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Abstract—In this paper, the finite-difference time-domain (FDTD)
method is applied to calculate the radar cross-section (RCS) of
anisotropic coated missiles. We present a FDTD algorithm for
cylindrical coordinates and derive the necessary extension to the FDTD
equations for a general three-dimensional anisotropic scatterer. A new
approach is proposed to obtain magnitude and phase information from
the FDTD data. Computed results for two selected examples are
compared with those obtained by eigenfunction expansion techniques
and the moment method (MM) to demonstrate the validity of the new
approach with very good agreement. The study of the bistatic radar
cross-section for a missile demonstrates that the anisotropic material
coating around it can effectively reduce its RCS.

1. INTRODUCTION

The basic FDTD method in Cartesian coordinates, first described
by Yee [1], has been used extensively in electromagnetic field
modeling because of its ability to robustly handle interactions of
fields with complex heterogeneous structures. The method can also
handle materials characterized by arbitrary permittivity, conductivity
and permeability including anisotropic media [2]. A study of
electromagnetic scattering from a conducting target, having an
dielectric layer over it, is a field of great interest to engineering
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community [3–5]. In using the conventional FDTD algorithm to solve
such electromagnetic scattering problems involving curved surfaces,
which are poorly represented in a rectilinear mesh, the traditional
rectangular cells to such surfaces results in the staircase approximation.
Generalizing the FDTD algorithm to curvilinear coordinates [6, 7]
can obviously improve the accuracy of the model. For the current
problem discussed in this paper, the conventional FDTD algorithm
should be modified to accommodate anisotropic materials in cylindrical
coordinates. In addition, a conformal dielectric FDTD technique [8] is
useful for the accurate description of arbitrary shaped surfaces.

2. METHODOLOGY

Maxwell’s time-domain curl equations in an isotropic, homogeneous
and lossy dielectric medium have the form

∇× E = −µ
∂H

∂t
∇× H = ε

∂E

∂t
+ σE (1)

where E is the electric field intensity, H is the magnetic field intensity,
ε is the dielectric constant, µ is the permeability and σ is the
conductivity.

In a cylindrical coordinate system (ρ, ϕ, z), it is assumed that
the space-time functional notation fn(i, j, k) = f(i∆ρ, j∆ϕ, k∆z, n∆t)
applies, where ∆ρ and ∆z are the respective space increments along the
ρ- and Z-directions, ∆ϕ is the angular increment along the azimuthal
direction, and ∆t is the time increment. Following Yee [1], both the
temporal and spatial derivatives in the scalar equations of Eq. (1) are
approximated by central difference expressions that have second-order
accuracy in the space and time increments, and the resulting update
equations for E can be represented as
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Similar time-stepping equations can be obtained for the magnetic field
components.

The following relations hold in general anisotropic material

D = ε0εr · E, B = µ0µr · H, J = σ · E (3)

where D is the electric displacement vector, B is the magnetic
induction vector, εr is the relative permittivity tensor, µr is the relative
permeability tensor, and σ is the conductivity tensor, which can be
written as

εr =



ερρ ερϕ ερz

εϕρ εϕϕ εϕz

εzρ εzϕ εzz


, µr =
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
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σρρ σρϕ σρz

σϕρ σϕϕ σϕz

σzρ σzϕ σzz




(4)
We assume these off-diagonal elements are nonzero. Following
Schneider and Hudson [2], we obtain
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where the superscript −1 indicates inverting the corresponding matrix.
We will limit ourselves here to consideration of the vectors N1 and M1

in the first relation in Eq. (5).
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It is considerably different from the isotropic media cases that four
terms of N1 depend upon Ey or Ez neighboring Ex, and there
is additionally the derivative with respect to x in the expressions
of M1. In calculating the remaining electric field components,
similar procedures must be carried out for deriving the equations of
N2,M2,N3, and M3. Using the same scheme, we can obtain the
FDTD equations for the magnetic field in anisotropic media having a
permeability tensor.

In order to model open-region problems, an absorbing boundary
condition is often used to truncate the computational domain, and
ensures that this boundary is, in effect, transparent to outgoing
waves. Although absorbing performance of the standing-traveling wave
boundary condition [9] is not particularly good as widely used PML
(perfectly matched layer), it is easier to handle, and requires smaller
CPU storage without additional absorbing domain and fields splitting.
In addition, it is independent of incident frequency and angle, and
can be extended to dispersive or lossy media. In 3-D cylindrical
coordinates, this boundary consists of the cylinder surface ρ = Nρ∆ρ,
the planes Z = 0 and Z = Nz∆z. The STWBC are expressed as
follows:
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Cylindrical coordinate system has singularities along the z-axis. Cells
adjacent to this line are formed of only five sides instead of six, and the
field components Hρ, EY and Ez updates for these cells require special
attention. The former two field components are not required for the
update equations of any other components, so they are simply ignored
by the algorithm. From the Ampere’s law, we obtain
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We assume that NY is the total mesh number in azimuthal direction,
namely, the azimuthal index j ∈ [0, NY ]. Thus, the FDTD equations
for Eρ (j = 0), Ez (j = 0), Hρ (j = NY − 1

