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Abstract—The properties of a grounded dielectric slab with double
negative (DNG) metamaterials are investigated in this paper.
Dramatically different dispersion curves of evanescent surface modes
(electromagnetic fields exponentially decay both in air and inside
the slab) are observed. They are highly dependent on the medium
parameters. As the counterpart of the improper complex leaky modes
in a double positive (DPS) medium, the complex modes in a DNG
medium are proved to be exclusively proper. They have exponentially
decaying fields in the air region and are termed complex surface modes.
It is found that there are an infinite number of complex surface modes
and they cannot be suppressed. The Poynting vectors of complex
surface modes are studied and it is proved that their integrals along
the transverse direction are simply zero. The complete mode spectrum
of the dielectric slab for both DPS and DNG media are tabled and
compared. Surface wave suppression is discussed and its necessary
and sufficient conditions are presented.

1. INTRODUCTION

Double negative (DNG) metamaterials have attracted intensive
interest in the last few years for their exotic properties, such as
negative refraction, reversed Doppler effect, reversed Vavilov-Cerenkov
effect, and the possibility of making perfect lens [1–14]. Theoretical
investigations and practical experiments are being well undergone by
many research groups over the world. Applications are found in RF
circuit design [11, 12], antenna size reduction [13, 14], resonance devices
[9, 10], etc.

The guided dielectric slab with a DNG medium has been studied
by several groups. [15] and [16] found that there are special regions
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for TM (transverse magnetic) modes where two different propagation
constants exist. [17] theoretically investigated the properties of a
planar two-layered waveguide, whose one layer is a double positive
(DPS) medium and the other is a DNG medium. Super slow-
waves with extremely short wavelengths were found whose fields
exponentially decay from the interface of the two slabs inside both
layers. These guided modes, termed as evanescent surface modes,
were also found by [18] and [19], respectively. The graphical solutions
of the real modes were reported in [20], but the evanescent surface
mode was missed. The grounded dielectric slab also supports complex
modes even for lossless media [21, 22]. P. Baccarelli and his colleagues
proposed the concept of surface wave suppression, which ensures the
absence of both ordinary and evanescent surface modes. This is very
attractive in view of taking the DNG medium as a potential substrate
candidate to reduce edge diffraction effects and enhance radiation
efficiency for microstrip antennas [23, 24].

In this paper, the authors focus on the properties of the evanescent
surface modes and the complex modes of the DNG media, both of
which belong to the proper mode spectrum. The evanescent surface
modes have exponentially decreasing fields in both air and dielectric
layer. Their dispersion curves can be dramatically different when
with different media parameters. Besides evanescent surface modes,
complex modes are found to be with a DNG medium. In Appendix A, it
is proved that the complex modes are exclusively proper and thus they
are termed complex surface modes. The complex surface modes have
high cutoff frequencies which means they exist only when the frequency
is lower than their respective cutoff frequencies. This property implies
two facts: an infinite number of complex surface modes exist at any
frequency and they cannot be suppressed. The investigation on the
Poynting vectors shows that their integral results along the longitudinal
directions are zero [10]. However, this by no means implies they are
unimportant. In fact, they contribute to the backward radiation and
affect the radiation pattern of an antenna made with DNG medium
[22]. Complete mode spectrum, including both proper and improper
modes, are tabled in this paper. It is desirable to know these spectra
when dealing with layered media or discontinuity problems using the
mode matching method. Surface wave suppression is also discussed.
The sufficient conditions in [23] are loosened to necessary and sufficient
conditions.

The paper is organized as follows: in Section 2 the graphical
representations of the eigen equations are drawn to show the possible
real roots; in Section 3 evanescent surface modes and their dispersion
curves are studied; complex surface modes and the Poynting vectors
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Figure 1. A grounded dielectric slab with lossless, isotropic and
homogeneous DNG medium (εr1 < 0, µr1 < 0).

as well as the dispersion diagrams including all proper and improper
modes are given in Section 4; Section 5 tables the complete mode
spectrum; Section 6 discusses the necessary and sufficient conditions
to suppress real surface modes; conclusions are drawn in Section 7;
proofs on the complex roots loci and the zero power flow are presented
in the Appendix.

