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Abstract—This paper presents an approach for the design and
optimization of pseudo-gradual transitions in circular waveguides using
the genetic algorithm (GA). The characterization of these transitions
is carried out by the mode-matching method. This method, associated
with the generalized scattering matrix technique, leads to determine
the reflection coefficient on the useful band of the studied structures
and to observe their frequential behavior. The GA is employed
to optimize the choice of geometrical parameters by minimizing a
cost function, corresponding to the maximum magnitude of the
reflection coefficient in the band. The selection of the most relevant
parameters allowed an improvement of the performances for the
optimized components. Results of optimization are given for both two
and four-section transformers.

1. INTRODUCTION

In this paper, we propose a general algorithm for the characterization
and the optimization of pseudo-gradual transitions in metallic circular
waveguides, using the mode-matching method coupled to a genetic
algorithm (GA).
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Several studies, using various numerical techniques of analysis,
were developed for solving the waveguide discontinuities problem: the
multimode network representation [1], the finite element method [2],
the scattering matrix representation [3], the multimodal variational
analysis [4], the method of moments (Galerkin technique) [5] for irises
analysis, and others [6]. Among the employed techniques, the mode-
matching method [7–10] is appropriate for mode step discontinuities.

This method requires that the electric and magnetic fields in each
side of the discontinuity be expressed by their modal expansion. This
representation is followed by application of the continuity conditions
at the interfaces of the junction region to match fields. This procedure,
in conjunction with the orthogonality property of normal modes leads
to the generalized scattering S-matrix, therefore, to determine the
reflection and transmission coefficients of incident fundamental mode
and higher-order modes for both TE and TM modes excited at the
discontinuity. Higher order mode interactions are rigorously taken into
account.

The mode-matching method has been applied with success for the
design of a number of passive microwave components with multiple-
step discontinuities such as the filters, transformers, irises, directional
couplers, etc. The characterization of these structures is carried out
by computing the generalized scattering matrix of each discontinuity,
then, cascading the different matrix taking into account the length
between them.

In [8], the author has presented a modal analysis of a simple
and multiple discontinuities in circular waveguides. In this work, the
electromagnetic field at the discontinuity is described only by TE1x

and TM1x modes with x = 1, 2 . . .
In the first part of this paper, and on the basis of [8], we describe

the analysis method applied for S-parameters computation of multiples
steps discontinuities in circular waveguides. The resulting algorithm
is fast and accurate and has been used for modeling inhomogeneous
quarter-wave transformers [11] and a good agreement is obtained with
reference structures [10].

In the second part of this paper, the objective will be to optimize
the parameters defining the geometrical dimensions of the studied
transformers in order to obtain the best performances while minimizing
the cost. Thus, the study is reformulated as a problem of optimization.

The GA [12, 13] is then applied to search for the optimal
parameters in order to minimize the maximum reflection coefficient
in the useful band while respecting certain constraints on dimensions.
The mode-matching method calculates the magnitude of maximum
reflection coefficient in the band and the GA minimizes it.
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The GA is classed in the category of the global optimization
techniques. These techniques are robust towards problems with several
local optima and in the presence of the constraints of discontinuities
and derivability. They usually converge to the global optimum of
the problem. They can constitute an Interesting alternative to the
traditional techniques of optimization when these do not manage to
provide reliable results.

During the last years, GA techniques have been used for solving
a variety of problems in electromagnetic applications such as antennas
[14], filters, multilayered structure such as frequency-selective surfaces
[15]. In 2000, Chiu and Chen applied the GA to reconstruct the
shape and conductivity of a metallic object through knowledge of
a scattered field [16]. Lai and Jeng have developed a good way
to design compact and high-performance dual-band bandpass filters
with microstrip lines. They optimize a scheme, based on hybrid-
coded GA techniques, which is capable of searching appropriate
circuit topology and the corresponding electrical parameters with dual-
band characteristic [17]. Nishino and Itoh, in 2002, introduce an
evolutionary generation of microwave line-segment circuits [18]. They
use the GA for optimizing topology and dimensions of these circuits.
The procedure also guarantees that the size of the optimized circuit is
smaller than the size specified in advance.

