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Abstract—The coupled mode approach is applied to the ferrite
circular waveguide magnetized through a rotary four-pole transverse
bias magnetic fields. The plausible mathematical model of the
ferrite waves propagation in the guide is developed which includes
gyromagnetic interaction of two orthogonal TE11 isotropic modes. The
importance of the birefringence effect in determining of phase shift and
polarization phenomena are thereby demonstrated. As a result basic
design consideration of the circular polarizer applied as a “half-wave
plate” in rotary-field phase shifter are provided.
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1. INTRODUCTION

Some years ago, Boyd et al. published many papers concerning the
nonreciprocal polarizer or latching ferrite phase shifters which used
the sections of ferrite circular guide biased through rotary four-pole
magnetic field. Although using ferrite transmission line model [1]
and basing on the experimental experiences Boyd et al. reviewed the
principle of operation [2, 3] and design relationship and construction
of these devices [4, 5], a satisfactory physical model describing clearly
their operation properties has not been achieved yet. The purpose
of this paper is an alternative approach using the coupled mode
method [6] to the explanation of the operation principles of such ferrite
structures. It extends the coupled mode approach formulated in [7]
where such problem was treated for saturated magnetized ferrite only.
Our attention is focused on the novel configuration reported in [3–
5] where the rotation of biased magnetic field pattern is controlled
electronically. The bias yoke consists of two sets of coils, each
generating four-pole magnetic field. These two windings are designated
as the “sin” and “cos” because of their magnetic field orientations.
The rotation angle of the resulting magnetic field pattern depends on
the ratio of the control currents. Thus a close relationship between
the rotation angle and the transmission phase shift enables to use
this structure as “half-wave plate” in Fox variable phase shifter [8]
accordingly that for input circularly polarized wave the influence of
the rotation angle on the polarization state of the output circularly
polarized wave is not observed. It is worth to note that for this
configuration the only approximate solutions have been reported [3, 5].
Our procedure is to find simple and plausible coupled mode model of
this ferrite guide. The model presented below allows to explain exactly
the wave phenomena and operation principles of the considered ferrite
circular guide and provides simple relationships that could be used as
design of the rotary field ferrite phase shifter and circular polarizers.

2. BASIC CONSIDERATION

2.1. Permeability Tensor

Consider the circular waveguide filled with ferrite magnetized through
a yoke producing two transverse magnetic field arrangements, shown
in Fig. 1. Bias fields are produced by two interlaced windings that
resembles stator located on the wall of circular waveguide.

Resulting flux density of magnetic field around the ferrite rod can
be approximately defined as the superposition of the fields for the two
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Figure 1. Four-pole magnetic bias field system.

windings

B = B1 + B2 = Bo1 cos(2ϕ)iρ −Bo1 sin(2ϕ)iϕ

+Bo2 sin(2ϕ)iρ +Bo2 cos(2ϕ)iϕ (1)

Assume that the magnitudes of magnetic fields Bo1 and Bo2 of the
windings control currents vary as Bo cos(θ) and Bo sin(θ), respectively,
where θ is defined as an electrical angle and Bo define magnitude of
the transverse magnetic field in the ferrite cross-section. Applying Bo1

and Bo2 in (1) we obtain

B = Bo cos(2ϕ− θ)iρ −Bo sin(2ϕ− θ)iϕ (2)

Note, that a change of the electrical angle θ is tantamount to a
mechanical rotation of the resultant four-pole field by an angle θ/2
as shown in Fig. 2. In this way the magnetic field pattern can be
turned electrically. Then in order to define the permeability tensor in
the ferrite we exploited an expression given in [8] for ferrite magnetized
through four-pole field pattern. In dyadic form it yields

µ↔ = µρρiρ · iρ + µρϕiρ · iϕ + µρziρ · iz

+µϕρiϕ · iρ + µϕϕiϕ · iϕ + µϕziϕ · iz

+µzρiz · iρ + µzϕiz · iϕ + µzziz · iz (3)

where:

µρρ = 1 + (1 − µ) sin2(2φ)

µϕϕ = 1 + (1 − µ) cos2(2φ)
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Figure 2. Rotatable magnetic field pattern.

µρϕ = µϕρ = (1 − µ) sin(2φ) cos(2φ)
µρz = −µzρ = −jµa sin(2φ)
µϕz = −µzϕ = −jµa cos(2φ)
µzz = µ

and φ = ϕ − θ/2. For “weak ” and “strong” bias magnetic field the
elements of the permeability tensor µ, µa are well determined in [2].