2. EIGEN EQUATIONS AND GRAPHICAL SOLUTIONS

2.1. Eigen Equations

The structural setup of interest here is a grounded dielectric slab of
thickness d (see Fig. 1). Region I is with a DNG medium and region
II is air. It is well known that to ensure a positive stored energy in
the dielectric layer, passive DNG media must be dispersive and satisfy
constraints [7, 25]:

d [εr (ω)ω]
dω

> 1 and
d [µr (ω)ω]

dω
> 1 (1)

where εr and µr are relative permittivity and permeability.
However, the DNG medium considered here is still assumed to

be non-dispersive. This assumption is found to be acceptable since a
small dispersion of εr and µr can satisfy the inequalities. Furthermore,
these limitations can be overcome with active inclusions [17].

Using the transverse resonance method, the eigen equations for
TE and TM modes are listed as follows [26]:

µr1

γy1
tanh(γy1d) +

µr2

γy2
= 0 for TE (2)

γy1

εr1
tanh(γy1d) +

γy2

εr2
= 0 for TM (3)
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where

γ2
y1 = −k2

0εr1µr1 − γ2

γ2
y2 = −k2

0εr2µr2 − γ2 (4)

and k2
0 = ω2µ0ε0. One should notice in (4) that γy1 and γy2 are complex

numbers when the propagation constant in z-direction, γ = α + jβ, is
a complex number (α �= 0). To solve the equations, γyi (i = 1, 2) has

to be written as γyi = ±
√
−k2

0εriµri − γ2. The double-valued nature
of the square root imposes the branch cut issue. It does not matter
which sign γy1 uses since the sign of γy1 outside the hyperbolic tangent
cancels with the sign of γy1 inside the hyperbolic tangent as can be seen
in (2) and (3). The sign of γy2, however, does affect the solutions and
has significant physical meanings. The electromagnetic fields in the air
region bear the form of e−γy2y. A proper sign should be chosen to make
the real part of γy2 positive to ensure zero fields as y → ∞. According
to the definition of Riemann sheet in [27], this corresponds to a choice
of the top Riemann sheet. The solutions lying on the bottom Riemann
sheet are non-physical since they have exponentially increasing fields
in air. They are usually termed leaky modes and are still found to be
useful in applications [28].

2.2. Graphical Method

The graphical method is applied to find real roots. For ordinary surface
modes, γy1 = jky1 and γy2 = αy2, where both ky1 and αy2 are real
numbers. The eigen equations (2), (3), and (4) are rewritten as follows:

µr2

µr1
(ky1d) cot(ky1d) = −αy2d for TE (5)

εr2
εr1

(ky1d) tan(ky1d) = αy2d for TM (6)

(ky1d)2 + (αy2d)2 = (k0d)2(εr1µr1 − εr2µr2) (7)

The evanescent surface modes have exponentially decaying
electromagnetic fields in both air and dielectric layer. Therefore for
evanescent surface modes, γy1 = αy1 and γy2 = αy2, where both αy1

and αy2 are real numbers. The eigen equations are rewritten as follows:

µr2

µr1
(αy1d) coth(αy1d) = −αy2d for TE (8)

εr2
εr1

(αy1d) tanh(αy1d) = −αy2d for TM (9)
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(αy2d)2 − (αy1d)2 = (k0d)2(εr1µr1 − εr2µr2) (10)

Graphical representations of the above equations are shown in
Fig. 2. The index notation here follows [29]: only TE even modes
(but with odd indices, TE1, TE3, . . . ) and TM odd modes (but
with even indices, TM0, TM2, . . . ) can exist in a grounded dielectric
slab. Notice that in the first and second quadrants, αy2 is positive
and the fields exponentially decay in the air region (proper); in the
third and fourth quadrants, αy2 is negative and the fields exponentially
increase in the air region (improper). The x-axis is divided into two
segments. The right half is for ky1d, whose fields inside the dielectric
layer are sine/cosine standing waves (ordinary), while the left half
is for αy1d, whose fields inside the dielectric layer are exponentially
distributed (evanescent). The intersection in the second quadrant
represents the proper evanescent surface mode which does not exist
for a DPS medium. This can be seen from (5), (6), (8), and (9): the
difference for DPS and DNG media is a minus sign on the left sides
of these equations, which implies that one can get results for a DPS
medium by reflecting Fig. 2 along its horizontal axis. By doing this,
the intersection in the second quadrant will be in the third quadrant
which represents an improper mode.

