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Abstract—A general method is proposed to analyze periodic or
aperiodic Coupled Nonuniform Transmission Lines (CNTLs). In this
method, the per-unit-length matrices are expanded in the Fourier
series. Then, the eigenvalues of periodic CNTLs and so the S
parameters of aperiodic CNTLs are obtained. The validity of the
method is studied using a comprehensive example.

1. INTRODUCTION

Single and coupled Nonuniform Transmission Lines (NTLs) are widely
used in microwave circuits as resonators [1], impedance matching [1, 2],
delay equalizers [3], filters [4], wave shaping [5], analog signal
processing [6], VLSI interconnect [7] and etc.. The differential equations
describing these structures have non-constant coefficients because the
per-unit-length parameters or matrices vary along the lines. So, except
for a few special cases, no analytical solution exists for NTLs. Coupled
NTLs (CNTLs) with exponential variation is an example for these
special cases [8]. Although, the method of using power series expansion
directly [8, 9] or indirectly [10–13] has been utilized to solve many
types of CNTLs. Of course, the conventional and most straightforward
method to analyze arbitrary CNTLs is subdividing them into many
short uniform sections [14, 15].

In this paper, a new method is introduced to analyze CNTLs.
First, the periodic CNTLs are analyzed using the Fourier series
expansion of the per-unit-length matrices to find their propagation
constant and voltage and current eigenvectors. Then, the found
parameters of periodic CNTLs are used to determine the ABCD
parameters of the aperiodic CNTLs. The validity of the method is
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verified using a comprehensive example. This method is applicable to
all arbitrary coupled and single NTLs.

2. THE EQUATIONS OF CNTLS

In this section, the equations related to the CNTLs in the frequency
domain are reviewed. It is assumed that the principal propagation
mode of the lines is TEM or quasi-TEM. This assumption is valid when
the lengths in the cross section are being small enough compared to
the wavelength. Figure 1 shows a typical aperiodic CNTL consisting of
M lines with length d along with its equivalent 2M -port circuit. Also,
Figure 2 shows a typical periodic CNTL made by cascading infinite
number of an aperiodic CNTL with each other.

The differential equations describing lossy and dispersive periodic

Figure 1. Typical aperiodic coupled nonuniform transmission line
consisting of M lines with the length of d, as a 2M -port circuit.
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Figure 2. Typical periodic CNTL, made by cascading infinite number
of aperiodic CNTL.
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or aperiodic CNTLs are given by

dV(z)
dz

= −Z(z)I(z) (1)

dI(z)
dz

= −Y(z)V(z) (2)

in which V and I are M × 1 voltage and current vectors, respectively.
Also we have

Z(z) = R(z) + jωL(z) (3)
Y(z) = G(z) + jωC(z) (4)

where R, L, G and C are the per-unit-length matrices of CNTL.
Combining (1) and (2), gives the following differential equations

d2V(z)
dz2

− dZ(z)
dz

Z−1(z)
dV(z)

dz
− Z(z)Y(z)V(z) = 0 (5)

I(z) = −Z−1(z)
dV(z)

dz
(6)

It is seen that these differential equations are quite difficult to solve
analytically. Knowing the voltage and current vectors at z = 0 and
z=d, the ABCD matrix of aperiodic CNTL can be defined as follows,

[
V(0)
I(0)

]
=

[
A B
C D

] [
V(d)
I(d)

]
(7)

3. GENERAL SOLUTION OF CNTLS

In this section, the general solution of periodic and aperiodic CNTLs
is presented. It is known from Floquet’s theorem (an M dimensional
one in here) that the voltage and current of periodic CNTLs can be
expandable into an infinite set of spatial harmonics [2], as follows

V(z) = exp(−γ0z)
∞∑

n=−∞
Vn exp(−j2πnz/d) (8)

I(z) = exp(−γ0z)
∞∑

n=−∞
In exp(−j2πnz/d) (9)

in which the frequency dependent vectors Vn and In are unknown
coefficients and γ0, which its imaginary part is between −π/d and
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+π/d, is the principal value of the propagation constant. One sees
from (7) and (8)–(9) that[

V((k − 1)d)
I((k − 1)d)

]
=

[
A B
C D

] [
V(kd)
I(kd)

]
= exp(γ0d)

[
V(kd)
I(kd)

]
(10)

in which k is an integer number. The equation (10) is a 2M di-
mensional eigenvalue problem, which has nontrivial vectorial solutions
[Vm+ Im+]T and [Vm− Im−]T for the m-th (m=1, 2, . . . , M) solution
set of +γ0 and −γ0, respectively. In fact, there are 2M waves prop-
agating in +z and −z directions, in two equal groups. Knowing all
nontrivial solutions of (10), the ABCD matrix of aperiodic CNTL can
be determined, as follows[