In all these works and other ones, the GA has showed a great
flexibility and efficiency.

2. THEORY

2.1. Formulation of the Problem

Consider the transformer in circular waveguide shown in Fig. 1(a). It
is composed of N sections and N + 1 uniaxial discontinuities. Our
objective is to find [19]:

Û = min
Φ

(U) = min
Φ

{
max

fmin<f<fmax

[|Γ(Φ, f)|]
}

(1)

Where
Φ = (R1, l1, R2, l2, . . . , RN , lN ) (2)

Rk and lk are the radius and length of the kth section for k =
(1, 2, . . . , N), Γ is the reflection coefficient at the transformer input.
fmin and fmax represent the lower and upper edges of the useful band,
respectively. The purpose is to find the optimal set of parameter values
of Φ corresponding to the minimum of U , which is the maximum
magnitude of Γ in the useful band (Figure 1(b)).
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Figure 1. (a) N -section transformer. (b) The function U to be
minimized in the useful band.

2.2. Technical Analysis

We present the basic formulation of the mode-matching method to
calculate the generalized scattering matrix S for a transversal junction
between two circular waveguides as illustrated in Fig. 2. The z-axis is
the axis of symmetry for both guides and z = 0 represents the plane
of discontinuity. The TE11 mode is the incident mode in waveguide 1.
The discontinuity causes the excitation of higher order modes. In the
case of junction between two axially circular waveguides, only the TE1r

and TM1r modes with r = 1, 2 . . . are excited [8]. For all following
calculations, we consider only these modes. We will first recall the
expressions obtained in the case of a single junction, and then derive
from the equations the expressions of the complete structure reflection
and transmission operators for multiples steps discontinuities.
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Figure 2. (a) Single junction in circular waveguides. (b) Reflected
and transmitted waves at the junction (z = 0).

2.2.1. Single Waveguide Junction

The procedure for obtaining the scattering matrix S of the junction is
the same that one used in [20]. The electric and magnetic fields are
decomposed according to the transverse electric (TE) and transverse
magnetic (TM) eigenmodes. The tangential electric field just to the
left of the junction (z = 0) is given by:


e1(ρ, θ) =
∑
n

[
a(h)

n 
e
(h)
1,n(ρ, θ) + a(e)

n 
e
(e)
1,n(ρ, θ)

]
(3)

For the region just to the right of z = 0, it is given by:


e2(ρ, θ) =
∑
m

[
b(h)
m 
e

(h)
2,m(ρ, θ) + b(e)

m 
e
(e)
2,m(ρ, θ)

]
(4)

a
(h)(or(e))
n and b

(h)(or(e))
m are the field amplitudes in the first and the

second guide respectively.
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The modal field at the junction (z = 0) for a given mode r of type
h(TE) or e(TM) in guide 1 or 2 is:


e
(h)
i,r (ρ, θ) = N

(h)
i,r

[
1
ρ
J1(β′

i,1rρ) cos θ ·
iρ − β′
i,1rJ

′
1(β

′
i,1rρ) sin θ ·
iθ

]
(5)


e
(e)
i,r (ρ, θ) = N

(e)
i,r

[
β′′

i,1rJ
′
1(β

′′
i,1rρ) cos θ ·
iρ −

1
ρ
J1(β′′

i,1rρ) sin θ ·
iθ
]
(6)

where i = 1, 2: corresponding to waveguides 1 and 2 respectively.
J1 and J ′

1 are the Bessel functions and its derive of first species
and first order.