Another important fact that can be seen from Fig. 2 is that the
ordinary surface wave solutions for a DNG medium are no longer
monotonic. It is clear from the subfigure in the left corner of Fig. 2(a)
that there are two intersections as the radius of the dashed circle
decreases, which corresponds to a decrease of frequency. Once the circle
has only one tangential point with the solid line, further decreasing
frequency will cause this mode to be cutoff. Similar occurrence happens
to TM modes in Fig. 2(b) in a more obvious way. These two possible
modes have two different power distributions. One has more power
flowing in the air region than in the dielectric region, making the total
power flow in the same direction as the phase velocity. The other is
in the opposite way and displays the backward property [30]. More
details on the Poynting vectors are addressed in Section 4.

3. EVANESCENT SURFACE MODES

As stated in Section 2, the proper evanescent surface mode does
exist with a DNG medium. It is the intersection in the second
quadrant. The normalized effective dielectric constant εeff = (β/k0)2
for evanescent surface mode is larger than εr1µr1 and εr2µr2. Therefore
γy1 =

√
−k2

0εr1µr1 − γ2 = k0
√
εeff − εr1µr1 is a pure real number.

The electromagnetic fields inside the dielectric layer are no longer
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Figure 2. Graphical solutions for TE and TM modes. Solid lines in
the first and fourth quadrants represent (5) or (6); solid lines in the
second quadrant represent (8) or (9); dashed line in the first and fourth
quadrants represents (7); dashed line in the second and third quadrants
represents (10). The medium parameters are: εr1 = −2.5, µr1 =
−0.5, εr2 = 1, µr2 = 1.
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Figure 3. Demonstration of field distribution for TE evanescent
surface mode. Medium and structure parameters are: εr1 =
−2.5, µr1 = −2.5, εr2 = 1, µr2 = 1, d = 0.01 m, k0 = 10 rad/m.
Solved propagation constant: γ/k0 = j4.27819.

sine/cosine standing waves, but with the form of Ae−αy1y + Beαy1y.
Fig. 3 shows a typical field configuration for evanescent surface modes.
Notice that the fields extend to the air region far away and decay very
slowly.

It is found that the dispersion curves for evanescent surface modes
are complicated and highly dependent on the medium parameters.
Fig. 4 shows two dispersion diagrams for TE1 mode with different
medium parameters. The curves represent the intersection points of
the dashed line and the first solid branch in Fig. 2(a), including the
part in the second quadrant. The solid line in Fig. 4 is for proper
modes while the dotted line is for improper mode, which is the set of
intersections in the fourth quadrant in Fig. 2(a). The dashed lines in
both figures depict the value of

√
εr1µr1. They are the watersheds by

which one can tell the evanescent surface mode from ordinary ones.
In Fig. 4(a), the evanescent surface mode has low cutoff frequency.

As the frequency increases, the ordinary surface mode becomes an
evanescent surface mode and its effective dielectric constant, εeff ,
keeps increasing. In Fig. 4(b), however, the situation is reversed. The
evanescent surface mode has a high cutoff frequency above which it
becomes the ordinary surface mode. At the low frequency range, the
evanescent surface mode has an extremely large εeff that decreases
rapidly as the frequency increases. One can refer to the subfigures
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Figure 4. Two possible dispersion curves for TE proper surface modes
(solid lines) and TE improper leaky modes (dotted lines). The dashed
line, representing

