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Abstract—In this paper, new circuit models are used to calculate the
induced fields in biological media exposed to an incident plane wave
in the two-dimensional cases. These models represent the induced
fields in the medium using the lossy long transmission line model
[1]. The voltages and currents in the circuit model simulate the
electric and magnetic fields in the medium. The response of the
medium to the incident wave is represented by equivalent conduction
and polarization current sources in the medium. These currents are
used as the excitation sources in the circuit model from which the
required induced fields are obtained. An accurate absorbing impedance
boundary condition for open boundaries is used which considerably
reduces the matrix dimensions. The validity of these models is
tested in the problem of absorption of E- and H-waves by biological
multilayered cylinders. Results are compared with available analytical
and numerical solutions.

1. INTRODUCTION

Consider the problem of plane polarized wave incident on an
inhomogeneous biological body of arbitrary cross-section. The body
is placed along the z-axis, in free space, as shown in Figure 1. The
time dependence is taken to be exp(jωt) and there is no variation
with respect to z-direction. Two cases are considered here, the case of
incident polarized E-wave and that of the polarized H-wave.

In case of incident polarized E-wave (Ei
z, H

i
x), the incident electric

field is given by, Ei
z = e−jky, and from Maxwell’s curl equations for

the incident field, we get,

∂y(Ei
z) = −jωµo(H i

x) (1)
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Figure 1. Problem of absorption of a plane wave by biological
cylinder.

∂y(H i
x) = jωεo(Ei

z) (2)

while for the total fields (incident ‘i’ +induced ‘d’), we have,

∂x(Ei
z + Ed

z ) = jωµo(Hd
y ) (3)

∂y(Ei
z + Ed

z ) = −jωµo(H i
x +Hd

x) (4)

∂x(Hd
y ) − ∂y(H i

x +Hd
x) = jωε∗(Ei

z + Ed
z ) (5)

where ε∗ =
(
ε− j σ

ω

)
, is the complex permittivity.

Substituting Equations (1) and (2) into Equations (3)–(5) we get,

∂x(Ed
z ) = jωµo(Hd

y ) (6)

∂y(Ed
z ) = −jωµo(Hd

x) (7)

∂xH
d
y − ∂yH

d
x = jωε∗Ed

z + Jex (8)

where
Jex = jωεo(ε∗r − 1)Ei

z (9)
Equations (6)–(8) show that the induced fields can be obtained by
solving Maxwell’s equations in the region of the medium which is exited
by an excitation current density Jex, representing the polarization and
conduction current sources in the medium [2], and is given by Equation
(9).

The set of Equations (6)–(8) can be written in the from,

∂xVz = −ZIx (10)
∂yVz = −ZIy (11)

∂xIx + ∂yIy = −Y Vz + Jex (12)
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Figure 2. Region under study for the problem.

where

Ix ≡ −Hd
y , Iy ≡ Hd

x , Vz ≡ Ed
z (13)

Z = jωµo, Y ≡ jωε∗ (14)

2. CIRCUIT MODEL AND ANALYSIS

Consider the region under study which contains the 2-dimensional
biological body of complex permittivity ε∗(x, y), which is bounded by
an arbitrary boundary Γ1.

To solve for the induced fields, the region is divided into N square
cells of small dimensions h × h as shown in Figure 2. For a cell (i, j)
in the medium, the symmetry of Equations (10)–(12) with respect to
the two main directions x and y suggests the two cross-linked long
transmission lines as shown in Figure 3 [3]. In this model, Equations
(10) and (11) represent the relation between shunt voltages, while
Equation (12) represents conservation of current at the cross nodes.
The values of the characteristic impedance Zc and the propagation
constant γ are given by [1],

Zc(i, j) =
√
Z/Y = Rc + jXc =

√
µo

ε∗(i, j)
(15)

γ(i, j) =
√
ZY = α+ jβ = jω

√
µoε∗(i, j) (16)
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Figure 3. E-wave representation for node (i, j).

where

Rc =

√
µo

εo

(1 +
√

1 + T 2)
2(1 + T 2)

(17a)

Xc =

√
µo

εo

(1 −
√

1 + T 2)
2(1 + T 2)

(17b)

α2 =
1
2
ω2µoεo

(√
T 2 + 1 − 1

)
(17c)

β2 =
1
2
ω2µoεo

(√
T 2 + 1 + 1

)
(17d)

and T = σ
ωε .