A B
C D

]
=

[
V1+ V1− · · · VM+ VM−

I1+ I1− · · · IM+ IM−

]

exp(γ0d)
[
V1+ V1− · · · VM+ VM−

I1+ I1− · · · IM+ IM−

]−1

(11)

in which

γ0 = diag ([γ1, −γ1, . . . , γm, −γm, . . . , γM , −γM ]) (12)

is a diagonal matrix containing the propagation constants. Each
propagation constant γm (m = 1, 2, . . . , M) is determined in one of
three forms jβm, αm or αm + jπ/d. It is seen from (10) and (11) that
the ABCD matrix of aperiodic CNTLs and the eigen-parameters of
periodic CNTLs can be determined from the each other.

4. ANALYSIS OF CNTLS

In this section, the analysis of CNTLs using Fourier series expansion
is presented. First, the periodic CNTLs are analyzed and then the
aperiodic ones. It is assumed that each of four per-unit-length matrices
of the periodic CNTLs can be expressed by a Fourier series as follows

L(z) =
∞∑

n=−∞
Ln exp(−j2πnz/d) (13)

C(z) =
∞∑

n=−∞
Cn exp(−j2πnz/d) (14)

R(z) =
∞∑

n=−∞
Rn exp(−j2πnz/d) (15)
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G(z) =
∞∑

n=−∞
Gn exp(−j2πnz/d) (16)

The frequency dependent matrices Ln, Cn, Rn and Gn (Pn in general)
are obtained using the following integral over an aperiodic CNTL.

Pn =
1
d

d∫
0

P(z) exp(j2πnz/d)dz (17)

Using (8)–(9) and (13)–(16) in (1)–(4) and equating the coefficients of
similar spatial harmonics, gives us the following recursive relations

Vn =
1

γ0 + j2πn/d

∞∑
k=−∞

Zn−kIk (18)

In =
1

γ0 + j2πn/d

∞∑
k=−∞

Yn−kVk (19)

where

Zm = Rm + jωLm (20)
Ym = Gm + jωCm (21)

Now, to find the unknown coefficients Vn and In, we truncate the (8)–
(9) to 2N+1 spatial harmonics, i.e., −N ≤ n ≤ N , first. Consequently,
there will be two sets of 2N + 1 equations in (18)–(19), which can be
expressed as two matrix equations given by

Ṽ = H−1Z̃Ĩ (22)

Ĩ = H−1ỸṼ (23)

where Ṽ = [V−N . . . V0 . . . VN ]T , Ĩ = [I−N . . . I0 . . . IN ]T are the
voltage and current harmonic vectors, respectively and H is a diagonal
matrix given by

H = diag
(
[(γ0 − j2πN/d)Id . . . γ0Id . . . (γ0 + j2πN/d)Id]

)
(24)
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in which Id is an identity matrix. Also, Z̃ and Ỹ are the convolution
matrices containing 4N + 1 spatial harmonics, given by

Z̃ =




Z0 Z−1 · · · Z−2N

Z1 Z0 · · · Z−2N+1
...

...
. . .

...
Z2N Z2N−1 · · · Z0


 (25)

Ỹ =




Y0 Y−1 · · · Y−2N

Y1 Y0 · · · Y−2N+1
...

...
. . .

...
Y2N Y2N−1 · · · Y0


 (26)

Combining two matrix equations (22)–(23), the following matrix
equation for the voltage vector is obtained.

AṼ = 0 (27)

where A is a matrix given by

A = H−1Z̃H−1Ỹ − Id (28)

The equation (27) is an eigenvalue problem, which has nontrivial
solutions ±γm(m = 1, 2, . . . , M), if

det(A) = 0 or eig(A) = 0 (29)

Thus (29), (27) and (23) give us the propagation constant, the voltage
harmonic vector (as an eigenvector) and the current harmonic vector,
respectively. To solve (29), one can use an optimization approach, in
which the following defined error has to become minimum and near to
zero.

Error = |det(A)|2 (30)

It is notable that, some of solutions γm for (10) or (27) may be
equal to each other, in some cases. In an especial case, for which
Z(z)Y(z) is proportional to an identity matrix, all of solutions γm are
equal to each other. In these cases, there will be several independent
eigenvectors for each solution.