√
εr1µr1, is the watershed for evanescent surface

mode and ordinary surface modes.
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of Fig. 4 to check the validations. The reason for such significantly
different dispersion curves is that with DNG metamaterials, one not
only can make εr and µr simultaneously negative but also can let their
absolute values be less than unity [19]. From (5) and Fig. 2(a), it is
easy to see that the crossing point of the first solid branch TE1 with
the x-axis is fixed at (π/2, 0) while the crossing point with the y-axis
noted as ‘A’ in Fig. 2(a) is (0, |µr2/µr1|). With a conventional DPS
medium, µr1 is always equal to unity, or slightly greater or smaller
than unity as in the case of paramagnetic or diamagnetic materials.
With metamaterials, µr1 is no longer confined near unity and the
intercept with the y-axis may change significantly. This change affects
the possible intersections of the first solid line and the dashed line in
Fig. 2(a) and finally results in dramatically different dispersion curves.
By referring to Table 2, it is easy to see that for TE case, |µr2/µr1| = 1
is the critical condition for these two different shapes.

4. COMPLEX SURFACE MODES AND POYNTING
VECTORS

It is well known that the complete proper mode spectrum of a DPS
dielectric slab include discrete surface modes and continuous radiation
modes, both of which are real modes [31, 26]. With a DNG medium, it
is proved in Appendix A that all complex roots of the eigen equations
are on the top Riemann sheet. These solutions, termed complex surface
waves, form another set of proper modes. Unlike real surface modes,
complex surface modes have high cutoff frequencies which means that
they exist only when the frequency is below the cutoff frequencies.
Therefore, there are an infinite number of complex surface modes from
very low frequency all the way to high frequency.

Fig. 5 shows dispersion diagrams for both TE and TM modes,
including evanescent, ordinary, and complex surface modes. Also
included are real improper modes drawn as dotted lines. When the
frequency is much lower than the first cutoff frequency of the real
modes, all complex modes exist with very high normalized α and β.
As the frequency increases, β/k0 tends to decrease rapidly within a
very narrow frequency range followed by a steady increase until its
cutoff frequency. Notice that it is not monotonic and the value of β/k0

can be less than unity, a notable difference compared with real modes.
The curve of α/k0, however, monotonically decreases very fast as the
frequency increases. At the cutoff point, α reaches zero and β becomes
the starting point of the real mode. The real surface mode bifurcates
into two branches from the cutoff point. One branch has an increasing
β/k0 as the frequency goes high while the other has a decreasing β/k0.
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Figure 5. Dispersion diagrams for all modes. Solid line is for
normalized β of the proper modes. Dashed line is for normalized α
of the proper modes. Dotted line is for normalized β of the improper
modes. The medium parameters are: εr1 = −2.5, µr1 = −2.5, εr2 =
1, µr2 = 1.
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The branch with an decreasing β/k0 will reach unity shortly. This
property is expected from Fig. 2 and is explained in Section 2. Further
increasing frequency makes β/k0 of the second branch begin to rise.
However, it is no longer a proper mode. Notice that the figures are
plotted as functions of normalized electrical dimension of the slab,
therefore they can be used for inherently dispersive metamaterials, as
long as one interprets them as fixed operating frequency while the layer
thickness is changing [10].

The existence of an infinite number of complex surface modes at
any frequency seems to void the attempt to suppress surface modes
since they will carry away power and lower the radiation efficiency.
Fortunately, a careful examination on the Poynting vector eliminates
this possibility.

To derive the Poynting vector for complex modes, γy1, γy2, and γ
are assumed to be complex numbers:

γy1 = p + jq

γy2 = u + jv

γ = α + jβ (11)

The Poynting vector for TE modes is written as

STE
z =

1
2
ExH

∗
y =

|A|2
2

{
STE

z1 , for 0 < y < d

STE
z2 , for y ≥ d

(12)

where A is the field intensity and STE
z1 and STE

z2 are as follows:

STE
z1 (y, z) =

β + jα

2ωµr1
e−2αz [cosh(2py) − cos(2qy)] (13)

STE
z2 (y, z) =

β + jα

2ωµr2
e−2u(y−d)−2αz[cosh(2pd) − cos(2qd)] (14)

