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Abstract—A novel method is introduced to synthesize microstrip
Nonuniform Transmission Lines (NTLs) for matching between two
arbitrary complex frequency dependent impedances in a wideband or
multi-band frequency range. First, strip width or the characteristic
impedance function of the microstrip NTL is expanded in a truncated
Fourier series. Then, the optimum values of the coefficients of the
series are obtained through an optimization approach. The usefulness
of the proposed method is verified using some examples.

1. INTRODUCTION

Impedance matching is a very important concept in RF and Microwave
engineering. There is a significant interest to design matchers for
efficient matching between two real or complex frequency dependent
impedances in a wideband or multi-band frequency range. For
example, to design wideband amplifiers we need to transform the
impedances of a region of the Smith chart to another region [1, 2].
Using uniform transmission lines and stubs is the most straightforward
approach for matching between two complex impedances but in a
narrow frequency band [3, 4]. Also, using multi-section quarter-wave
or tapered transmission lines are the most straightforward methods
for matching in a wide frequency band [3, 4]. However, the synthesis
of tapered transmission lines is usually introduced only for matching
between two real and constant impedances and only for a highpass
frequency band. In this paper, we introduce a novel method to
synthesize microstrip Nonuniform Transmission Lines (NTLs, general
case of tapered TLs) for matching between two complex frequency
dependent impedances in a wideband or multi-band frequency range.
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First, strip width or the characteristic impedance function of the
microstrip NTL is expanded in a truncated Fourier series. Then, the
optimum values of the coefficients of the series are obtained through
an optimization approach. Utilizing truncated Fourier series expansion
does not create any discontinuity in the resulted NTL. The usefulness
of the proposed method is verified using some examples.

2. ANALYSIS OF NTLS

In this section the analysis of NTLs is reviewed. Figure 1 depicts the
longitudinal view and the cross section of a microstrip NTL, utilized as
an impedance matcher between two complex and frequency dependent
impedances ZL(ω) and ZS(ω). The width of strip is w(z) and also the
relative electric permittivity and the thickness of the substrate are εr

and h, respectively. The characteristic impedance of the NTL will be
a nonuniform function Zc(z).
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Figure 1. (a) The longitudinal view of a microstrip NTL as a matcher
(b) The cross section of the matcher at point z.

There are some methods to analyze the NTLs such as finite
difference [5], Taylor’s series expansion [6] and Fourier series expansion
[7]. Of course, the most straightforward method is subdividing NTLs
into K uniform electrically short segments with length

∆z = d/K � λmin =
c

fmax
√

εr
(1)

in which c is the velocity of the light and fmax is the maximum
frequency of the analysis. Then the ABCD parameters of the whole
of NTL is obtained from those of the segments as follows[
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where the ABCD parameters of the k-th segment are as follows

Ak = Dk = cos (2π∆θ) (3)
Bk = Z2

c ((k − 0.5)∆z) Ck = jZc ((k − 0.5)∆z) sin (2π∆θ) (4)

where
∆θ = 2π

∆z

λ
=

2π

c
∆z

√
εref (5)

is the electrical length of each segment. In (5), εre is the effective
relative electric permittivity of the middle of the k-th segment. Finally,
the input impedance of the matcher is determined as follows

Zin(ω) =
AZL(ω) + B

CZL(ω) + D
(6)

3. SYNTHESIS OF IMPEDANCE MATCHERS

In this section a general method is proposed to design optimally
the impedance matchers. Firstly, we consider one of the following
truncated Fourier series expansion for the normalized characteristic
impedance Zc(z) or the normalized width w(z)/h.

ln
(
Zc(z)

)
= ln(Zc(z)/Z0)

= C0 +
N∑

n=1

(Cn cos(2πnz/d) + Sn sin(2πnz/d)) (7)

ln (w(z)/h) = C0 +
N∑

n=1

(Cn cos(2πnz/d). + Sn sin(2πnz/d)) (8)

where Z0 is a reference impedance such as 50 Ω. Of course, choosing
each of the expansions in (7)–(8), the other function can be obtained
from the known formulas related to the microstrip concept [8]. The
truncated Fourier series expansion has been considered for w(z)/h as in
(7), in this paper. An optimum designed matcher has to have the input
reflection coefficient as small as possible in a defined large frequency
range. Therefore, the optimum values of the coefficients Cn and Sn

in (7) or (8) can be obtained through minimizing the following error
function related to M frequencies f1 < f2 < . . . < fM inside the
desired matching bandwidth.