N
(h)
i,r =

√
2
π√

(β′
i,1rRi)2 − 1 · J1(β′

i,1rRi)
and N

(e)
i,r =

√
2
π

β′′
i,1rRi · J2(β′′

i,1rRi)

(7)
N

(h)
i,r and N

(e)
i,r are normalization constants in which x′

r = β′
i,1rRi and

xr = β′′
i,1rRi are, respectively, the rth roots of J ′

1(x) and J1(x).
The electromagnetic boundary conditions imposed on the

transverse electric fields at the plane of junction (z = 0) are such
that:


e2(ρ, θ) =

{

e1(ρ, θ) 0 < ρ ≤ R1

0 elsewhere
(8)

The scalar multiplication of (8) by 
e
(h)
2,m(ρ, θ) and integration over the

circular cross section of guide 2 leads, after the use of the orthogonality
properties of the normal modes, to the following expressions:

b(h)
m =

∑
n

[
Hmna

(h)
n + HEmna

(e)
n

]
(9)

Where:

Hmn =
2π∫
0

R1∫
0


e
(h)
2,m(ρ, θ) · 
e (h)

1,n(ρ, θ)ρdρdθ

and

HEmn =
2π∫
0

R1∫
0


e
(h)
2,m(ρ, θ) · 
e (e)

1,n(ρ, θ)ρdρdθ

= 0 (10)
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In the same way, multiplying (8) by 
e
(e)
2,m(ρ, θ) and integrating over the

cross section of guide 2, we obtain:

b(e)
m =

∑
n

[
EHmna

(h)
n + Emna

(e)
n

]
(11)

Where:

EHmn =
2π∫
0

R1∫
0


e
(e)
2,m(ρ, θ) · 
e (h)

1,n(ρ, θ)ρdρdθ

and

Emn =
2π∫
0

R1∫
0


e
(e)
2,m(ρ, θ) · 
e (e)

1,n(ρ, θ)ρdρdθ (12)

Equations (9) and (11) lead to the matrix [M ] given by:

b = [M ]a ⇔
[

b(h)

b(e)

]
=

[
[H] [0]

[EH] [E]

] [
a(h)

a(e)

]
(13)

where a(h)(or(e)) and b(h)(or(e)) being the modal weighting coefficients
vectors in guide 1 and 2 respectively, the elements of the submatrices
[H], [HE] = [0], [EH] and [E] are respectively the TE-TE, TE-TM,
TM-TE and TM-TM E-field mode-coupling coefficients at the junction.

For the magnetic field, an analog expression to (13) can be
obtained.

For numerical computation, the matrix equations are truncated to
N and M1 expansion terms in guide 1 and 2, respectively. These values
correspond to the number of modes necessary to achieve convergence
of the S-parameters.

The E-field modal coefficient scattering matrix [S] of the junction
is defined as: [

a−

b−

]
=

[
[S11] [S12]
[S21] [S22]

] [
a+

b+

]
(14)

Where (−) and (+) are used respectively for the scattered and incident
waves. The expressions of the submatrices of S are given by:

[S11] = ([Y L] + [Y1])−1([Y1] − [Y L]) and Y L = [M ]T [Y2][Y2][M ][Y1]−1

[S12] = 2([Y L] + [Y1])−1[M ]T [Y2]
[S21] = [Y2][M ][Y1]−1([I] + [S11])
[S22] = [Y2][M ][Y1]−1[S12] − [I]

(15)
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[I] is the identity matrix and [Yi] is the modal admittance matrix (for
the ith guide) defined as:

[Yi] =


 [Y (h)

i ] [0]

[0] [Y (e)
i ]


 for i = 1 or 2, (16)

where [Y (h)
i ] and [Y (e)

i ] are diagonal submatrices which the elements are
the root square of the TE1r and TM1r mode admittances respectively.

Y
(h)
i,1r =

√√√√√
√(

β′2
i,1r − k2

0

)
jk0N0

and Y
(e)
i,1r =

√√√√√ jk0

N0

√(
β′′2

i,1r − k2
0

) (17)

With k0 = 2π
λ0

, N0 = 120π and λ0 represents the free space wavelength.
The generalized scattering matrix S determined bellow character-

izes the jump in the cross section between two circular waveguides.

2.2.2. Multiple Waveguide Junctions

For a structure using many transitions in cascade, we use the principle
of the association of the S matrices [21, 22].