The total power flow in z-direction:

PTE
z (z) =

∫ d

0
Re

[
STE

z1 (y, z)
]
dy +

∫ ∞

d
Re

[
STE

z2 (y, z)
]
dy

=
βe−2αz

4ωµr1

[
sinh(2pd)

p
− sin(2qd)

q

]

+
βe−2αz

4ωµr2

[
cosh(2pd)

u
− cos(2qd)

u

]
(15)

Although the above equation of the total power flow is quite
complicated, the result turns out to be simply zero [10]. The detailed
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proof is given in Appendix B. Fig. 6 shows the dispersion diagram
and the Poynting vector for the TE3 mode. In Fig. 6(a), only the
complex mode exists (branch ‘A’) when the frequency is lower than
the cutoff frequency. The zero power flow in Fig. 6(b) shows that the
complex surface mode does not carry away power in z-direction. As
the frequency increases, two real surface modes appear from the cutoff
point. The top branch (branch ‘B’) carries a negative power flow and
has backward properties. When a waveguide operates at this mode,
its fields are largely confined inside the dielectric layer. The bottom
branch (branch ‘C’) carries a positive power flow and its fields extend
far away in the air region. Further increasing frequency causes the
fields in the air region to decay more slowly and eventually will reach
infinity. At that point, the radiation boundary conditions are violated
and the mode becomes improper.

To give out a clear picture of the power flow density, the Poynting
vector is drawn in Fig. 7. Dotted lines are the boundaries of a
conjectured box with dimension of 4 mm×20 mm. The power flow
has different directions in the air and inside the dielectric layer. The
average total power flowing out of the box via the left and right side
walls is equal to the power flowing into the box from the top wall. Now
assuming the top wall is moved to infinity, there is no power flowing into
the box from the top wall since the complex surface modes have zero
fields at infinity. According to the energy conservation law, the power
exchange via the left side wall P1 =

∫ ∞
0 Sz(y, z1)dy must be equal

to the power exchange via the right side wall P2 =
∫ ∞
0 Sz(y, z2)dy.

Note that the propagation constant along z-direction is now a complex
number γ = α + jβ where α �= 0, and P1 and P2 are related by
P2 = P1e

−2α(z2−z1). To ensure P1 = P2, the only possibility is
P1 = P2 = 0. Thus all the complex surface modes have zero power
flow in the z-direction. They do not transport any energy. [32], [33]
got similar conclusions, but both of them are for bounded structure.

5. COMPLETE MODE SPECTRUM OF DIELECTRIC
SLAB

Based on the discussion above and the proof in Appendix A, complete
mode spectrum for dielectric slab are ready to be made. Table 1 lists
proper and improper modes for both DPS and DNG media. Notice
that the infinite number of complex modes now belong to the proper
spectrum for a DNG medium. One cannot ignore these modes, but
it is also unnecessary to pay attention on all of them. From Fig. 5,
it is seen that within a narrow frequency band only several complex
surface modes are important and the others vanish either because they
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Figure 6. Dispersion diagram and the power flow in z-direction
for TE3 modes shown in Fig. 5(a). ‘A’ is for the complex surface
mode; ‘B’ is for top branch of the real surface mode; ‘C’ is for
bottom branch of the real surface mode. The medium parameters
are: εr1 = −2.5, µr1 = −2.5, εr2 = 1, µr2 = 1.
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Figure 7. The Poynting vector of a TE complex mode. Dotted lines
is the boundary of a conjectured box. Solid line is the boundary of
the dielectric slab and the air. The medium and structure parameters
are: εr1 = −2.5, µr1 = −2.5, εr2 = 1, µr2 = 1, d = 0.01 m, k0 =
100 rad/m. Solved propagation constant: γ/k0 = 2.09195 − j0.86938.

are already beyond cutoff or because their high α/k0 keep them trivial.
Notice that both the DPS and DNG media have proper and improper
ordinary real modes. They are the intersections in the first and the
fourth quadrants in Fig. 2.

Table 1. Complete mode spectrum for dielectric slab.

