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Abstract—Theoretical results on the effect of antenna mutual
coupling (MC) on capacity of multiple-input multiple-output (MIMO)
wireless channels are presented in this paper with particular emphasis
on the case of high signal to noise ratio (SNR) scenario. Two
cases are considered, 1- channel capacity variations due to MC effect
on correlation properties and target average receive SNR and 2-
channel capacity variations due to MC effect on correlation properties
at fixed average receive SNR. It is shown that the effect of MC
on MIMO channel capacity can be positive or negative depending
on the propagation environment spatial correlation properties and
the characteristics of the transmitter and receiver MC matrices.
Conditions where MC has positive and negative effects on MIMO
channel capacity in the two considered cases are identified. Numerical
results for half wavelength dipole antenna supporting the theoretical
observations are presented.

1. INTRODUCTION

Utilizing the available spatial domain efficiently by using multi-element
antennas (MEA) has shown to be a promising direction to cope with
the increasing demands for high data rate wireless communications
in a practical way. Adaptive antenna and space diversity are two
tangible technologies that are enjoying the use of MEA. Deploying
MEA at both ends creates a multiple-input multiple-output (MIMO)
system that has shown astonishing increase in spectral efficiency and
significant improvement in signal detection [1, 2]. However, the
promising advantages of MIMO systems over traditional single antenna
systems depend on different parameters. Propagation environment,
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antenna array geometry and antenna element properties are among
these parameters.

The impact of propagation environment and antenna array
geometry on the performance of MEA wireless communications
systems have been extensively investigated, e.g., [3, 4]. On the
other hand, the influence of antenna element properties has been less
considered. Usually antenna element properties are either excluded
or ideal isotropic antenna elements are assumed for modeling and
studying the performance of MEA wireless systems. Mutual coupling
(MC) phenomena that appears when the antenna elements are closely
spaced is one of the parameters that strongly affect the performance of
these systems. The effect of MC in adaptive antenna array systems has
been extensively investigated and well understood, e.g., [5]. In adaptive
antenna array context, the MEA array is used to direct the antenna
array beam towards a desired user and null the undesirable ones. The
presence of MC between antenna elements results in deviation in the
antenna array beam, therefore, algorithms for eliminating MC effects in
adaptive antenna array systems are used, e.g., [6]. In spatial diversity
systems the MEA is used to create replica of the desired signal to
improve its detection in fading environments. The presence of MC
may increase or decrease the correlation between antenna elements and
consequently reduces or improves the effectiveness of spatial diversity
techniques [7]. However, in MIMO system context the effect of MC
is less understood. Research results have drawn different conclusions
concerning this effect. In [8, 9] it is shown that the presence of MC
between antenna elements has a negative impact on the capacity of
MIMO wireless channels. On the other hand, in [10, 11] it is shown
that the presence of MC between antenna elements is a desirable
phenomena to increase channel capacity through what is known as
pattern diversity.

This paper presents theoretical and numerical results on the effect
of MC on capacity of MIMO wireless channels with particular emphasis
on the case of high SNR scenario where the MIMO channel capacity
formula can be decomposed into individual quantities that can be
studied independently. Two cases are considered, 1- channel capacity
variations due to MC effect on correlation properties and target average
receive SNR and 2- channel capacity variations due to MC effect on
correlation properties at fixed average receive SNR. We show that there
is no contradiction between the reported results in literature since MC
may have a positive or negative impact depending on the propagation
environment spatial correlation properties and the characteristics of
the receiver and transmitter MC matrices. Conditions where MC
has positive and negative effects on MIMO channel capacity in the
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two considered cases are identified. We support our theoretical
observations by numerical results for half wavelength dipole antenna.

The rest of this paper is organized as follows: System model
description is given in Section 2. The MIMO channel capacity
including two ends antenna systems is given in Section 3. Numerical
results for half wavelength dipole antenna are presented in Section 4.
Our conclusions are drawn in Section 5.