Let S(1) =


 [S(1)

11 ] [S(1)
12 ]

[S(1)
21 ] [S(1)

22 ]


 be the scattering matrix of the first

junction and S(2) =


 [S(2)

11 ] [S(2)
12 ]

[S(2)
21 ] [S(2)

22 ]


 be the one of the second. These

two junctions are related by a waveguide k of length L.
The transmission-line matrix [SL] of the waveguide k is a diagonal

matrix such that:

[SL] =


 [S(h)

L [0]

[0] [S(e)
L ]


 (18)

with sub matrices diagonal elements given by [20]:

S
(h)
1r,1r = exp

(
−

√
β′2

k,1r − k2
k · L

)
S

(e)
1r,1r = exp

(
−

√
β′′2

k,1r − k2
k · L

) (19)
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The expressions of the overall scattering matrix Sd are as follow:

[Sd
11] = [S(1)

11 ] + [S(1)
12 ][SL][U2][S

(2)
11 ][SL][S(1)

21 ]

[Sd
12] = [S(1)

12 ][SL][U2][S
(2)
12 ]

[Sd
21] = [S(2)

21 ][SL][U1][S
(1)
21 ]

[Sd
22] = [S(2)

22 ] + [S(2)
21 ][SL][U1][S

(1)
22 ][SL][S(2)

12 ]

(20)

where:
[U1] = ([I] − [S(1)

22 ][SL][S(2)
11 ][SL])−1

and
[U2] = ([I] − [S(2)

11 ][SL][S(1)
22 ][SL])−1

2.3. Genetic Algorithm

The genetic algorithms are stochastic global-search algorithms. They
use the iterative optimization procedure in order to optimize a given
behavior, defined by the user and expressed in the form of function,
called fitness function.

This procedure begins by creating an initial random population
of M individuals or chromosomes. Each chromosome represents the
coding of a data set X, where:

X = (x1, x2, . . . , xL)

This data set corresponds to a potential solution to the problem to be
solved. The generation of a new population from the preceding one is
carried out in three stages.
a) Evaluation: the fitness function is estimated for all the

chromosomes in the current population, based on certain
characteristics that are desired in the solution. In our problem, it
corresponds to evaluate the frequency response of a transformer.
The fitness value is defined by the function U described in the
equation (1). It is given by:

U = max
fmin<f<fmax

[|Γ(f)|] where Γ(f) = S11(f)

This function U corresponds to the maximum magnitude of the
reflection coefficient for the fundamental TE11 mode in the useful
band and it is calculated by the mode-matching method.
The best data set, corresponding to the best chromosome in the
population of the gth generation, belongs to the smallest U . The
fitness function represents the only link between the physical
problem and the GA.
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b) Selection: after the evaluation of every chromosome in the
population, the selection is applied. Two parents are generated by
one of the selection methods. In our case, the determinist selection
is adopted. The GA selects the individuals that optimize best the
fitness function.

c) The reproduction by crossover and mutation is then performed
on the selected parents to generate two children that replace
their parents in the new population. Mutation is carried out by
randomly changing one or more genes (variables) of the created
offspring. It is used for maintaining certain diversity in the
population. The probability to perform the crossover and the
mutation operator is specified as 0.75 and 1/M respectively. The
proposed algorithm applied the one-point crossover method as
illustrated in Fig. 3

1 1 0 1 0 1 1 0
        Parents

0 1 1 0 1 0 0 1

1 1 0 1 0 0 0 1
        Childrens

0 1 1 0 1 1 1 0

         (a)

muted gene

1 1 0 1 0 0 1 1 before  mutation

1 1 0 1 0 1 1 1 after mutation

(b)

Figure 3. Operators of reproduction. (a) Crossover operator (b)
Mutation operator.

