutions for a chiral cube and a finite circular
chiral cylinder are also presented for various material parameters. All
scatterers presented in this section are assumed to be illuminated by a
θ-polarized plane wave incident from the direction where θinc = 180◦
and ϕinc = 0◦ (Einc = −âxEince

−jkoz, H inc = −âyHince
−jkoz, Einc =

ηoHinc, ko and ηo are the free space wavenumber and the intrinsic
impedance respectively). The centers of all scatterers are at the origin.
Figs. 7 to 10 show the geometries of the scatterers. Because the basic
building block is a cube, curved surfaces on a scatterer are staircased.
The size of the cubes is chosen to be at most λmin/20 of the maximum
frequency of interest. As the cube size is decreased, it defines the
geometry more accurate; however this can significantly increase the
computational size of the problem.

Figure 7. Coarse sphere constructed with relatively big cubes.
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Figure 8. Fine sphere with small cubes.

Figure 9. Cube constructed with smaller cubes.

3.2. Numerical Results for a Chiral Sphere

In this section, numerical solutions for scattering from a chiral sphere
are presented. The solutions are compared to the exact solutions
obtained by using the Matlab program presented in [14]. The problem
to be investigated first is a sphere of radius 7.2 cm with parameters
εr = 4 and µr = 1. It is illuminated by a z-polarized, x-traveling
plane wave at 1 GHz. The FDFD computational space is divided into
1 million (100 × 100 × 100) cubic cells where each cell is 0.25 cm on
a side. Fig. 11 shows the co-polarized bistatic radar cross-sections,
σθθ for κ = 0 (dielectric) and κ = 0.5. The cross-polarized bistatic
radar cross-sections, σφθ for the same chirality parameters are shown
in Fig. 12.

Field strengths of cross-polarized fields are generally very weak
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Figure 10. Finite length circular cylinder constructed with small
cubes.

Figure 11. Scattering from a sphere, σθθ for κ = 0 and κ = 0.5.

compared to co-polarized components. Both co-polarized and cross-
polarized field results show excellent agreement with the exact
solution. Another remarkable observation in Figures 11 and 12 is that
introducing the chirality into the sphere material gives rise to a cross-
polarized field in the same order as the co-polarized field, which also
exhibits the optical activity of the chiral media.

As the second case, scattering from a chiral sphere has been
computed to study the convergence of the proposed method. Figures 13
and 14 show σθθ and σφθ, respectively, for a chiral sphere with
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Figure 12. Scattering from a sphere, σφθ for κ = 0 and κ = 0.5.

parameters εr = 4, µr = 3 and κ = 0.5. Figures 13 and 14 show
the proof of convergence by comparing the numerical solutions with
various cell sizes to the exact ones at 1 GHz. It has been observed that
decreasing the cell size increases the accuracy and FDFD computation
results converge to those given by the exact solutions.

3.3. Numerical Results for a Finite Circular Chiral Cylinder

In this section, the FDFD/PML procedure is applied to compute the
co- and cross-polarized bistatic radar cross sections of a finite circular
chiral cylinder. The results are compared to those obtained from the
MoM [3] and FDTD [5] solutions. The cylinder is illuminated by
an x-polarized, z traveling plane wave at 1 GHz. The cylinder has
6 cm radius and 12 cm height. The cylinder material parameters are
εDBR, r = 4, µDBR, r = 1, and β = 0.002 given according to DBF
constitutive relations [1]. The FDFD computational space is composed
of 287,496 (66 × 66 × 66) cubic Yee cells of size 0.4 cm.

The co-polarized bistatic radar cross sections, σθθ, are shown in
Fig. 15. The cross-polarized bistatic radar cross sections, σφθ, are
shown in Fig. 16. The results show good agreement between FDFD and
the MoM solutions. As one can see from these plots, cross-polarized
scattering is significantly weaker than the co-polarized.
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Figure 13. Convergence of computed σθθ to exact solution, κ = 0.5.

Figure 14. Convergence of computed σφθ to exact solution, κ = 0.5.

3.4. Numerical Results for a Chiral Cube

The developed FDFD formulation is used to calculate the co- and cross-
polarized bistatic radar cross-sections of a chiral cube. The results are
compared to those obtained from the MoM solution. Consider an x-
polarized z-traveling incident plane wave at 1 GHz. The cube is 12 cm
long on a side. The material parameters of the cube are given according
to the DBF constitutive relations. The conversions in [1] are used to
calculate the material parameter values in order to use in our solution.
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Figure 15. Scattering from a finite chiral cylinder, σθθ at 1 GHz.

Figure 16. Scattering from a finite chiral cylinder, σφθ at 1 GHz.

The cube materials are εDBR, r = 4, µDBF, r = 1 and β = 0.0001. The
computational space is composed of 1 million (100 × 100 × 100) cubic
Yee cells of size 0.25 cm.

The co-polarized bistatic radar cross section, σθθ, is shown
together with the reference solution in Fig. 17. The cross-polarized
bistatic radar cross sections, σφθ, is shown in Fig. 18. These graphs
show good agreement with the MoM solutions.
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Figure 17. Scattering from a chiral cube, σθθ at 1 GHz.

Figure 18. Scattering from a chiral cube, σφθ at 1 GHz.

4. CONCLUSIONS

The FDFD formulation of scattering from 3D arbitrarily shaped chiral
objects has been developed in this paper. First, numerical results for
chiral sphere has been presented and compared to the exact results.
Excellent agreement between the numerically generated results and the
exact results has been observed. Second, numerical results for radar
cross sections are presented for circular chiral cylinders of different
size and material parameters. The excellent agreement between the



Progress In Electromagnetics Research, PIER 67, 2007 23

numerically generated results and the exact results for several chiral
cylinders of different parameters and different wave incidence shows the
validity and the accuracy of the FDFD method developed in this paper.
The effect of chirality on the internal and external fields can be noticed
in the examples of scattering by the chiral cylinders as compared to
the achiral cylinders for different chirality parameters. Adding chirality
to the cylinder causes the cross-polarized field component to change
significantly. This demonstrates the increasing shift of the polarization
of the scattered field as compared to the incident wave.

More results examining the interaction of electromagnetic fields
with chiral objects are presented through the examples of scattering
from a variety of chiral cylinders of different geometrical shape and
material parameters. The effect of adding chirality to the scatterer on
the internal fields is to generate a cross-polarized component and also
to change the pattern of the co-polarized component. This in turn
results in the rotation of polarization in the scattered far fields, which
is characteristic of the chiral materials.
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