2. SYSTEM MODEL

In order to account for antenna system effects, antenna system
parameters should be incorporated into the MIMO system model.
One common way to do that is by means of impedance matrices.
The transmitter and receiver antenna impedances in addition to
the feeding and loading impedances effectively represent the antenna
system parameters. It should be noticed that the concept of impedance
matrix, devised originally for lumped circuit elements, presents some
difficulties when applied directly to wave propagation problems [12].
However, useful insights into the MIMO system performance is gained
using this approach.

We consider a narrowband MIMO wireless communication system
with Nt transmit antennas and Nr receive antennas. The system
employs spatial multiplexing signaling scheme where different transmit
antenna element is fed with different stream of data. Taking into
account both the transmitter and receiver antenna systems, the
input-output relation of the MIMO wireless communication system,
schematically shown in Fig. 1, can be obtained by utilizing the
concepts of impedance matrix representation of linear networks [13].
In transmission mode the role of an antenna is to convert an applied
voltage signal or injected current signal into electromagnetic field.
Using simple circuit theory analysis, the terminal voltage at each
transmit antenna can be written as [12, 13]:

Vt = Zt(Zt + ZF )−1Voc
t (1)

where Zt ∈ CNt,Nt is the transmitter mutual impedance matrix,
ZF ∈ CNt,Nt is the feeding impedance matrix and Voc

t ∈ CNt,1 is
the applied open circuit voltages at each transmit antenna. Since
no channel knowledge at the transmitter side is assumed, uniform
power allocation strategy is employed. Under this power allocation
the transmitter open circuit voltages covariance matrix can be written
as:

RVoc
t

= E{Voc
t Voc∗

t } =
σ2

t

Nt
INt (2)
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Figure 1. Schematic block diagram of MIMO wireless communication
system including two ends antenna systems.

where (.)∗ denotes Hermitian transposition, σ2
t is the total transmitter

signal power and INt denotes identity matrix of size Nt × Nt.
In reception mode the same antenna has an opposite role. It is

used to convert an incident electromagnetic filed to an induced voltage
or current signal. Similarly, at the receiver side the terminal voltages
at each receive antenna can be written as [12, 13]:

Vr = ZL(ZL + Zr)−1Voc
r + Vn (3)

where Zr ∈ CNr,Nr is the receiver mutual impedance matrix, ZL ∈
CNr,Nr is the loading impedance matrix, Voc

r ∈ CNr,1 is the open
circuit voltage at each receive antenna and Vn ∈ CNr,1 is the thermal
noise voltage at each receive antenna with covariance matrix:

RVn = E{VnV∗
n} = σ2

nINr (4)

and σ2
n is the noise power at each receive antenna. The feeding and

loading impedance matrices represent the feeding and loading networks
in the transmitter and receiver ends, respectively. They both depend
on the antenna impedance matching at each end. For maximum power
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delivery the feeding and loading impedance matrices are matched to
the transmitter and receiver mutual impedance matrices, respectively,
i.e., ZF = Z∗

t and ZL = Z∗
r [12].

The transmitter terminal voltages and the receiver open circuit
voltages are related through the channel matrix as follows:

Voc
r = HVt (5)

where H ∈ CNr,Nt is the narrowband channel matrix normalized such
that 1

NrNt
‖ H ‖2

F = 1, where ‖ . ‖F denotes matrix Frobenius norm.
Normalization is performed in order to set the channel matrix average
power to unity. Substituting for the receiver open circuit voltages
from (5) and the transmitter terminal voltages from (1) into (3) we
can obtain the following relation:

Vr = ZL(ZL + Zr)−1

︸ ︷︷ ︸
Cr

HZt(Zt + ZF )−1

︸ ︷︷ ︸
Ct

Voc
t + Vn

= CrHCtVoc
t + Vn (6)

where Cr ∈ CNr,Nr and Ct ∈ CNt,Nt are the receiver and transmitter
MC matrices, respectively. It can be clearly seen that the effect of
the transmitter and receiver antenna systems on the MIMO wireless
communication system model is effectively represented by the two ends
MC matrices that depend on the two ends mutual impedance matrices
and the feeding and loading impedances. It is worthy to notice that
the two ends MC impedances depend on the array geometry, antenna
type, inter-element spacing and also near field scatterers [14]. They
can be practically quantified using two approaches, numerical methods
and measurement methods [12]. However, the later approach is less
practical due to its complexity and high cost while the numerical
methods can give very sufficient accuracy if all the affecting parameters
are included.