2.2. Coupled Mode Model

In order to obtain an approximate solution for the considered ferrite
guide the coupled mode equations as derived by Awai and Itoh [6]
were applied. This method describes electromagnetic wave propagation
in the ferrite in terms of interaction between the normal modes of
the basis waveguide. In our analysis the basis waveguide originates
from the investigated guide where ferrite is substituted by dielectric
of the permittivity εf and permeability µ = 1. Suppose the basis
guide is operating in the single mode frequency range. With a pair
of orthogonal TE11 base modes, the electric E and magnetic H
fields in the ferrite are written as, (E ∨ H) = a1F 1 + a2F 2 where
F i = (ei ∨ hi) are basis electric or magnetic fields and ai (i = 1, 2)
represent z-dependent scalar wave functions. Using procedure [6] the
wave propagation in the ferrite guide can be described by the following
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coupled mode equations

∂a1

∂z
+ j(β −G2)a1 = −jG1a2

∂a2

∂z
+ j(β +G2)a2 = −jG1a1

(4)

where; β = βo +(µ− 1)I0 is a propagation coefficient of the equivalent
dielectric wave. For µ = 1, the β is equal to the propagation coefficient
βo of the base mode and this wave relates to the base mode. The
quantities G1 and G2 have a dimension of propagation coefficient and
are expressed as

G1 = µa cos(θ) · I1 and G2 = µa sin(θ) · I1 (5)

and quantities I0 and I1 given by

I1 = k0η0

a∫
0

(B −A)Cρdρ (5a)

I0 =
1
2
k0η0Yf


1

2
− Z2

f

a∫
0

C2ρdρ


 (5b)

where;

A =
g

ρ
J1(p · ρ), B = pgJ ′

1(p · ρ), C =
gp2

k0η0
J1(p · ρ)

and coefficient g = 0.8871.
In the above expressions k0 is wave number and η0 is wave

impedance in vacuum, Yf is wave admittance of the base TE11 mode,
the J1 is Bessel function, eigenvalue p = 1.184/a and a is a radius
of circular guide. Applying solution of the form ai = Aie

−jkz to the
eqs. (4) we found two normal modes in the ferrite whose propagation
coefficients are given by:

k1 = β + ∆ and k2 = β − ∆ (6)

where;
∆ =

√
G2

1 +G2
2 = µa · I1 (7)

The values of k1 and k2 are plotted in Fig. 3. The nonreciprocity
properties of the guide are seen because for (+z) wave propagation
direction the coefficients k+

1 = k1 and k+
2 = k2 while for (−z) direction,
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Figure 3. Dispersion characteristics.

k−1 = k2 and k−2 = k1. Note that the same relations for k+/− are
obtained when magnetization is reversed. Proceeding on this basis
note that the phase differences between normal modes is equal.

δ± = k±1 − k±2 = 2 · ∆± (8)

Applying (5) and (6) to (8) we find that phase difference δ is
independent of electrical angle θ and ferrite permittivity εf . The
fact that the ∆+ = −∆− = ∆ implies that the value of differential
phase shift differs only in sign for opposite direction of propagation
or magnetization. For frequency f = f0, the β = ∆ and k1 = 2∆
and k2 = 0. Now, only one of the normal mode propagates in the
ferrite guide. Below the frequency f0 but above the cutoff frequency
fc the backward wave appears together with the forward mode. Below
frequency fc propagation coefficients β will be purely imaginary (β =
jα) while the value of ∆ remains real. Then propagation coefficients
k1/2 will be both complex values, again equal;

k±1 = −jα±∆ and k±2 = −jα∓∆. Note that the phase difference
between forward or backward complex waves is the same as for the
propagating waves but their amplitudes decays exponentially at both
±z directions. Boyd [3] pointed out that periodical guide in which
sections of high permittivity dielectric material alternate with ferrite
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sections, produces differential phase shift even when ferrite sections are
below cutoff frequency. It allowed [4, 5] to reduce diameter of circular
waveguide used to build practical ferrite rotary-field phase shifters .