Spectrum DPS DNG

Discrete evanescent real mode

α = 0, β/k0 >
√

εr1µr1
Improper Proper

Discrete ordinary real mode

α = 0,
√

εr2µr2 < β/k0 <
√

εr1µr1
Proper/Improper Proper/Improper

Continuous radiation mode

α = 0, β/k0 <
√

εr2µr2
Proper Proper

Discrete complex mode

α �= 0, β �= 0
Improper Proper
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6. SURFACE WAVE SUPPRESSION

It is well known that the dielectric slab with a DPS medium has no
cutoff frequency for TM0 modes. For a DNG medium, both TE and
TM real modes have cutoff frequencies as shown in Fig. 2. Based on
this foundation, P. Baccarelli and his colleagues suggested the concept
of surface wave suppression. However, most conditions given in [24]
are sufficient conditions. To give designers more freedom, necessary
and sufficient conditions are given in Tables 2 and 3.

Table 2. Necessary and sufficient conditions for TE surface-wave
suppression. The dielectric constants for the air region are assumed
to be εr2 = 1, µr2 = 1 and thus are omitted. ‘Ord.’ stands for
ordinary surface modes and ‘Eva.’ stands for evanescent surface modes.
a = k0d

√
εr1µr1 − 1 is for εr1µr1 > 1, while b = k0d

√
1 − εr1µr1 is for

εr1µr1 < 1.

εr1µr1 < 1 εr1µr1 > 1

Ord. -

a < min
0≤x≤π/2

{
x

√
1 +

cot2 x

µ2
r1

}
or

max
0≤x≤π/2

{
x

√
1 +

cot2 x

µ2
r1

}

< a < min
π≤x≤3π/2

{
x

√
1 +

cot2 x

µ2
r1

}

Eva. |µr1| < 1

{
|µr1| > 1

a > 1
|µr1|

or


|µr1| < 1

a < min
0≤x≤(1−µ2

r1)−1/2

{
x

√
coth2 x

µ2
r1

− 1

}

As an example to demonstrate the procedure of deriving these
conditions, consider TE ordinary surface modes. From Fig. 2(a), it is
quite straightforward that the conditions must ensure no intersection
between the dashed circle and the solid lines in the first quadrant.
The radius of the dashed circle given by (7) is a = k0d

√
εr1µr1 − εr2µr2.

The minimum and maximum distances from the origin to the first solid
branch are assumed to be s1 and s2. The minimum distance from the
origin to the second solid branch is assumed to be s3. Then it is clear
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Table 3. Necessary and sufficient conditions for TM surface-wave
suppression. Others are the same as Table 2.

εr1µr1 < 1 εr1µr1 > 1

Ord. - a < min
π/2≤x≤π

{
x

√
1 +

tan2 x

ε2r1

}

Eva.

|εr1| ≤ 1 and

b > max
0≤x≤tanh−1|εr1|

{
x

√
1 − tanh2 x

ε2r1

}
|εr1| > 1

that the condition of suppressing TE ordinary surface modes is a < s1

or s2 < a < s3. The detailed formulae are:

a < min
0≤x≤π/2

{
x

√
1 +

cot2 x
µ2

r1

}
(16)

or

max
0≤x≤π/2

{
x

√
1 +

cot2 x
µ2

r1

}
< a < min

π≤x≤3π/2

{
x

√
1 +

cot2 x
µ2

r1

}
(17)

Notice that for the sake of simplicity the dielectric constants for
the air region are assumed to be εr2 = µr2 = 1, thus, they are omitted.
Using the same procedure, necessary and sufficient conditions for other
modes can be derived.

7. CONCLUSIONS

In this paper, an investigation on the mode properties of a grounded
dielectric slab with a DNG medium has been dealt with the aims of
getting complete spectrum and the necessary and sufficient conditions
for surface wave suppression.