Using these values the long transmission line (LTL) series
impedance Zs(i, j), and the parallel admittance Yp(i, j), are given by
[1],

Zs(i, j) = Zc tanh
(
γ(i, j)h

2

)
= R+ jX (18a)

Yp(i, j) =
2
Zc

sinh (γ(i, j)h) = G+ jB (18b)

where

R =
Rcη1

(
1 + η2

2

)
−Xcη2

(
1 − η2

1

)
1 + (η1η2)2

(19a)

X =
Rcη2

(
1 − η2

1

)
+Xcη1

(
1 + η2

2

)
1 + (η1η2)2

(19b)
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G =
Rc sinh(αh) cos(βh) +Xc sin(βh) cosh(αh)

R2
c +X2

c

(19c)

B =
Rc sin(βh) cosh(αh) −Xc sinh(αh) cos(βh)

R2
c +X2

c

(19d)

and η1 = tanh
(

αh
2

)
, η2 = tan

(
βh
2

)
.

The node excitation current source Iex(i, j) represents the induced
polarization and conduction currents and is given by,

Iex(i, j) = Yp(i, j) [ε∗r(i, j) − 1]Ei
z(i, j) (20)

The relation between the shunt voltage V (i, j) at node (i, j) which is
surrounded by the four cells (i− 1, j), (i+ 1, j), (i, j− 1) and (i, j+ 1),
is given by,

−Ys(i, j − 1)V (i, j − 1) − Ys(i− 1, j)V (i− 1, j) + Ya(i, j)V (i, j)
−Ys(i+ 1, j)V (i+ 1, j) − Ys(i, j + 1)V (i, j + 1) = Iex(i, j) (21)

where
Ys(i, j − 1) =

1.0
Zs(i, j) + Zs(i, j − 1)

(22)

is the admittance connected between the two adjacent nodes (i, j) and
(i, j − 1). The values of Ys(i − 1, j), Ys(i + 1, j), and Ys(i, j + 1) are
obtained in the same manner, while the value of admittance Ya(i, i) is
given by,

Ya(i, i) = Ys(i, j−1)+Ys(i−1, j)+Ys(i+1, j)+Ys(i, j+1)+Yp(i, i) (23)

which represents the sum of all admittances connected to the node
(i, j).

For the free space outside the medium, α = 0, β0 = ω
√
µoεo and

Iex = 0, so that Equation (21) can by written as,

−V (i, j−1)−V (i−1, j)+(4.0−ξ)V (i, j)−V (i+1, j)−V (i, j+1) = 0
(24)

where
ξ =

−Yp

Ys
= 8 sin2

(
γh

2

)
(25)

Equations for cells at boundaries Γ1 and Γ2 can be obtained easily in
the same manner.

For the case of incident plane polarized H-wave (H i
z, E

i
x), we have

H i
z = e−jky, and the equations governing the induced fields in the
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medium can be derived in same manner and are given by,

−∂x(Hd
z ) = jωε∗Ed

y (26)

∂y(Hd
z ) = jωε∗(Ed

x) + jωε∗
(ε∗r − 1)
ε∗r

Ei
x (27)

∂xE
d
y − ∂yE

d
x = −jωµoH

d
z (28)

These equations can be written in the form,

∂x(Iz) = −Y Vy (29)
∂y(Iz) = −Y (Vx) + Iex (30)

∂xVy + ∂yVx = −ZIz (31)

where

Vx ≡ −Ed
x, Vy ≡ Ed

y , Iz ≡ Hd
z (32)

Equations (29)–(31) suggest the two crossed ∂-form circuit model [4]
shown in Figure 4.

Iex

zz H)j,i(I =

'R

’G

z
x

y

xx E)j,i(V =

'X
'X

'R

'R

'R'G

'G'G

'B

'B

'B

'B

yy E)j,i(V =

'X 'X

Figure 4. H-wave circuit model representation.