According to the evolutionary theory, this new generation will be
more adapted to the problem than the preceding one. The evolution
optimization process is reiterated until satisfaction of a certain halting
criterion or if a total number of generations is reached. A flowchart of
the basic GA is shown in Fig. 4.
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Figure 4. Flowchart for the GA.
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Binary encoding is adopted. Each chromosome contains a number
of genes, corresponding to a number of unknown variables. These
variables are the geometrical parameters of the structure to optimize.

The coding of a variable xk on an offspring of lk bits implies a
discretization of the research space in gk max = 2lk − 1 discrete values,
lk is the length of the gene k. Geometrical parameters are decoded by
the following equation [13]:

xk = xk min +
(
xk max − xk min

gk max

) lk−1∑
i=0

aki2i (21)

where ak0, ak1, . . . are the lk bits of the binary string representing xk.
xk min and xk max are the limits of the research interval, i.e.,

xk min ≤ xk ≤ xk max (22)

xi min and xi max are determined by prior knowledge of the structure.
It is necessary to fix these limits in order to avoid unreasonable
parameters.

The resolution of a problem using GA requires representing the
potential solutions of this problem in the form of chromosomes,
to choose the suitable selective function and to define the genetic
operators, which will be used. These operators, which are the
population size, crossover rate and mutation rate, are important
control parameters for GA. They affect the convergence to the optimal
solution and computing time.

3. NUMERICAL RESULTS AND DISCUSSION

As a first application and in order to validate our analysis
method, which is the mode-matching method, we present the study
of inhomogeneous two and four-section transformers in circular
waveguide. Fig. 6 and Fig. 8 (corresponding to the two and four-
section transformer respectively) show the variation of the voltage
standing waves ratio VSWR as a function of frequency (curves in
dashed line; before optimization by GA) for the dominant TE11 mode
in the useful band. The dimensions of the transformers are taken from
reference [10]. Both transformers are quarter-wave, i.e., the length
of sections are quarter-wave at design frequency f0 = 9.5 GHz. The
convergence of the results is obtained using 10 modes in waveguides
and 6 modes for the association of the S matrices. Our results are in
good agreement with the reference [10]. Once the analysis algorithm
is validated, we apply a genetic algorithm-based optimization process
for optimizing the studied structures. The optimized transformers
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Figure 5. Evolution of fitness function for: the best individual and
the average of fitness functions for structure 1.

Table 1. The dimensions in millimeters of optimized quarter-wave
two and four-section transforms (structures 1 and 2).
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Figure 6. VSWR of optimized quarter-wave two-section transformer
(structure 1). The corresponding dimensions are given in Table 1.

(curves in solid line) are compared to the inhomogeneous quarter-wave
transformers modeled above. The input and output guides dimensions
of the optimized transformers were fixed at reference values in order to
always remain in the same frequency band, which is the useful band of
the transformer. Constraints placed on the dimensions are fixed only
by considerations for dominant mode propagation. It is assumed that
the incident mode in the input guide is the dominant TE11 mode.

There are three points to take into account in the design of an
optimum transformer: its length, its bandwidth and the tolerable
reflection coefficient in the pass band [23].

Thus the purpose of optimization will be to minimize the voltage
standing waves ratio (VSWR) near the design frequency, to decrease
the overall length of the transformer and to increase its bandwidth.
Since in the numerical resolution we have replaced the variation of
the reflection coefficient by the variation of the voltage standing waves
ratio, the fitness function became:

U ′ = max
fmin<f<fmax

[V SWR(f)]
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Figure 8. VSWR of optimized quarter-wave four-section transformer
(structure 2). The corresponding dimensions are given in Table 1.
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with
V SWR =

1 + |S11|
1 − |S11|

for the dominant TE11 mode.
The genes constituting a chromosome correspond to the values of

geometrical dimensions to optimize (radiuses and lengths of sections)
of the studied structures.