Now the covariance matrix of the receiver terminal voltages can
be written as:

Rvr = E{VrV∗
r} =

σ2
t

Nt
CrHCtC∗

tH
∗C∗

r + σ2
nINr (7)

3. CHANNEL CAPACITY

The error free spectral efficiency represents the maximum achievable
capacity by a communication system over a given channel realization
and power constraint. In MIMO systems, channel capacity is a
common performance measure that maps a channel realization to a
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non negative scalar whose relative magnitude indicates channel quality.
The capacity of the MIMO wireless communication system described
above, including two ends antenna systems, is defined as [15]:

c = max
f(Voc

t )
I(Voc

t ;Vr,H) (8)

where I(Voc
t ;Vr,H) is the mutual information between the transmitter

open circuit voltages, the receiver terminal voltages and the channel
matrix, respectively, and f(Voc

t ) is the probability distribution function
of the transmitter open circuit voltages. Under perfect channel state
information at the receiver side the mutual information between these
quantities can be written as:

I(Voc
t ;Vr,H) = H(Vr) − H(Vr|Voc

t ) (9)

where H(Vr) is the entropy of the receiver terminal voltages and
H(Vr|Voc

t ) is the conditional entropy of the receiver terminal voltages
given knowledge of the transmitter open circuit voltages. Since the
transmitter open circuit voltages are independent on the receiver
thermal noise voltages, (9) simplifies to:

I(Voc
t ;Vr,H) = H(Vr) − H(Vn) (10)

Therefore, maximizing the mutual information I(Voc
t ;Vr,H) is

reduced to maximizing the entropy of the transmitter open circuit
voltages. In order to maximize the channel capacity, the distribution of
the receiver terminal voltages should be zero mean circularly symmetric
complex Gaussian (ZMCSCG) [16]. This in turn implies that the
distribution of the transmitter open circuit voltages should be also
ZMCSCG. Under this condition the entropies of the receiver terminal
voltages and the receiver thermal noise voltages can be written as [15]:

H(Vr) = log2(det(πeRVr)) (11)

H(Vn) = log2(det(πeRVn)) (12)

Substituting into (8) we can obtain:

c = log2 det(INr +
ρ

Nt
CrHCtC∗

tH
∗C∗

r) (13)

where ρ = σ2
t

σ2
n

is the average receive SNR. (13) is the widely known
channel capacity formula of MIMO wireless channel but it also includes
the two ends antenna systems. Considering the case of high average
receive SNR scenario where the deployment of MIMO technology can
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offer its significant advantages, the channel capacity in (13) can be
approximated as:

ĉ ≈ log2 det(
ρ

Nt
CrHCtC∗

tH
∗C∗

r) (14)

The channel capacity formula in (14) represents the effect of MC on
MIMO channel capacity in a high average receive SNR scenario. It can
be seen that MC affect both the channel correlation properties and the
target average receive SNR. In order to evaluate the channel capacity
variations due to changes in correlation properties at a fixed average
receive SNR the new channel matrix, including the two ends MC
matrices, should be properly normalized. In the following subsections
we consider two cases: 1- channel capacity variations due to MC effect
on correlation properties and target average receive SNR, 2- channel
capacity variations due to MC effect on correlation properties at fixed
average receive SNR.

3.1. Channel Capacity Variations due to MC Effect on
Correlation Properties and Target Average Receive SNR

The channel capacity variations due to MC in (14) are due to changes
in the channel correlation properties and the average receive SNR.
Consider the case that Nt = Nr = N and assuming that the channel
correlation matrix without coupling effects and the two ends MC
matrices are all full rank matrices, (14) can be decomposed as follows:

ĉmc = log2 det(
ρ

N
HH∗) + log2 det(CrC∗

r) + log2 det(CtC∗
t ) (15)

which can be further written as:

ĉmc =
N∑

i=1

log2(
ρ

N
λi(HH∗)) +

N∑

i=1

log2(λi(CrC∗
r)) +

N∑

i=1

log2(λi(CtC∗
t ))