The characteristic impedance and the propagation constant are
given as before in Equations (15)–(17), and in this case the series
impedance Z ′

s = 4(R′+jX ′) and the parallel admittance Y ′
p = G′+jB′

are given by,

Z ′
s = Zc sinh(γh) (33)

Y ′
p =

1
Zc

tanh
(
γh

2

)
(34)
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and

R′ =
1
4

[Rc sinh(αh) cos(βh) −Xc sin(βh) cosh(αh)] (35)

X ′ =
1
4

[Rc sin(βh) cosh(αh) +Xc sinh(αh) cos(βh)] (36)

G′ =
Rcη1(1 + η2

2) +Xcη2(1 − η2
1)

(R2
c +X2

c ) (1 + (η1η2)2)
(37)

B′ =
Rcη2(1 − η2

1) −Xcη1(1 + η2
2)

(R2
c +X2

c ) (1 + (η1η2)2)
(38)

In this case, equation of the loop current Iz(i, j) for mesh representing
node (i, j) is given by,

−Iz(i, j − 1)Zx(i, j) − Iz(i− 1, j)Zy(i, j) − Iz(i+ 1, j)Zy(i+ 1, j)
−Iz(i, j + 1)Zx(i, j + 1) +

[
Z ′

s + Zx(i, j) + Zy(i, j) + Zx(i, j + 1)
+Zy(i+ 1, j)] Iz(i, j) = Vex(i, j) (39)

where

Vex(i, j) =
[
ε∗r(i, j) − 1
ε∗r(i, j)

]
Ei

x(i, j) (40)

and

Zx(i, j + 1) =
1.0

Y ′
p(i, j) + Y ′

p(i, j + 1)
(41)

is the impedance connected between the two adjacent meshes (i, j) and
(i, j + 1). The values of all impedances Zx and Zy are obtained in the
same manner.

Note that in the circuit, the excitation voltage source Vex is
replaced by an equivalent current source Iex, given by,

Iex(i, j) = Y ′
p(i, j)

[
ε∗r(i, j) − 1
ε∗r(i, j)

]
Ei

x(i, j) (42)

For the free space outside the medium, the values of Z ′
s and Y ′

p are the
same for all meshes, and Equation (39) can by written as,

[−Iz(i, j−1)−Iz(i−1, j)−Iz(i+1, j)−Iz(i, j+1)]+[4.0−ξ] Iz(i, j) = 0
(43)

The N equations relating the node voltages in case of the incident
polarized E-wave or the loop currents in case of the incident polarized
H-wave can be arranged in the matrix form

[A] [B] = [C] (44)
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where [A] is a banded matrix (with five diagonal vectors), which
represent the admittance matrix ,in case of incident E-wave, or the
impedance matrix, in case of incident H-wave. [C] is the excitation
vector. [B] is the required induced field in each case.

The last system of equations is solved to get the unknown induced
field. The total field at any point can be found by superposition of the
incident and the induced fields at that point.

3. BOUNDARY CONDITIONS

Different boundary conditions which are used in the previous two-
dimensional models are described in many papers [5, 6]. Symmetry
plane is represented by a magnetic wall at which tangential component
of the magnetic field vanishes, so, an open circuited boundary, can
describe effectively the plane of symmetry and only one part of the
two symmetric parts of the problem need to be modeled.

Open boundary can be terminated by the absorbing impedances
[6] given by,

Zter,x = −Ez

Hy
= − Ez

Hφ cosφ
=
Zter

cosφ
(45)

at a plane x = xo and,

Zter,y =
Ez

Hx
= − Ez

Hφ sinφ
=
Zter

sinφ
(46)

at a plane y = yo, where, φ is the angle of incidence, and

Zter,x = Zter,y ≈ Zc (47)

where Zc =
√

µo

εo
is the characteristic impedance of vacuum.

For E-wave, an accurate boundary impedance termination is given
by [7],

Zter = jZc
H2

o(kr)
H2

o
′(kr)

(48)

where H2
o is the second Hankel function of order 0. This absorbing

boundary is proved to give accurate results at smaller distance (kd ≈
1.0) between the medium and the outer terminating boundary.

Note that when the termination boundary is at sufficient large
distance from the body, asymptotic forms of Hankel function and its
derivative lead to Zter ≈ Zc.
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Figure 5a. Total electric field |Ez| along y-axis for homogeneous
muscle cylinder of radius 15 cm, εr = 72, σ = 0.9 S/m, illuminated by
E-wave, 100 MHz.

4. RESULTS AND COMMENTS

To test the validity of the model, consider the case of two layered
cylinder with an inner layer of radius 7.85 cm, and an outer layer of
radius 15 cm. A grid of 21 × 21 squares is used to model this body.