Error =

√√√√ 1
M

M∑
m=1

|Γin(fm)|2 (9)
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where
Γin(f) =

Zin(f) − Z∗
S(f)

Zin(f) + ZS(f)
(10)

is the input reflection coefficient at frequency f . Moreover, defined
error function should be restricted by some constraints such as
mismatching at some undesired frequencies or easy fabrication. The
latter one may be as follows

(w/h)min ≤ w(z)/h ≤ (w/h)max (11)

where (w/h)min and (w/h)max are the minimum and maximum values
of w(z)/h, respectively, in the fabrication step. It is worth to note
that one can add some other terms such as “kz/d” to the expansions
(7)–(8) to prepare the possibility of having unequal values at z = 0
and z = d.

4. EXAMPLES AND RESULTS

Consider a microstrip NTL with εr = 3.5 with assumptions of
(w/h)min = 0.1 and (w/h)max = 10. We would like to design this
NTL as an impedance matcher in a frequency range of 2.0 to 4.0 GHz
(an octave bandwidth). We consider four cases as following for the
load and source impedances.
Case 1: ZL = 100 Ω resistor and ZS = 50 Ω resistor.

Figures 2–4 illustrate w(z), Zc(z) and also |Γin(f)|, respectively
for N = 1, 2, 3 and 4, considering d = 5 cm. It is observed that
the solutions converge rapidly with increasing N and the converged
solution (N = 4) have yielded a good impedance matching. It is
seen that the converged function Zc(z) alternates around the known
linear taper. Figures 5–6 illustrate the effect of the length of matcher,
considering N = 4. It is seen that as the length of matcher is chosen
larger its efficiency is increased. To show the possibility of designing
multi-band matcher, Figures 7–8 illustrate w(z) and Zc(z) and also
|Γin(f)|, respectively for an impedance matcher designed only for two
distinct frequencies 2.0 and 4.0 GHz, considering N = 4 and d = 5 cm.
Case 2: ZL = (100 Ω resistor parallel with 0.53 pF capacitor) and
ZS = 50 Ω resistor.
Case 3: ZL = 100 Ω resistor and ZS = (50 Ω resistor series with
1.06 pF capacitor).
Case 4: ZL = (100 Ω resistor parallel with 0.53 pF capacitor) and
ZS = (50 Ω resistor series with 1.06 pF capacitor).

The complex load or source impedances in the above cases have
quality factor equal to one at the center frequency. Figures 9–11
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Figure 2. The width function w(z) for impedance matcher in case 1,
considering d = 5 cm.

Figure 3. The characteristic impedance Zc(z) for impedance matcher
in case 1, considering d = 5 cm.
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Figure 4. The input reflection coefficient |Γin| for impedance matcher
in case 1, considering d = 5 cm.

Figure 5. The characteristic impedance Zc(z) for impedance matcher
in case 1, considering N = 4.
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Figure 6. The input reflection coefficient |Γin| for impedance matcher
in case 1, considering N = 4.

Figure 7. The width and characteristic impedance for impedance
matcher in case 1 (Double-Band) , considering d = 5 cm and N = 4.



22 Khalaj-Amirhosseini

Figure 8. The input reflection coefficient |Γin| for impedance matcher
in case 1 (Double-Band), considering d = 5 cm and N = 4.

Figure 9. The width function w(z) for impedance matcher in case 2,
considering d = 5 cm and N = 5.
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Figure 10. The characteristic impedance Zc(z) for impedance
matcher in case 2, considering d = 5 cm and N = 5.

Figure 11. The input reflection coefficient |Γin| for impedance
matcher in case 2, considering d = 5 cm and N = 5.
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Figure 12. The top view of the resulted microstrip NTL in the cases
1-4, considering d = 5 cm and N = 5.

illustrate w(z), Zc(z) and also |Γin(f)|, respectively for three Cases 2–4
simultaneously considering N = 5 and d = 5 cm. Again, it is observed
that the solutions have yielded a good impedance matching. However,
the resulted efficiency in these three cases is less than that of Case 1,
which is due to the Bode-Fano criteria [3]. Finally, Figure 12 depicts
top view of the resulted microstrip NTL in the Cases 1–4 considering
N = 5 and d = 5 cm.

5. CONCLUSION

A novel method was introduced to synthesize microstrip Nonuniform
Transmission Lines (NTLs) for matching between two arbitrary
complex frequency dependent impedances in a wideband or multi-band
frequency range. First, strip width or the characteristic impedance
function of the microstrip NTL is expanded in a truncated Fourier
series. Then, the optimum values of the coefficients of the series
are obtained through an optimization approach. Utilizing truncated
Fourier series expansion does not create any discontinuity in the
resulted NTL. The usefulness of the proposed method was verified
using some examples (Wideband and Double-band matching between
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two resistors along with and without capacitors). It is observed that
the solutions yield a good impedance matching and as the length of
matcher is chosen larger its efficiency is increased.
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