The optimized transformers are quarter-wave at 9.5 GHz.
The geometrical parameters of a transformer with N sections must

verify the following conditions:


R0 < R1 < . . . RN < RN+1

lk = λgk/4
k = 1, 2, . . . , N

(23)

R0 and RN+1 are respectively the radiuses of the input guide and the
output guide, and λgk the guide wavelength of fundamental mode TE11

relating to the design frequency f0 = 9.5 GHz, and corresponding to
the section k:

λgk = λ0/
√

1 − (0.293λ0/Rk)2 (24)

where λ0 (= c/f0) is the free space wavelength at 9.5 GHz. Only the
dimensions Rk are optimized. The lengths lk being fixed equal to the
quarter of guide wavelengths of the corresponding sections. In practice,
we treated two structures: the two-section transformer (structure 1)
and the four-section transformer (structure 2).

The evolution of the fitness value for the more adapted individual
and of the average of the fitness values as a function of the number
of generations are represented in Fig. 5 and Fig. 7 respectively for
structure 1 and structure 2. The population size was 30 individuals for
structure 1 and 20 individuals for structure 2. Note that the individuals
of the populations tend to identify with the better one. Fig. 6 and
Fig. 8 represent the variation of the VSWR versus frequency for the
dominant TE11 mode in the useful band of optimized quarter-wave
transformers. The lengths of the sections are quarter-wave at 9.5 GHz.

The two-section transformer (Fig. 6) was optimized over the band
8.5 to 11.6 GHz. A maximum VSWR of 1.0384 was obtained. The
VSWR is minimized near 9.5 GHz. A slight decrease in overall length
was obtained.

For the four-section transformer (Fig. 8), all-round improvements
in desired bandwidth, VSWR and overall length have been obtained.
Table 1 shows the dimensions of the optimized transformers.
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4. CONCLUSIONS

This article present the results of the design and optimization for two
and four-sections transformers in circular waveguides. An alternative
method is used, which relies on a general fast electromagnetic analysis
based on an optimization process. The design of a transformer with
optimal frequential response requires the selection of the most relevant
parameters with the aim of carrying out a maximum adaptation and
satisfying certain design specifications. One possible approach for
solving this problem is through the use of GA. It showed a great
flexibility. A good choice of GA parameters, such as: the population
size, the crossover rate and mutation rate accelerates convergence
towards the optimal solution. Also, suitable choice of the search
interval is a criterion of effectiveness in the search for the optimal
solution.

Note that the use of GA adapts to the numerical responses
provided by the mode-matching method and does not require a priori
any assumption on the structure to be studied. This independence
towards problems to be posed allows to the GA to be applied to an
extremely wide rang of problems.

REFERENCES

1. Guglielmi, M. and G. Gheri, “Rigourous multimode networks
representation of capacitive steps,” IEEE Trans. Microwave
Theory Tech., Vol. 42, 622–628, 1994.

2. Wilkins, G. M., J. F. Lee, and R. Mittra, “Numerical modeling
of axisymmetric coaxial waveguide discontinuities,” IEEE Trans.
Microwave Theory Tech., Vol. 39, 1323–1328, 1991.

3. Omar, A. S. and K. Schunemann, “Transmission matrix
representation of finline discontinuities,” IEEE Trans. Microwave
Theory Tech., Vol. MTT-33, 765–770, 1985.

4. Tao, J. W. and H. Baudrand, “Multimodal variational analysis
of uniaxial waveguide discontinuities,” IEEE Trans. Microwave
Theory Tech., Vol. 39, 506–516, 1991.

5. Scharstein, R. W. and A. T. Adams, “Thick circular iris in TE11

mode circular waveguide,” IEEE Trans. Microwave Theory Tech.
Vol. 36, 1529–1531, 1988.

6. Koshiba, M. and M. Suziki, “Application of boundary-element
method to waveguide discontinuities,” IEEE Trans. Microwave
Theory Tech., Vol. MTT-34, 301–307, 1986.

7. Wexler, A., “Solution of waveguide discontinuities by modal



32 Thabet, Riabi, and Belmeguenai

analysis,” IEEE Trans. Microwave Theory Tech., Vol. MTT-15,
508–517, 1967.

8. Sabatier, C., “Etude des discontinuities en guide circulaire à l’aide
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