Figure 5a shows the total electric field Ez along the vertical
diameter of a homogeneous muscle cylinder (εr1 = εr2 = 72, σ1 = σ2 =
0.9 S/m), exposed to E-wave at 100 MHz. These results are compared
with the exact series solution [2] and FD-TD method [8]. Figure 5b
shows the obtained values of the total field along the horizontal axis
for the same body.

Figures 6a and 6b show the results for a fat-muscle cylinder with
an inner layer of muscle (εr1 = 72, σ1 = 0.9 S/m) and an outer layer
of fat (εr2 = 7.5, σ2 = 0.048 S/m), exposed to E-wave at 100 MHz.
Results are compared with the FD-TD method [8] and the exact
solution [9].

Figures 7a, 7b and 7c show the results for the same fat-muscle
cylinder but exposed to 100 MHz H-wave.

In the last examples, three sources of error in the model exist;
the first is the staircase approximation for the curved surface of the
cylinder, the second is the approximation of the absorption boundary
conditions, which is greatly minimized when using the described
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Figure 5b. Total electric field |Ez| along x-axis for homogeneous
muscle cylinder of radius 15 cm, εr = 72, σ = 0.9 S/m, illuminated by
E-wave, 100 MHz.
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Figure 6a. Total electric field |Ez| along y-axis for muscle-fat cylinder
of radii 7.85 cm and 15 cm, εr1 = 72, εr2 = 7.5, σ1 = 0.9 S/m,
σ2 = 0.048 S/m illuminated by E-wave, 100 MHz.
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Figure 6b. Total electric field |Ez| along x-axis for muscle-fat cylinder
of radii 7.85 cm and 15 cm, εr1 = 72, εr2 = 7.5, σ1 = 0.9 S/m,
σ2 = 0.048 S/m illuminated by E-wave, 100 MHz.

absorbing boundary at Γ2. The last is the approximation made in
the values of the propagation constant in different directions. In two-
dimensional model the propagation constants in the two directions of
the transverse plane are locally equal, where the propagation constant
in the network is approximated by k =

√
2kx =

√
2ky [3], so, if the

actual direction of propagation is in the diagonal direction of the model,
the velocity of the wave in the model will coincide with the actual
velocity in the medium. But in case of axial propagation, where the
wave actually propagates in one of the network directions, the error
depends on the ratio (h/λ) and the ratio of the velocity of waves in
the network to the actual medium velocity (vn/v = ω/knv) can be
estimated from the relation [10],

sin
(
knh

2

)
=

√
2 sin

(
ωh

2v

)
(49)

which shows that, the ratio (vn/v) varies from (1/
√

2) at h/λ = 0 to 0.5
at h/λ = 0.25, and the model has a pass-bands filter characteristics
where no propagation can occur in the network for frequencies over
(h/λ) = 0.25.
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Figure 7a. Total electric field |Ex| along y-axis for muscle-fat cylinder
of radii 7.85 cm and 15 cm, εr1 = 72, εr2 = 7.5, σ1 = 0.9 S/m,
σ2 = 0.048 S/m illuminated by H-wave, 100 MHz.
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Figure 7b. Total electric field |Ex| along x-axis for muscle-fat cylinder
of radii 7.85 cm and 15 cm, εr1 = 72, εr2 = 7.5, σ1 = 0.9 S/m,
σ2 = 0.048 S/m illuminated by H-wave, 100 MHz.



Progress In Electromagnetics Research, PIER 66, 2006 13

Incident

H- Wave

x

y

DC E

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

|Ey |

Exact This method FDTD

C D E

Figure 7c. Total electric field |Ey| along x-axis for muscle-fat cylinder
of radii 7.85 cm and 15 cm, εr1 = 72, εr2 = 7.5, σ1 = 0.9 S/m,
σ2 = 0.048 S/m illuminated by H-wave, 100 MHz.

5. CONCLUSION

In this work, the two-dimensional absorption problem is simulated
using circuit models. The main advantages of these models are the
simple representation of boundary conditions, the accurate results with
smaller matrix size and the simple sparse matrix which can be easily
derived and solved.

In most approximate methods, the effect of the absorbing
boundary is shown in the rear region of the medium, where
reflection from the approximate absorbing boundary greatly affects
its magnitude. In this work, the results show that this effect is greatly
minimized when using the impedance condition in Equation (48) for
the case of E-wave at distance of the order of (kd ∼ 1.0) from the
medium boundary. This means that accurate results are obtained using
reduced matrix size and computation time.
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