From definitions in (10)–(11) for the voltage and current vectors
at the terminals and also using (8)–(9), we will have

Vm± = V(kd) = exp(∓kγmd)
∞∑

n=−∞
Vn (31)

Im± = I(kd) = exp(∓kγmd)
∞∑

n=−∞
In (32)
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Now, the ABCD matrix of aperiodic CNTLs are obtained using
(11). Of course, one can determine the S matrix from the ABCD
matrix as follows

S =
[
S11 S12

S21 S22

]
(33)

in which

S11 =
[
(A + B/Z0)−1 + (CZ0 + D)−1

]−1

×
[
−(A + B/Z0)−1 + (CZ0 + D)−1

]
(34)

S12 =
[
(A + B/Z0)−1 + (CZ0 + D)−1

]−1

×
[
(A+B/Z0)−1(A−B/Z0)−(CZ0+D)−1(CZ0−D)

]
(35)

S21 = 2[A + B/Z0 + CZ0 + D]−1 (36)
S22 = [A + B/Z0 + CZ0 + D]−1[−A + B/Z0 − CZ0 + D] (37)

where Z0 is the assumed characteristic impedance.
To obtain a criterion for the choice of the order of necessary

number of spatial harmonics, consider the voltage and current
distribution in Figure 2 as a repeated pulse function with period of
d and with duration of a fraction of the wavelength (λ). With this
assumption, the necessary number of spatial harmonics in (8) and (9)
is obtained as follows

N � d/λ (38)

Moreover, it is expected from (13)–(16) that increasing the amount
of variations of the per-unit-length matrices increase the necessary
number of spatial harmonics.

5. EXAMPLE AND RESULTS

In this section, a comprehensive example is presented to study the
validity of the introduced method. Consider a lossless microstrip
coupled NTL with M = 2 strips, whose length is d = 10 cm. The
width of strips and the gap between them are equal to the thickness
of the substrate and the substrate relative permittivity is εr = 10 at
z=0. This inhomogeneous structure has the following per-unit-length
matrices.

L(z) = L(0) exp(kz/d) (39)
C(z) = C(0) exp(−kz/d) (40)
R(z) = G(z) = 0 (41)
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in which

L(0) =
[
425.6 74.83
74.83 425.6

]
nH/m (42)

C(0) =
[

174.9 −14.25
−14.25 174.9

]
pF/m (43)

The Fourier coefficients of the periodic model of this CNTL will
be as follows

Ln =
1

k + j2πn
(exp(k) − 1)L(0) (44)

Cn =
1

k − j2πn
(1 − exp(−k))C(0) (45)

Figure 3. The real and imaginary parts of γ0d (Brillouin diagram),
with N = 5.

Figure 3 shows the principal values of propagation constant at
some frequencies, assuming k = 1 and considering N = 5. All three
forms of γ0, which are due to the existing of passbands and stopbands,
are being observed in this figure. Also, the nontrivial vectorial solutions
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at frequency 1.0 GHz are as follows:

V1+ = V1−=[1 1]T V,

V2+ = V2−=[1 −1]T V,

I1+ = 10.86 exp(j135◦)[1 1]T mA,

I1− = 10.86 exp(j44.5◦)[1 1]T mA,

I2+ = 14.08 [exp(j166.9◦) exp(−j13.1◦)]T mA and

I2− = 14.08 [exp(j13.1◦) exp(−j166.9◦)]T mA.

Figures 4–5, compare the S parameters of the CNTL assuming
Z0 = 50 Ω, obtained from the conventional method, i.e., subdividing
to many (K = 20000) uniform sections [14] (as the exact solutions),
and from the introduced method with N = 5 and 10, at frequencies 1.0
and 2.0 GHz, respectively. One sees an excellent agreement between
the exact solutions and the results from the introduced method. It is
seen and also evident that, as the number of spatial harmonics, 2N +1,
increases the accuracy of the obtained solutions increases. Also, one
sees that, as the excitation frequency increases the amount of error and
so the necessary number of spatial harmonics increases.

Figure 4. The S parameters of the exponential CNTL at frequency
1.0 GHz.
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Figure 5. The S parameters of the exponential CNTL at frequency
2.0 GHz.

6. CONCLUSIONS

A general method was introduced to analyze aperiodic or periodic
Coupled Nonuniform Transmission Lines (NTLs). The periodic
CNTLs are analyzed using the Fourier series expansion of the per-
unit-length matrices to find their propagation constant and voltage
and current eigenvectors. The found parameters of periodic CNTLs
are used to determine the ABCD and so the S parameters of aperiodic
CNTLs. The validity of the method was verified using a comprehensive
example. It was seen that, as the number of spatial harmonics increases
the accuracy of the obtained solution increases. Also, as the length
of the lines with respect to the wavelength or the variations of the
per-unit-length matrices increases, the necessary number of special
harmonics increases. The required time and memory of the proposed
method are less than those of the other numeric or full-wave methods,
which give the distribution of voltages and currents along the length
of CNTLs in addition to their ABCD parameters. In fact, this
method is very simple and fast and can be used for all lossy and
dispersive CNTLs, whose per-unit-length matrices can be expressed
by a converged Fourier series.
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