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Abstract—Based on a generalized Helmholtz’s identity, definitions
of an irrotational vector and a solenoidal vector are reviewed, and
new definitions are presented. It is pointed out that the well-known
uniqueness theorem of a vector function is incomplete. Although
the divergence and curl are specified, for problems with finite
boundary surfaces, normal components are not sufficient for uniquely
determining a vector function. A complete uniqueness theorem and its
two corollaries are then presented. It is proven that a vector function
can be uniquely determined by specifying its divergence and curl in the
problem region, its value (both normal and tangential components) on
the boundary.

1. INTRODUCTION

Existence, uniqueness and stability of solutions are of primary
importance for differential equations. In reality, the existence is
assured by physical considerations of the equations governing physical
processes and the physical sources. Uniqueness is the fundamental
for developing various solving techniques. It is well-known that the
existing uniqueness theorem of a vector function is given as: A vector
function F(r) in V enclosed by surface S, which is continuously
differentiable, and whose normal components are given over the
boundary S, is uniquely determined by its divergence and curl. In
equations, the solution to the system

∇× F(r) = s(r) (1a)
∇ · F(r) = c(r) (1b)

n · F(r)|r on S = n · F0(r)|r on S (1c)
† The author is currently with Agere Systems Inc.
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is unique. The terms on the right-hand sides are given [1, p. 314], [2,
Sect. 1.16].

This is a critical theorem of vector analysis, mathematical physics
and its applications to boundary problems of various disciplines such as
gravity theory and electromagnetism [3]. Intuitively, we question the
above uniqueness theorem as follows. It is hard to imagine that if both
divergence and curl are given explicitly, both parts of a vector function
can be determined just by its normal components on the boundary
surface that correspond to the divergence part. If the tangential
components over the boundary are undetermined, the vector may not
be unique since the boundary is just special part of the solution space.
The popular proof introduces the scalar potential directly from the
divergence equation of the difference vector equation [2, pp. 92–93].
But it is not difficult to notice that any difference vector function
always satisfies both solenoidal and irrotational equations. There is
no reason to introduce scalar potential only. In fact, although (1)
is consistent with the existing uniqueness theorem in electrostatics
that requires normal components on S, it is inconsistent with that
in magnetostatics that requires tangential components [4]. However,
both the electrostatics and magnetostatics are special cases of (1) with
s = 0 or c = 0. Therefore, the above existing theorem is questionable.

In order to resolve this theoretical difficulty, the well-known
Helmholtz’s theorem is extended to piecewise continuously differential
vector functions first, then the definitions of irrotational and solenoidal
vectors are revisited. It is found that the existing definitions are
incomplete. The incompleteness is the root cause of the above
questionable uniqueness theorem. Complete definitions are given as
an important theoretical application of the generalized Helmholtz’s
theorem. Then, a complete uniqueness theorem is proposed in
Section 3. The new conditions of the introduction of potentials are
discussed and some comments are made on the proofs of exiting
uniqueness theorem in the last section to complete the paper.

2. DEFINITIONS OF IRROTATIONAL AND
SOLENOIDAL FIELDS

In vector analysis, Helmholtz’s decomposition theorem is a very
important decomposition according to the divergence and curl
characteristics of a vector function. There are many statements of
Helmholtz’s theorem [5–8] etc. Recently, in [9], it is extended to a
more general case for piecewise continuously differential vectors. It
states,
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Theorem 1. Any finite, integrable and piecewise continuously
differentiable vector function F(r) given in a space V enclosed by
S can be completely and uniquely decomposed into a sum of an
irrotational part and a solenoidal part. The two parts are independent.
Mathematically, it is the identity.

F(r) = Fi + Fs

= −∇
[∫

V

∇′ · F(r′)
4π|r − r′|d

3r′ +
∑

l

(∮
Sl

Fl(r′) · n
4π|r − r′|d

2r′
)]

+∇×
[∫

V

∇′ × F(r′)
4π|r − r′| d3r′ +

∑
l

(∮
Sl

Fl(r′) × n
4π|r − r′| d

2r′
)]

(2)

where a partial volume Vl is bounded by surface Sl. In each partial
volume, F is continuously differentiable.

Of course, all vectors must be second order differentiable. In
electromagnetic theory, (2) could be explained as follows. The terms
in the first bracket represent scalar potentials due to volume charge
sources and surface (layer) charge distributions on all discontinuous
surfaces. Similarly, the terms in the second bracket are vector
potentials due to volume current sources and surface current
distributions. Many authors have claimed that Helmholtz’s theorem
is equivalent to the uniqueness theorem of a vector function [3, 2].
This opinion is questioned in three aspects in [9]. First, if it is true,
there is no need to prove the uniqueness theorem by introducing scalar
potentials; secondly, it is imperative to notice that all the distributions
include free and induced sources [4, Chap. III and IV]. From this point
of view, the above theorem does not imply the uniqueness theorem
since it is well-known that the induced sources should not be specified;
thirdly, there are other vector boundary value problems in which
divergence and curl are not given explicitly. Of course, the correct
uniqueness theorem must be compatible with (2) since the solutions to
any problems should satisfy the decomposition identity as vectors. As
an important theoretical application of (2), let’s revisit the definitions
of irrotational and solenoidal vectors.