(16)
where λi(HH∗), λi(CrC∗

r) and λi(CtC∗
t ) are the i-th eigenvalues of the

channel correlation matrix, the receiver MC correlation matrix and the
transmitter MC correlation matrix, respectively. It can be noticed that
while the first term in (16),

∑N
i=1 log2(

ρ
N λi(HH∗)) = ĉiso, represents

the channel capacity at high average receive SNR with isotropic MEA
at both ends, the second two terms represent the effect of the two ends
MC matrices. In the light of (16) one can observe that the effect of MC
on the channel capacity do not depend on the propagation environment
in a high average receive SNR scenario and only depends on the two
ends coupling matrices. It is obvious that different coupling matrices



34 Abouda and Häggman

will result in different effect on the channel capacity, therefore, the
following result is obtained:

Proposition 1: In a high average receive SNR scenario, if
normalization is not performed after including the two ends MC
effect, an improvement in the channel capacity over the case of
isotropic MEA is obtained due to coupling effect if and only if β1 =∏N

i=1 λi(CrC∗
r)λi(CtC∗

t ) > 1.
The above result states that in order for the coupling effect to

have a positive impact on the channel capacity, the product of the
eigenvalues of the two ends MC correlation matrices should be large
than one. When the product of these eigenvalues is less than one the
effect of MC on the channel capacity will be negative.

3.2. Channel Capacity Variations due to MC Effect on
Correlation Properties at Fixed Average Receive SNR

In order to keep the average receive SNR fixed to a target value and
consider only channel capacity variations due changes in correlation
properties, normalization should be performed after including the two
ends coupling effect. In this case the channel capacity in (14) can be
written, including the two ends coupling matrices, for Nt = Nr = N
as:

ĉmc,n ≈ log2 det(
ρ

N

1
α2

CrHCtC∗
tH

∗C∗
r) (17)

where α2 = 1
N2 ‖ CrHCt ‖2

F is a normalization factor to compensate
for the power variations due to including the two ends coupling
matrices. Normalization ensures that the channel capacity with MC
effect is calculated at fixed average receive SNR, i.e. 1

N2 ‖ CrHCt
α ‖2

F =
1. It should be noticed that in this case the variations in the channel
capacity are due to changes in correlation properties and not due to
power changes. Similarly, assuming that the channel correlation matrix
and the two ends MC matrices are all full rank matrices, (17) can be
decomposed as follows:

ĉmc,n =
N∑

i=1

log2(
ρ

N
λi(HH∗)) +

N∑

i=1

log2

λi(CrC∗
r)λi(CtC∗

t )
1

N2

∑N
i=1 λi(CrHCtC∗

tH∗C∗
r)

(18)

where λi(CrHCtC∗
tH

∗C∗
r) is the i-th eigenvalue of the channel

correlation matrix including two ends coupling effects. Again the
first term in (18) represents the channel capacity at a high average
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receive SNR with isotropic MEA at both ends and the second term
represents channel capacity variations due to changes in correlation
properties. In this case the effect of MC depends on both the
propagation environment correlation properties and the MC matrices,
therefore, the following result is obtained:

Proposition 2: In a high average receive SNR scenario, if
normalization is performed after including the two ends MC effect,
an improvement in the channel capacity over the case of isotropic
MEA is obtained due to coupling effect if and only if β2 =∏N

i=1
λi(CrC∗

r)λi(CtC∗
t )

[ 1
N2

∑N

i=1
λi(CrHCtC∗

t H
∗C∗

r)]N
> 1.

It is clear that at different propagation environments the same
coupling matrix may have different effects on the channel capacity.