The graphical method is applied to solve the eigen equations for
real roots. Different shapes of dispersion curves for evanescent surface
modes show that they are very sensitive to material parameters. The
complex modes are proved to be exclusively proper and have zero
power flow. They do not carry away energy in both transverse and
longitudinal directions. Complete mode spectra are tabled for both
DPS and DNG media. The sufficient conditions for surface wave
suppression are loosened to necessary and sufficient conditions.
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Although the considered medium is idealized and currently cannot
be realized, the results of this paper still unveil some exotic properties
as well as potential applications of the metamaterials.

APPENDIX A. PROOF OF THE PROPER COMPLEX
MODES

Equation (2) to (4) listed in Section II are used to find eigen value
γ = α+jβ. (2) and (3) are transcendental equations and have complex
roots even with lossless medium. Using the similar procedure in [26],
we will prove that all complex roots with DNG medium are located
on the top Riemann sheet. The TM case is used as example, but the
proof procedure as well as the conclusion are applied to the TE case
in exactly the same way.

With εr = εr1/εr2, (3) is rewritten as:

−εrγy2 = γy1 tanh(γy1d) (A1)

By using (11) and letting the real part and imaginary part of each side
of (A1) be equal (assuming εr is a real number), one gets [26]:

u = − 1
εr

p sinh(2pd) − q sin(2qd)
cosh(2pd) + cos(2qd)

(A2)

v = − 1
εr

q sinh(2pd) + p sin(2qd)
cosh(2pd) + cos(2qd)

(A3)

Substituting (11) into (4), one gets another two equations:

u2 − v2 = p2 − q2 + k2
0(εr1µr1 − εr2µr2) (A4)

uv = pq (A5)
Now we have four equations, (A2) to (A5), and four unknowns, p,

q, u, and v. Notice that changing p to −p, or q to −q, or both does
not change the validation of these four equations [26, 21]. Based on
this observation, we confine our discussion to the first quadrant of the
γy1 plane, or positive p and positive q.

For DNG media εr < 0, if u is negative, from (A2) one has
q sin(2qd) > p sinh(2pd). To ensure (A5), v must be negative as well
since both p and q are positive. According to (A3), q sinh(2pd) +
p sin(2qd) < 0. Thus one gets two conditions which contradict each
other:

sin(2qd) >
p sinh(2pd)

q
> 0 (A6)

− sin(2qd) >
q sinh(2pd)

p
> 0 (A7)
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We then prove that for DNG media u is always positive and all
complex roots are on the top Riemann sheet.

APPENDIX B. PROOF OF ZERO POWER FLOW

Based on the proof in Appendix I, it is easy to see that the proper
complex modes have zero power flow in z-direction. Similar conclusions
were given for plasma layer [34] and for improper leaky modes in open
and closed waveguides [35].

The Poynting vector in z-direction for complex TM modes is:

STM
z = −1

2
EyH

∗
x =

|A|2
2

{
STM

z1 , for 0 < y < d
STM

z2 , for y ≥ d
(B1)

where A is the field intensity and STM
z1 and STM

z2 are as follows:

STM
z1 (y, z) =

β − jα

2ωεr1
e−2αz [cosh(2py) + cos(2qy)] (B2)

STM
z2 (y, z) =

β − jα

2ωεr2
e−2u(y−d)−2αz[cosh(2pd) + cos(2qd)] (B3)

The power flow in z-direction of region 1 is:

PTM
z1 (z) =

∫ d

0
STM

z1 (y, z)dy

=
β − jα

4ωεr1
e−2αz

[
q sinh(2pd) + p sin(2qd)

pq

]

=
β − jα

4ωεr1
e−2αz

[
−εrv

cosh(2pd) + cos(2qd)
pq

]

= −β − jα

4ω
e−2αz

[
cosh(2pd) + cos(2qd)

uεr2

]
(B4)

In the above derivation, (A3) and (A5) have been used.
The power flow in z-direction of region 2 is:

PTM
z2 (z) =

∫ ∞

d
STM

z2 (y, z)dy

=
β − jα

4ω
e−2αz

[
cosh(2pd) + cos(2qd)

uεr2

]
(B5)

And the total power flow in z-direction is:

PTM
z (z) = PTM

z1 (z) + PTM
z2 (z) = 0 (B6)
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