Concepts in vector analysis were mostly introduced with the
needs of the development of electromagnetic theory in the 18th
century. In electromagnetic theory, divergence and curl of a vector
are incorporated into the well-known Maxwell’s equations, the basic
physical laws governing electromagnetic behaviors. Especially, the
concepts of irrotational and solenoidal fields are introduced and used
widely in electrostatics and magnetostatics. Traditionally, in all
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references [1, 10, 8], an irrotational vector is defined by the equation

∇× F = 0 (3)

and a solenoidal vector is defined by

∇ · F = 0 (4)

(3) and (4) are considered as the necessary and sufficient conditions for
introducing scalar and vector potentials [6]. However, as mathematical
concepts the definitions are somewhat intuitive, they are not reviewed
according to the above decomposition theorem. The first glance shows
us more conditions are needed. Then, we propose the following precise
definitions.

Definition 1. A finite, integrable and piecewise continuously
differentiable vector F defined in a finite region V bounded by a surface
S, is irrotational if and only if

∇× F = 0 (5)

in each uniform partial volume Vl of V , in which the vector is
continuously differentiable, and

n × F = 0 (6)

on the surface S.

In order to be irrotational, the volume integral and the surface
integrals of the second term of (2) must vanish , that is Fs ≡ 0. (5)
assures the volume integral be zero. It seems that it requires that all
tangential components on all discontinuous surfaces Vl must be zero.
However, if no free surface sources on Sl (5) implies the boundary
condition between two interior adjacent volumes Vp and Vq [4],

np × Fp + nq × Fq = 0 (7)

Notice that np = −nq. So only the tangential component on S has
to be specified. The tangential component of F on S must vanish
everywhere in order to be applicable to any shapes in general cases,
which leads to the requirement (6). (6) is not derivable from (5).
According to (2), (5) is even impossible at any point in V without (6)!
The physical meaning is also very clear. There must be no surface
current sources on S. Similarly, we have
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Definition 2. A finite, integrable and piecewise continuously
differentiable vector F defined in a region V bounded by a finite surface
S, is solenoidal if and only if

∇ · F = 0 (8)

in each uniform partial volume Vl of V , in which the vector is
continuously differentiable, and

n · F = 0 (9)

on the surface S.

If S goes to infinity, the requirement |r|2|F| being bounded is
equivalent to (6) and (9).

An immediate conclusion of the above definitions and the identity
(2) is the following theorem about a null vector,

Theorem 2. If a vector function is both irrotational and solenoidal,
it must be a null vector function.

The above theorem was recognized in free space by many authors
[10]. However, the conditions (6) and (9) were not noticed by
those authors. In fact, the conditions are implied in the infinite
boundary requirements. Note that a nonzero vectorial constants can
not be uniquely decomposed into irrotational and solenoidal parts
everywhere. Although the divergence and curl of nonzero vectorial
constants are zero, these nonzero vectorial constants are excluded
by the requirements (6) and (9) on S. Fortunately, in real physical
problems, constant vectors do not exist except some approximations
in certain areas.

3. A COMPLETE UNIQUENESS THEOREM OF A
VECTOR FUNCTION

Based on the above Theorem 2, we propose a complete uniqueness
theorem of a vector function.

Theorem 3. A vector function F(r) in V bounded by the surface S
can be uniquely determined by its divergence, curl and boundary values
(both normal and tangential components) over the boundary S, i.e.,
the solution to the system

∇× F(r) = s(r) (10a)
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∇ · F(r) = c(r) (10b)
F(r)|r on S = F0(r)|r on S (10c)

is unique.

In physics, all real sources are at least first order differentiable,
therefore the vector fields are second order differentiable. Helmholtz’s
theorem can be employed.

Proof. Assume there are two different solutions F1(r) and F2(r).
According to (10), the difference vector function Fd(r) = F1(r)−F2(r)
satisfies the homogeneous equation system

∇× Fd(r) = 0 (11a)
∇ · Fd(r) = 0 (11b)

Fd(r)|r on S = 0 (11c)

Therefore, Fd is both irrotational and solenoidal according to the new
definitions and must be a zero vector function according to Theorem
2. The solution is then unique.