4. NUMERICAL RESULTS

In this section we present numerical results supporting the above
theoretical observations. We consider a 2 × 2 MIMO wireless
communication system operating at 2 GHz carrier frequency in a rich
scattering environment where the elements of the channel matrix
can be modeled as independent identical distributed (iid) zero mean
complex Gaussian random variables. We neglect the transmitter MC
effect and account only for the receiver MC. This is a typical case of
download scenario where in the base station (BS) side the antenna
elements can be largely spaced. In the mobile station (MS) side an
uniform linear MEA array with 0.5λ dipole elements is considered
where λ is the wavelength. The receiver MC matrices are calculated
at different inter-element spacing numerically [17] under matched
load condition. It is well known that changing the inter-element
spacing affect both the angular spread information and the MC matrix.
However, in order to study the effect of MC on the channel capacity
under specific propagation environment spatial correlation properties
it is assumed that the inter-element spacing affects only the MC matrix
but not the angular spread information. In order to account for
the angular spread changes due to the propagation environment, the
Kronecker stochastic MIMO radio channel model is used [18] with a
specific spatial receiver correlation value.

Fig. 2 shows the term β1 at different inter-element spacing. It
can be noticed that the condition in proposition 1 is fulfilled at inter-
element spacing less than 0.17λ where β1 is higher than 1. This reveals
that inter-element spacing less than 0.17λ results in capacity increase
relative to the case when no coupling is present. The effect of MC on
the channel capacity at 20 dB SNR is shown in Fig. 3 in terms of the
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Figure 2. β1 at different inter-element spacing for half wavelength
dipole MEA.
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Figure 3. Channel capacity variations due to MC effect on correlation
properties and target average receive SNR for half wavelength dipole
MEA.
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Figure 4. β2 at different correlation values and inter-element spacings
for half wavelength dipole MEA.

percentage of relative mean capacity difference, i.e. 100×E{ cmc−ciso
ciso

},
where E{.} denotes expectation. In this case, coupling affects both
the target average receive SNR and the channel correlation properties.
It can be noticed that regardless to the propagation environment
correlation properties, MC results in capacity increase relative to the
case when coupling effect is absent at inter-element spacing less than
0.17λ. This is simply because with very small inter-element spacing,
<0.17λ, relatively high energy is coupled to the closely spaced element
which results in average receive SNR higher than the target value.
When the inter-element spacing is increased higher than 0.17λ the
negative impact of MC on the channel capacity becomes evident. At
large inter-element spacing, >0.5λ, the effect of MC on the channel
correlation properties becomes negligible and only the impact of MC
on the average receive SNR remains. With very large inter-element
spacing the effect of MC on the channel capacity is still clear and
the relative capacity difference does not go to zero because the power
variations due to MC are not compensated.

Fig. 4 shows the term β2 at different inter-element spacing and
different propagation environment correlation values. It can be noticed
that in this case the effect of MC depends also on the propagation
environment correlation properties. The condition in proposition 2 is
fulfilled in some propagation environments and at some inter-element
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Figure 5. Channel capacity variations due to MC effect on correlation
properties at fixed average receive SNR for half wavelength dipole
MEA.

spacings. For instance at 0.2λ inter-element spacing and propagation
environment with correlation index higher than 0.6, β2> 1 and one
expect positive effect on the MIMO channel capacity due to MC. Fig. 5
shows the effect of MC on the channel capacity at 20 dB average receive
SNR in terms of the percentage of relative mean capacity difference,
i.e., 100 × E{ cmc,n−ciso

ciso
}. We can clearly see that the effect of MC

at highly correlated propagation environment and at inter-element
spacing less than 0.5λ results in relative capacity increase. This relative
increase ranges from 0.46% to 21.85%. However, in low correlated
propagation environment the effect of MC on the channel capacity is
negative. One can notice that inter-element spacing larger than 0.5λ is
sufficient to reduce the effect of MC and results in decorrelated paths.
This result is online with the common understanding in literature.

5. CONCLUSIONS

We have shown that both the propagation environment spatial
correlation properties and the characteristics of the MC matrices
determine the impact of MC on the capacity of MIMO wireless
channels. Considering channel capacity variations due to MC effects on
both correlation properties and average receive SNR, channel capacity
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variations depend only on the two ends MC matrices. However,
studying channel capacity variations due to MC effects on correlation
properties at fixed average receive SNR reveals that the presence of MC
in highly correlated propagation environment may have decorrelation
impact and consequently positive effect on the channel capacity. On
the other hand, the presence of MC in low correlation propagation
environment may have negative impact on the channel capacity due to
extra correlation effect.
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