2.3. Ferrite Waves

Generally, the solutions of the coupled mode equations (4) yields two
normal modes in the ferrite. For these modes the electric fields are
expressed as follow

E1 = A1 (e1 +K21e2) e−jk1z

E2 = A2 (e2 +K12e1) e−jk2z
(9)

Then, a mixture of partial waves of the normal modes in the ferrite
structure yields two ferrite waves associated with the fields of the base
modes. The electric fields of these waves may be expressed as

E1 =
(
A1e

−jk1z +K12A2e
−jk2z

)
e1

E2 =
(
A2e

−jk2z +K21A1e
−jk1z

)
e2

(10)

In the above equations the coefficients A1 and A2 will be determined by
initial conditions. The quantities K12 and K21 are coupling coefficients
describing the field coupling from the base mode 2 to mode 1 and vice
versa. The coupling coefficients satisfy condition K21 = −K12 = K
and K is given by

K = (G2 − ∆)/G1 (11)

The coupling coefficient K evaluated with (5) yields

K = tan(π/4 − θ/2) (12)

It is worth to note that coupling coefficient depends on the electrical
angle θ. When the “cos bias” winding operates only, then the electrical
angle θ = 0 and the coupling between basis modes is observed. The
basis modes in the ferrite are uncoupled when the “sin bias” winding
is only excited. It occurs when θ = π/2 for which coupling coefficient
K = 0.

2.4. Operation Principles

Let us consider the effect of phase difference on the field distribution
along the ferrite guide. Consider the total electric field defined as the
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superposition of the fields of two ferrite waves. Then, owing to the
relation (10) the total electric field is given by

E = E1 + E2

=
(
A1e

−jk1z −KA2e
−jk2z

)
e1 +

(
A2e

−jk2z +KA1e
−jk1z

)
e2 (13)

Assume that the ferrite guide is excited at the plane z = 0 by left
hand circularly polarized LHCP wave described as superposition of
two linearly polarized base waves. With this input wave the initial
conditions at the input plane are given by

E(z = 0) = e+ = e1 + je2 and |e1| = |e2| (14)

If initially (13) satisfies (14), coefficients A1 and A2 will emerge as
[
A1

A2

]
=

1
1 +K2

[
1 + jK
j(1 + jK)

]
(15)

Using (15) in (13) , the total electric field distributionE(z) in the ferrite
guide is now formulated with respect of the electric fields e+ = e1+je2

and e− = e1 − je2 of the base LHCP and RHCP waves, respectively.

E = E+ + E− =
[
cos(∆ · z)e+ +R sin(∆ · z)e−]

e−jβz (16)

where;

R = −j (1 + jK)2

1 +K
(17)

Substituting (12) into (17) the coefficient R results in the relation to
the electrical angle θ as

R = e−jθ (18)

Note from (16) that for different value of z the polarization state of the
wave is changed. The polarization state of wave is defined by axial ratio
(AR) and rotation angle (ψ). These parameters [9] can be evaluated
with (16) as

AR = tan(π/4 − ∆ · z) and ψ = θ/2, (19)

for ∆ · z & θ ∈ (0, π/2).
The coefficient AR is expressed only in terms of the phase

difference angle (∆ · z) while the rotation angle ψ is proportional to
the electrical angle θ which simulates mechanical rotation of the bias
magnetic field. For AR = 0 the wave is linearly polarized (LP) while
AR = +1 or −1 is designates for (LHCP) and (RHCP) circularly
polarized waves. It is significant that for circularly polarized ferrite
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Figure 4. Polarization states of the output wave for input LHCP
wave defined by points on circles evaluated versus θ for selected values
∆ · z and performed on Poincare sphere.

wave the rotation angle ψ is not defined so its polarization is not
changed with electrical angle θ. This situation is observed on the
Poincare sphere shown in Fig. 4 where parallels show the change of
axial ratio AR of the wave propagating along the guide. Over the
distance, where ∆ · z = π/4 the input circularly polarized wave is
converted into linearly polarized wave whose orientation varies with
electrical angle θ. It demonstrates points on equator of Poincare sphere
in Fig. 4. Note that for θ = 0 or π, the orthogonal VLP or HLP wave
appears, respectively. Therefore for such polarizer called “quarter-
wave plate” [8] the principal axis is determined by the transverse four
pole magnetic field pattern produced by one winding or defined in our
system by θ = 0 or π.

Another important configuration is ferrite section of length ∆·z =
π/2 where LHCP input wave is transformed to the output RHCP
wave and back. It refers to the “rotary half-wave section” where
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the phase variation of the output circularly polarized wave is linearly
proportional to the electrical angle θ. It bring (16) evaluated with
(18), where the quantity of phase variation is equals θ + βz and β is
independent of angle θ.