2) and Hz (j = NY − 1
2)

must be modified as
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To transform the near scattered field to the far field, magnitude and
phase information for sinusoidal steady-state FDTD problems can
be obtained by the undermentioned approach. The time-harmonic
electromagnetic field having the following form:

f(t) = f0 cos(ωt + φ) (11)

where all variables are real numbers, and f0 is the magnitude and φ is
the initial phase. Then the derivative of f(t) is

df(t)
dt

= −ωf0 sin(ωt + φ) (12)

and it is approximated by the difference quotient expression as

f(t + ∆t) − f(t)
∆t

= −ωf0 sin(ωt + φ) (13)

where ∆t is still the time step. Obviously ∆t is far smaller than the
one in Cartesian coordinates, so the discretization error is very small.
Using (12) and (13), one can obtain the magnitude and the phase from
the FDTD data at time step n and n + 1.

3. NUMERICAL RESULTS

In order to validate the feasibility of the current FDTD algorithm
to analyze electromagnetic scattering, canonical two-dimensional
structures are studied. The numerical results of the FDTD-computed
surface electric-current distribution are presented for the cases of a two-
dimensional conducting circular cylinder and a dielectrically coated
conducting cylinder respectively subject to a TE-polarized illumination
at normal incidence.

The perfectly conducting circular cylinder excited by an external
transverse electric plane wave of unit amplitude whose propagation
vector and electric polarization vector are, respectively, perpendicular
and parallel to the axis of the cylinder as shown in Fig. 1. The
wavelength λ is chosen to make k0a = 5, where k0, a are the
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propagation constant in the free-space medium, and the radius of
the cylinder. Fig. 1 graphs the results for the FDTD analyses of the
magnitude and phase of the cylinder surface-current distribution. A
plane wave of unit amplitude traveling along X-axis is incident on a
circular conducting cylinder coated with homogenous dielectric layer
as shown in Fig. 2. The ratio of a to λ is 0.4, and the thickness of the
dielectric coating δ = 0.06λ. The relative dielectric constant εr = 2.0.

Figure 1. Magnitude and phase of electric current on the circular
cylinder surface.

Figure 2. Magnitude of electric current on the inner cylinder.
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The magnitude of the inner cylinder surface-current distribution is
shown in Fig. 2. These results are in excellent agreement with those
obtained by eigenfunction expansion techniques [6] and the moment
method (MM) [10].

The photograph of a real antitank missile is contained in Fig. 3(1).
In the light of the geometrical configuration of the missile, a model
is constructed as shown in Fig. 3(2). The nose of the model points
along the z-axis, and its two horizontal fins lie in the XZ plane, the
vertical one lies in the Y Z plane. The missile model consists of a
conical nose and a cylinder; three fins are mounted in the midst of the
fuselage. We take the fins to be wedge-shaped, and the angle of each
fin to the axis of the missile is 18◦. The constitutive parameters of
the model are: a = 20.8 cm, b = 138.6 cm, c = 48.5 cm, d = 69 cm,
e = 24 cm, f = 12 cm, whose graphical definitions are given in
Fig. 3(2). The electromagnetic parameters of the anisotropic coating
are: ερ = 10, εϕ = 30, εz = 70, µ = 20, σ = 0.07, and its thickness is
4 mm. The incident wave whose electric field vector is parallel to the
X-axis propagates along −z direction with the frequency 300 MHz.

In the bistatic cases, the transmitter and receiver will be confined
to the horizontal plane, namely XZ plane. The bistatic scattering
cross-section for both the bare case and the coated case of the missile
model is calculated. Fig. 4 plots the cross-section of the missile as a
function of the bistatic angle β and shows the effect of the coating
layer on the monostatic scattering cross-section. It is seen that the
anisotropic material coating around the missile can evidently reduce
its RCS.

Figure 3. (1) Photograph of a real antitank missile (2) Geometry of
a missile model scattering problem.
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Figure 4. Effect of coating on scattering cross-section.

4. CONCLUSIONS

We have extended the FDTD algorithm in cylindrical coordinates
to accommodate anisotropic materials with general permittivity,
conductivity and permeability tensors, which cannot be diagonalized.
Two validating examples have been reported representing excellent
accuracy of the current method. The results for both bare and coated
case of a missile demonstrate the effect of the anisotropic material
coating around it on its RCS reduction.
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