It is very interesting to point out that D. A. Woodside wrote
‘. . . whose tangential and normal components on the closed surface S
are given. . .’ [11, Theorem H2]. Unfortunately, his Theorem U that
requires normal components is obviously contradictory to his Theorem
H2. Although he mentioned the authors of [6, 10], those authors never
made such a statement in their versions of uniqueness theorems. He
did not provide good reasons although he repeated it in his Theorem
V for four-vector fields in Minkowski space. It is noticeable that the
above proof is completed without the concepts of either scalar or vector
potentials. The introduction of potentials will be discussed in the last
section.

Two corollaries can be immediately deduced.

Corollary 1. An irrotational vector function F(r) can be uniquely
determined by its divergence in V and normal components (since the
tangential components are zero) over the boundary S. That is, the
solution to the mathematical problem

∇× F(r) = 0 (12a)
n × F(r)|r on S = 0 (12b)

∇ · F(r) = c(r) (12c)
n · F(r)|r on S = n · F0(r)|r on S (12d)

is unique.
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Corollary 2. A solenoidal vector function F(r) can be uniquely
determined by its curl and tangential components over the boundary
S (since the normal components are zero). That is, the solution to the
mathematical problem

∇× F(r) = s(r) (13a)
n × F(r)|r on S = n × F0(r)|r on S (13b)

∇ · F(r) = 0 (13c)
n · F(r)|r on S = 0 (13d)

is unique.
The first corollary will have applications in electrostatics; and the

second in magnetostatics.

4. COMMENTS ON THE EXISTING UNIQUENESS
THEOREM AND ITS PROOFS

As seen, the above complete uniqueness theorem requires both
tangential and normal values as boundary conditions. The proof
does not need the concept of potentials. However, the proof of the
existing uniqueness that requires normal components relies on the
introduction of scalar potentials. All the existing proofs introduce
a scalar potential from the zero divergence of the difference vector
of two possible solutions [1, 2, 11]. Now the proof is questionable if
the new theorem is correct. What is the problem? Obviously the
difference vector has both zero divergence and zero curl. Which
potential, scalar φ or vector A, should be introduced? Different
potentials require different boundary conditions although traditionally
only scalar potential is used [2]. According to the new definitions,
the scalar potential in [2, p. 93] cannot be introduced without zero
tangential boundary condition. This is the mistake that has been used
in all literatures. Let’s review the introduction of potentials first.

Literally, we can still use scalar potential φ and vector potential
A because of the zero identities,

F = −∇φ + ∇× A (14)

In the existing proof [2],
F = −∇φ (15)

is used for the difference vector. (15) indicates that the second term
in (14) must be zero. That is the solenoidal part in the Helmholtz’s
decomposition theorem (2) must vanish. We now know that this is
the case in which the conditions (5) and (6) described in the definition
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(1) must be satisfied. The difference vector satisfies (5). (6) indicates
the tangential components are specified as well. Therefore the new
uniqueness theorem is proven in the traditional way. Similarly, if we
want to introduce the vector potential A only, (8) and (9) must be
satisfied. Although it is not necessary, the proof process is summarized
as follows to complete the discussions.

Proof. The difference vector Fd satisfies,

∇× Fd = 0 (16a)
n × F

d|on S = 0 (16b)
∇ · Fd = 0 (16c)

n · F
d|on S = 0 (16d)

Based on both (16a) and (16b), the scalar potential can be used for
the difference vector,

Fd(r) = F1(r) − F2(r) = −∇φd �≡ 0 (17)

Substituting (17) into (16c) and (16d) yields,

∇2φd(r) = 0 (18a)

n
∂φd(r)

∂n
|r on S = 0 (18b)

Using the following Greens theorem [12, p. 488],∫
V

[
φd∇2φd + |∇φd|2

]
dV =

∫
S

φd
∂φd(r)

∂n
dS (19)

one has ∫
V
|∇φd|2 dV = 0 (20)

Notice that the Green’s theorem does not require any information
about interior surfaces. Discontinuities are allowed on the boundaries
between two interior regions [12, p. 488]. Although the surface integral
of (19) includes both φd and its normal derivative, only the normal
derivative associated with the vector is proper. Since |∇φd|2 ≥ 0, (20)
yields

Fd(r) = −∇φd ≡ 0 (21)

(21) contradicts with the assumption (17), thus the theorem is proved.
�
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Similarly, the theorem can be proven by introducing vector
potential of the difference vector or both scalar and vector potentials
of the original vector. All proofs will conclude the same theorem
consistently. The inconsistency in the existing theorems and its
proofs is resolved. It is worthy of investigating the impacts of
the newly proven uniqueness theorem on applications, especially in
electromagnetics. In fact, the new theorem is used in [13] to complete
the uniqueness theorem in dynamic theory of electromagnetics. It is
also noticed that the above classical vector field problem is described
as a special case of Hodge decomposition in the modern theory of
differential forms on manifolds [14, 15]. It will be interesting to extend
the present discussions to abstract spaces.
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