The similar results are presented in Fig. 5 where output wave
polarization state parameters are calculated and measured as a
function of magnetization M/Ms that varies with magnetizing current
Im. From equation (7) and relations defined for elements of
permeability tensor in [2] is seen that ∆ is proportional to M/Ms.
Therefore the change of M/Ms as well as the ferrite section length ∆ ·z
define similar response for the wave polarization state. One may notice
that experimental results correspond well to the parallels calculated for
values of M/Ms = 0.5 and M/Ms = 0.7 that relate to the magnetizing
current Im = 0.2A and Im = 0.4A respectively.

Figure 5. Experimental and simulated polarization state parameters
of the wave at the output of the ferrite section for LHCP input,
evaluated versus θ and selected two values of magnetization currents
Im (M/Ms) (ferrite rod parameters, radius a = 18.59 mm, length
z = 98 mm, Ms = 250 Gauss, εr = 13.5).
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2.5. Matching Properties

When normal TE11 wave propagates from a dielectric circular
waveguide into a ferrite circular guide, a two reflected linearly polarized
orthogonal TE11 waves will occur mainly at the interface. In
this arrangement the reflection results from differences between the
wave impedance Zd of the TE11 mode in dielectric guide and wave
impedances of the ferrite modes Z1 and Z2. The ferrite waves are
revealed as perturbed linearly polarized dielectric wave characterized
by propagation coefficients β and wave impedance Z = k0η0/β. Hence,
ferrite waves impedances normalized to the dielectric wave impedance
Z are approximately defined as

Z̃1 = β/k1 and Z̃2 = β/k2 (20)

Applying (6) and (8) in (20), the ferrite wave impedances are expressed
in terms of normalized differential phase shift χ = δ/2β, as follow

Z̃1 = 1/(1 + χ) and Z̃2 = 1/(1 − χ) (21)

Now assume the following relantionship between normalized dielectric
Zd/Z = r and ferrite waves impedances√

Z̃1Z̃2 = r where r = 1/
√

1 − χ2 (22)

The reflection coefficients Γ1 and Γ2 for input LP dielectric modes will
be

Γ1 = −Γ2 = Γ =
τ − 1
τ + 1

(23)

with; τ2 = Z̃1/Z̃2 = (1 − χ)/(1 + χ).
Let linearly polarized wave is incident with angle γ on the

dielectric ferrite interface. With conditions (23) the magnitudes of co-
and cross-polarization reflection depends on incident angle γ. There
are Γ(co) = Γ cos(2γ) and Γ(cross) = −Γ sin(2γ), where Γ ∼ χ/2 and
γ = (π − θ)/2. Because the cross-polarization reflection can be easily
canceled using loss plate the only “parasitic” is co-polarized reflected
wave appearing at the plane of incident wave. Note that this reflection
is vanished when γ = π/4 because the polarization planes of reflected
and input linearly polarized waves are orthogonal. The situation for
incidence of circularly polarized wave is similar. For LHCP input wave
the reflected wave is RHCP and vice versa. The maximal magnitude of
the reflection is equal Γ and it is less than −20 dB for value of χ < 0.2.
Consider now the problem when condition (22) is not satisfied. Then
Γ1 	= Γ2 and Γ(co) and Γ(cross) are given by

Γ(co) = Γ cos(ξ) and Γ(cross) = Γ sin(ξ) (24)
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where; Γ =
√

Γ2
1 cos2(γ) + Γ2

2 sin2(γ) and ξ = [γ+arctan[(Γ1/Γ2) tan(γ)].
For r = Z̃1 the reflection coefficients Γ1 = 0 and Γ2 = −χ. With

these values the co-polarized reflection is Γ(co) = −χ sin γ. For r = Z̃2

we obtain Γ2 = 0 and Γ1 = χ and hence Γ(co) = χ cos(γ). The
plots relating return loss Γ to the normalized phase difference χ and
dielectric impedance r for angle γ = 45◦ are shown in Fig. 6. Note
that this reflection is less than −15 dB when r is chosen from 0.8 to 1.2
andχ < 0.2. The magnitudes of reflected coefficient achieve minimum
when r ≈ 1 i.e., when the condition (22) is satisfied.

1

2

0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

[d
B

]

Figure 6. Reflection coefficient Γ. versus normalized impedance r for
selected values of χ, angle.

3. CONCLUSION

Coupled mode description of the propagation phenomena in the
ferrite circular waveguide magnetized through a rotary four-pole bias
magnetic field has been developed. This approach has given useful
insight into the effect of bias field rotation on the change of the phase
and polarization state of the wave propagated along the guide. The use
of coupled waves provides simple design relationships useful to model
latching ferrite rotary field phase shifters and polarizer.
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